1
|
Craven BC, Souza WH, Jaglal S, Gibbs J, Wiest MJ, Sweet SN, Athanasopoulos P, Lamontagne ME, Boag L, Patsakos E, Wolfe D, Hicks A, Maltais DB, Best KL, Gagnon D. Reducing endocrine metabolic disease risk in adults with chronic spinal cord injury: strategic activities conducted by the Ontario-Quebec RIISC team. Disabil Rehabil 2024; 46:4835-4847. [PMID: 38018518 DOI: 10.1080/09638288.2023.2284223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/17/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE The Rehabilitation Interventions for Individuals with a Spinal Cord Injury in the Community (RIISC) team aimed to develop and evaluate innovative rehabilitation interventions to identify endocrine metabolic disease (EMD) risk, intending to reduce the frequency and severity of EMD related morbidity and mortality among adults living with chronic spinal cord injury or disease (SCI/D). MATERIALS AND METHODS An interprovincial team from Ontario and Quebec reviewed available EMD literature and evidence syntheses and completed an inventory of health services, policies and practices in SCI/D care. The review outcomes were combined with expert opinion to create an EMD risk model to inform health service transformation. RESULTS EMD risk and mortality are highly prevalent among adults with chronic SCI/D. In stark contrast, few rehabilitation interventions target EMD outcomes. The modelled solution proposes: 1) abandoning single-disease paradigms and examining a holistic perspective of the individual's EMD risk, and 2) developing and disseminating practice-based research approaches in outpatient community settings. CONCLUSIONS RIISC model adoption could accelerate EMD care optimization, and ultimately inform the design of large-scale longitudinal pragmatic trials likely to improve health outcomes. Linking the RIISC team activities to economic evaluations and policy deliverables will strengthen the relevance and impact among policymakers, health care providers and patients.
Collapse
Affiliation(s)
- Beverley Catharine Craven
- Toronto Rehabilitation Institute, Lyndhurst Centre, University Health Network, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Wagner Henrique Souza
- Kite Research Institute, University Health Network, Lyndhurst Centre, Toronto, Canada
| | - Susan Jaglal
- Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Jenna Gibbs
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | | | - Shane N Sweet
- Department of Kinesiology & Physical Education, McGill University, Montreal, Canada
| | - Peter Athanasopoulos
- Senior Manager Public Policy and Government Relations, Spinal Cord Injury Ontario, Toronto, Canada
| | | | - Lynn Boag
- University of Guelph, Guelph, Canada
| | - Eleni Patsakos
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Dalton Wolfe
- Department of Physical Medicine and Rehabilitation, Western University, Parkwood Institute Research, London, Canada
| | - Audrey Hicks
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Désirée B Maltais
- Department of Rehabilitation, Physiotherapy Program, Laval University, Quebec City, Canada
| | - Krista Lynn Best
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Dany Gagnon
- School of Rehabilitation, Université de Montréal, Montréal, Canada
- Centre for Interdisciplinary Research in Rehabilitation, Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), Montréal, Canada
- Rehabilitation, Université de Montréal, École de Réadaptation, Montréal, Canada
| |
Collapse
|
2
|
Ibitoye MO, Hamzaid NA, Ahmed YK. Effectiveness of FES-supported leg exercise for promotion of paralysed lower limb muscle and bone health-a systematic review. BIOMED ENG-BIOMED TE 2023:bmt-2021-0195. [PMID: 36852605 DOI: 10.1515/bmt-2021-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
Leg exercises through standing, cycling and walking with/without FES may be used to preserve lower limb muscle and bone health in persons with physical disability due to SCI. This study sought to examine the effectiveness of leg exercises on bone mineral density and muscle cross-sectional area based on their clinical efficacy in persons with SCI. Several literature databases were searched for potential eligible studies from the earliest return date to January 2022. The primary outcome targeted was the change in muscle mass/volume and bone mineral density as measured by CT, MRI and similar devices. Relevant studies indicated that persons with SCI that undertook FES- and frame-supported leg exercise exhibited better improvement in muscle and bone health preservation in comparison to those who were confined to frame-assisted leg exercise only. However, this observation is only valid for exercise initiated early (i.e., within 3 months after injury) and for ≥30 min/day for ≥ thrice a week and for up to 24 months or as long as desired and/or tolerable. Consequently, apart from the positive psychological effects on the users, leg exercise may reduce fracture rate and its effectiveness may be improved if augmented with FES.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur Malaysia
| | - Yusuf Kola Ahmed
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
3
|
Fenton JM, King JA, Hoekstra SP, Valentino SE, Phillips SM, Goosey-Tolfrey VL. Protocols aiming to increase muscle mass in persons with motor complete spinal cord injury: a systematic review. Disabil Rehabil 2022; 45:1433-1443. [PMID: 35465798 DOI: 10.1080/09638288.2022.2063420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this review was to compare all intervention modalities aimed at increasing skeletal muscle mass (SMM) in the paralysed limbs of persons with chronic (>1-year post-injury), motor complete spinal cord injury (SCI). MATERIALS AND METHODS A systematic review of EMBASE, MEDLINE, Scopus, and SPORTDiscus databases was conducted from inception until December 2021. Published intervention studies aimed to increase SMM (measured by magnetic resonance imaging, computed tomography, ultrasound, muscle biopsy, or lean soft tissue mass by dual X-ray absorptiometry) in the paralysed limbs of adults (>18 years) with SCI were included. RESULTS Fifty articles were included that, overall, demonstrated a high risk of bias. Studies were categorised into six groups: neuromuscular electrical stimulation (NMES) with and without external resistance, functional electrical stimulation cycling, walking- and standing-based interventions, pharmacological treatments, and studies that compared or combined intervention modalities. Resistance training (RT) using NMES on the quadriceps produced the largest and most consistent increases in SMM of all intervention modalities. CONCLUSIONS Current evidence suggests that clinical practise aiming to increase SMM in the paralysed limbs of persons with motor complete SCI should perform NMES-RT. However, more high-quality randomised control trials are needed to determine how training variables, such as exercise volume and intensity, can be optimised for increasing SMM. Implications for rehabilitationPersons with spinal cord injury (SCI) experience severe reductions in skeletal muscle mass (SMM) post-injury, which may exacerbate their risk of obesity and metabolic disease.Out of all exercise and non-exercise-based interventions, this systematic review shows that neuromuscular electrical stimulation-based resistance training demonstrates the most robust and consistent evidence for increasing skeletal muscle mass in the paralysed limbs of adults with motor complete spinal cord injury.The findings from this review can be used to inform evidence-based practise for exercise practitioners, as well as direct future research focused on increasing muscle mass in this population.
Collapse
Affiliation(s)
- Jordan M. Fenton
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Sven P. Hoekstra
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | | | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Victoria L. Goosey-Tolfrey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| |
Collapse
|
4
|
Furlan JC, Pakosh M, Craven BC, Popovic MR. Insights on the Potential Mechanisms of Action of Functional Electrical Stimulation Therapy in Combination With Task-Specific Training: A Scoping Review. Neuromodulation 2021; 25:1280-1288. [PMID: 34031937 DOI: 10.1111/ner.13403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES This scoping review was undertaken to synthetize and appraise the literature on the potential mechanisms of action of functional electrical stimulation therapy in combination with task-specific training (FEST + TST) in the rehabilitation following stroke, spinal cord injury, traumatic brain injury, or multiple sclerosis. MATERIALS AND METHODS The literature search was performed using multiple databases (including APA, PsycInfo, Medline, PubMed, EMBASE, CCRCT, and Cochrane Database of Systematic Reviews) from 1946 to June 2020. The literature search used the following terms: (spinal cord injury, paraplegia, tetraplegia, quadriplegia, stroke, multiple sclerosis, traumatic brain injury, or acquired brain injury) AND (functional electrical stimulation or FES). The search included clinical and preclinical studies without limits to language. RESULTS Of the 8209 titles retrieved from the primary search, 57 publications fulfilled the inclusion and exclusion criteria for this scoping review. While most publications were clinical studies (n = 50), there were only seven preclinical studies using animal models. The results of this review suggest that FEST + TST can result in multiple effects on different elements from the muscle to the cerebral cortex. However, most studies were focused on the muscle changes after FEST + TST. CONCLUSIONS The results of this scoping review suggest that FEST + TST can result in multiple effects on different elements of the neuromuscular system, while most research studies were focused on the muscle changes after FEST + TST. Despite the efficacy of the FEST + TST in the neurorehabilitation after CNS injury or disease, the results of this review underline an important knowledge gap with regards to the actual mechanism of action of FEST + TST.
Collapse
Affiliation(s)
- Julio Cesar Furlan
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada.,Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,KITE - Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Maureen Pakosh
- Library & Information Services, Rumsey Cardiac Centre Library, University Health Network, Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Beverley Catharine Craven
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada.,Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,KITE - Research Institute, University Health Network, Toronto, ON, Canada
| | - Milos Radomir Popovic
- KITE - Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Chiu HC, Ada L, Bania TA. Mechanically assisted walking training for walking, participation, and quality of life in children with cerebral palsy. Cochrane Database Syst Rev 2020; 11:CD013114. [PMID: 33202482 PMCID: PMC8092676 DOI: 10.1002/14651858.cd013114.pub2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cerebral palsy is the most common physical disability in childhood. Mechanically assisted walking training can be provided with or without body weight support to enable children with cerebral palsy to perform repetitive practice of complex gait cycles. It is important to examine the effects of mechanically assisted walking training to identify evidence-based treatments to improve walking performance. OBJECTIVES To assess the effects of mechanically assisted walking training compared to control for walking, participation, and quality of life in children with cerebral palsy 3 to 18 years of age. SEARCH METHODS In January 2020, we searched CENTRAL, MEDLINE, Embase, six other databases, and two trials registers. We handsearched conference abstracts and checked reference lists of included studies. SELECTION CRITERIA Randomized controlled trials (RCTs) or quasi-RCTs, including cross-over trials, comparing any type of mechanically assisted walking training (with or without body weight support) with no walking training or the same dose of overground walking training in children with cerebral palsy (classified as Gross Motor Function Classification System [GMFCS] Levels I to IV) 3 to 18 years of age. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS This review includes 17 studies with 451 participants (GMFCS Levels I to IV; mean age range 4 to 14 years) from outpatient settings. The duration of the intervention period (4 to 12 weeks) ranged widely, as did intensity of training in terms of both length (15 minutes to 40 minutes) and frequency (two to five times a week) of sessions. Six studies were funded by grants, three had no funding support, and eight did not report information on funding. Due to the nature of the intervention, all studies were at high risk of performance bias. Mechanically assisted walking training without body weight support versus no walking training Four studies (100 participants) assessed this comparison. Compared to no walking, mechanically assisted walking training without body weight support increased walking speed (mean difference [MD] 0.05 meter per second [m/s] [change scores], 95% confidence interval [CI] 0.03 to 0.07; 1 study, 10 participants; moderate-quality evidence) as measured by the Biodex Gait Trainer 2™ (Biodex, Shirley, NY, USA) and improved gross motor function (standardized MD [SMD] 1.30 [postintervention scores], 95% CI 0.49 to 2.11; 2 studies, 60 participants; low-quality evidence) postintervention. One study (30 participants) reported no adverse events (low-quality evidence). No study measured participation or quality of life. Mechanically assisted walking training without body weight support versus the same dose of overground walking training Two studies (55 participants) assessed this comparison. Compared to the same dose of overground walking, mechanically assisted walking training without body weight support increased walking speed (MD 0.25 m/s [change or postintervention scores], 95% CI 0.13 to 0.37; 2 studies, 55 participants; moderate-quality evidence) as assessed by the 6-minute walk test or Vicon gait analysis. It also improved gross motor function (MD 11.90% [change scores], 95% CI 2.98 to 20.82; 1 study, 35 participants; moderate-quality evidence) as assessed by the Gross Motor Function Measure (GMFM) and participation (MD 8.20 [change scores], 95% CI 5.69 to 10.71; 1 study, 35 participants; moderate-quality evidence) as assessed by the Pediatric Evaluation of Disability Inventory (scored from 0 to 59), compared to the same dose of overground walking training. No study measured adverse events or quality of life. Mechanically assisted walking training with body weight support versus no walking training Eight studies (210 participants) assessed this comparison. Compared to no walking training, mechanically assisted walking training with body weight support increased walking speed (MD 0.07 m/s [change and postintervention scores], 95% CI 0.06 to 0.08; 7 studies, 161 participants; moderate-quality evidence) as assessed by the 10-meter or 8-meter walk test. There were no differences between groups in gross motor function (MD 1.09% [change and postintervention scores], 95% CI -0.57 to 2.75; 3 studies, 58 participants; low-quality evidence) as assessed by the GMFM; participation (SMD 0.33 [change scores], 95% CI -0.27 to 0.93; 2 studies, 44 participants; low-quality evidence); and quality of life (MD 9.50% [change scores], 95% CI -4.03 to 23.03; 1 study, 26 participants; low-quality evidence) as assessed by the Pediatric Quality of Life Cerebral Palsy Module (scored 0 [bad] to 100 [good]). Three studies (56 participants) reported no adverse events (low-quality evidence). Mechanically assisted walking training with body weight support versus the same dose of overground walking training Three studies (86 participants) assessed this comparison. There were no differences between groups in walking speed (MD -0.02 m/s [change and postintervention scores], 95% CI -0.08 to 0.04; 3 studies, 78 participants; low-quality evidence) as assessed by the 10-meter or 5-minute walk test; gross motor function (MD -0.73% [postintervention scores], 95% CI -14.38 to 12.92; 2 studies, 52 participants; low-quality evidence) as assessed by the GMFM; and participation (MD -4.74 [change scores], 95% CI -11.89 to 2.41; 1 study, 26 participants; moderate-quality evidence) as assessed by the School Function Assessment (scored from 19 to 76). No study measured adverse events or quality of life. AUTHORS' CONCLUSIONS Compared with no walking, mechanically assisted walking training probably results in small increases in walking speed (with or without body weight support) and may improve gross motor function (with body weight support). Compared with the same dose of overground walking, mechanically assisted walking training with body weight support may result in little to no difference in walking speed and gross motor function, although two studies found that mechanically assisted walking training without body weight support is probably more effective than the same dose of overground walking training for walking speed and gross motor function. Not many studies reported adverse events, although those that did appeared to show no differences between groups. The results are largely not clinically significant, sample sizes are small, and risk of bias and intensity of intervention vary across studies, making it hard to draw robust conclusions. Mechanically assisted walking training is a means to undertake high-intensity, repetitive, task-specific training and may be useful for children with poor concentration.
Collapse
Affiliation(s)
- Hsiu-Ching Chiu
- Department of Physical Therapy, I-Shou University, Kaohsiung, Taiwan
| | - Louise Ada
- Discipline of Physiotherapy, The University of Sydney, Lidcombe, Australia
| | - Theofani A Bania
- Department of Physiotherapy, School of Health Rehabilitation Science, University of Patras, Myrtia, Greece
| |
Collapse
|
6
|
Abstract
In physical and rehabilitation medicine, there are few reports on the effects of therapeutic low-frequency electrical stimulation on the immune response of the organism, even though electrical stimulation is used widely in clinical practice and sports medicine. The aim of our study was to examine the possible immunological consequences of moderate transcutaneous neuromuscular electrical stimulation (NMES) for quadriceps muscle strengthening in healthy individuals. The study included twelve healthy male adult volunteers (mean age 42 years) without contraindications for electrical stimulation. At the beginning and immediately after a 20-min session of NMES of quadriceps muscles, peripheral blood was collected to analyse the biochemical blood components (creatinine, creatine kinase, estimated glomerular filtration rate, cortisol), differential white blood cell count and immunological parameters. The intensity of NMES was set at maximum tolerance, eliciting on average about one-sixth of the maximum voluntary isometric contraction of the same leg. No statistically significant differences in the average group level were found in any of the measured biochemical blood components, white blood cell count or immunological parameters after the NMES session. On an individual level, the changes in creatine kinase, estimated glomerular filtration rate, basophils and some immunological parameters correlated with changes in the cortisol level. We can conclude that moderate transcutaneous low-frequency electrical stimulation for quadriceps muscle strengthening used in our study did not induce essential changes in immune status in healthy men.
Collapse
|
7
|
Gorgey AS, Witt O, O’Brien L, Cardozo C, Chen Q, Lesnefsky EJ, Graham ZA. Mitochondrial health and muscle plasticity after spinal cord injury. Eur J Appl Physiol 2018; 119:315-331. [DOI: 10.1007/s00421-018-4039-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
|
8
|
Gibbs JC, Gagnon DH, Bergquist AJ, Arel J, Cervinka T, El-Kotob R, Maltais DB, Wolfe DL, Craven BC. Rehabilitation Interventions to modify endocrine-metabolic disease risk in Individuals with chronic Spinal cord injury living in the Community (RIISC): A systematic review and scoping perspective. J Spinal Cord Med 2017; 40:733-747. [PMID: 28703038 PMCID: PMC5778937 DOI: 10.1080/10790268.2017.1350341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CONTEXT Endocrine-metabolic disease (EMD) risk following spinal cord injury (SCI) is associated with significant multi-morbidity (i.e. fracture, diabetes, heart disease), mortality, and economic burden. It is unclear to what extent rehabilitation interventions can modify EMD risk and improve health status in community-dwelling adults with chronic SCI. OBJECTIVES To characterize rehabilitation interventions and summarize evidence on their efficacy/effectiveness to modify precursors to EMD risk in community-dwelling adults with chronic SCI. METHODS Systematic searches of MEDLINE PubMed, EMBASE Ovid, CINAHL, CDSR, and PsychInfo were completed. All randomized, quasi-experimental, and prospective controlled trials comparing rehabilitation/therapeutic interventions with control/placebo interventions in adults with chronic SCI were eligible. Two authors independently selected studies and abstracted data. Mean differences of change from baseline were reported for EMD risk outcomes. The GRADE approach was used to rate the quality of evidence. RESULTS Of 489 articles identified, 16 articles (11 studies; n=396) were eligible for inclusion. No studies assessed the effects of rehabilitation interventions on incident fragility fractures, heart disease, and/or diabetes. Individual studies reported that exercise and/or nutrition interventions could improve anthropometric indices, body composition/adiposity, and biomarkers. However, there were also reports of non-statistically significant between-group differences. CONCLUSIONS There was very low-quality evidence that rehabilitation interventions can improve precursors to EMD risk in community-dwelling adults with chronic SCI. The small number of studies, imprecise estimates, and inconsistency across studies limited our ability to make conclusions. A high-quality longitudinal intervention trial is needed to inform community-based rehabilitation strategies for EMD risk after chronic SCI.
Collapse
Affiliation(s)
- Jenna C. Gibbs
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada,University Health Network-Toronto Rehabilitation Institute, Lyndhurst Centre, Toronto, ON, Canada,Correspondence to: Dr. Jenna Gibbs, University of Waterloo, Department of Kinesiology, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Dany H. Gagnon
- Université de Montréal, École de Réadaptation, Montréal, QC, Canada
| | - Austin J. Bergquist
- University Health Network-Toronto Rehabilitation Institute, Lyndhurst Centre, Toronto, ON, Canada
| | - Jasmine Arel
- Université de Montréal, École de Réadaptation, Montréal, QC, Canada
| | - Tomas Cervinka
- University Health Network-Toronto Rehabilitation Institute, Lyndhurst Centre, Toronto, ON, Canada
| | - Rasha El-Kotob
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada,University Health Network-Toronto Rehabilitation Institute, Lyndhurst Centre, Toronto, ON, Canada
| | | | - Dalton L. Wolfe
- Department of Physical Medicine and Rehabilitation, Western University, London, ON, Canada,Lawson Health Research Institute, Parkwood Institute Research, London, ON, Canada
| | - B. Catharine Craven
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada,University Health Network-Toronto Rehabilitation Institute, Lyndhurst Centre, Toronto, ON, Canada,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Varoto R, Cliquet A. Experiencing Functional Electrical Stimulation Roots on Education, and Clinical Developments in Paraplegia and Tetraplegia With Technological Innovation. Artif Organs 2015; 39:E187-201. [DOI: 10.1111/aor.12620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Renato Varoto
- Department of Orthopedics and Traumatology; Universidade Estadual de Campinas-UNICAMP; São Paulo Brazil
- Department of Electrical Engineering; Universidade de São Paulo-USP; São Paulo Brazil
| | - Alberto Cliquet
- Department of Orthopedics and Traumatology; Universidade Estadual de Campinas-UNICAMP; São Paulo Brazil
- Department of Electrical Engineering; Universidade de São Paulo-USP; São Paulo Brazil
| |
Collapse
|
10
|
Hammond K, Mampilly J, Laghi FA, Goyal A, Collins EG, McBurney C, Jubran A, Tobin MJ. Validity and reliability of rectus femoris ultrasound measurements: Comparison of curved-array and linear-array transducers. ACTA ACUST UNITED AC 2014; 51:1155-64. [DOI: 10.1682/jrrd.2013.08.0187] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 03/26/2014] [Indexed: 11/05/2022]
|
11
|
The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: a systematic review. Spinal Cord 2011; 49:1103-27. [DOI: 10.1038/sc.2011.62] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Current world literature. Curr Opin Neurol 2009; 22:554-61. [PMID: 19755870 DOI: 10.1097/wco.0b013e3283313b14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|