1
|
Chang CCJ, Liu B, Liebmann JM, Cioffi GA, Winn BJ. Glaucoma and the Human Microbiome. J Glaucoma 2024; 33:529-538. [PMID: 38809163 DOI: 10.1097/ijg.0000000000002448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW To explore a view of the human microbiome as an interconnected, functional, dynamic system that may be linked to the pathogenesis and progression of glaucoma. METHODS A literature review was undertaken that included publications from 1966 to 2023. RESULTS Bacterial lipopolysaccharides (LPS) activate toll-like receptors (TLR) and mediate the human immune response. The LPS-TLR4 pathway is a potential avenue for the ocular, gut, and oral microbiomes to interface and/or influence ocular disease. Studies of gut dysbiosis have shown that alterations in the healthy microbiota can predispose the host to immune-mediated inflammatory and neurodegenerative conditions, while oral and ocular surface dysbiosis has been correlated with glaucoma. While developmental exposure to commensal microflora has shown to be necessary for the autoimmune and neurodegenerative responses to elevated intraocular pressure to take place, commensal bacterial products like short-chain fatty acids have regulatory effects protective against glaucoma. SUMMARY Alterations to human microbiotas have been associated with changes in intestinal permeability, gene regulation, immune cell differentiation, and neural functioning, which may predispose the host to glaucoma. Select microbes have been highlighted for their potential contributions to glaucoma disease progression or protection, raising the potential for microbiota-based treatment modalities. Current topical glaucoma treatments may disrupt the ocular surface microbiota, potentially having ramifications on host health. Further study of the relationships between human microbiome and glaucoma is needed.
Collapse
Affiliation(s)
| | - Benjamin Liu
- Department of Ophthalmology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
| | | | | | - Bryan J Winn
- Department of Ophthalmology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
- Ophthalmology Section, Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA
| |
Collapse
|
2
|
Webster CI, Withycombe JS, Bhutada JS, Bai J. Review of the microbiome and metabolic pathways associated with psychoneurological symptoms in children with cancer. Asia Pac J Oncol Nurs 2024; 11:100535. [PMID: 39104728 PMCID: PMC11298867 DOI: 10.1016/j.apjon.2024.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/11/2024] [Indexed: 08/07/2024] Open
Abstract
Children with cancer often endure a range of psychoneurological symptoms (PNS), including pain, fatigue, cognitive impairment, anxiety, depressive symptoms, and sleep disturbance. Despite their prevalence, the underlying pathophysiology of PNS remains unclear. Hypotheses suggest an interplay between the gut microbiome and the functional metabolome, given the immune, neurological, and inflammatory influences these processes exert. This mini-review aims to provide a synopsis of the literature that examines the relationship between microbiome-metabolome pathways and PNS in children with cancer, drawing insights from the adult population when applicable. While there is limited microbiome research in the pediatric population, promising results in adult cancer patients include an association between lower microbial diversity and compositional changes, including decreased abundance of the beneficial microbes Fusicatenibacter, Ruminococcus, and Odoribacter, and more PNS. In pediatric patients, associations between peptide, tryptophan, carnitine shuttle, and gut microbial metabolism pathways and PNS outcomes were found. Utilizing multi-omics methods that combine microbiome and metabolome analyses provide insights into the functional capacity of microbiomes and their associated microbial metabolites. In children with cancer receiving chemotherapy, increased abundances of Intestinibacter and Megasphaera correlated with six metabolic pathways, notably carnitine shuttle and tryptophan metabolism. Interventions that target the underlying microbiome-metabolome pathway may be effective in reducing PNS, including the use of pre- and probiotics, fecal microbiome transplantation, dietary modifications, and increased physical activity. Future multi-omics research is needed to corroborate the associations between the microbiome, metabolome, and PNS outcomes in the pediatric oncology population.
Collapse
Affiliation(s)
- Caitlin I. Webster
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | | | - Jessica Sheth Bhutada
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Little RB, Carter SJ, Motl RW, Hunter G, Cook A, Liu N, Krontiras H, Lefkowitz EJ, Turan B, Schleicher E, Rogers LQ. Role of Gut Microbe Composition in Psychosocial Symptom Response to Exercise Training in Breast Cancer Survivors (ROME) study: protocol for a randomised controlled trial. BMJ Open 2024; 14:e081660. [PMID: 38702085 PMCID: PMC11086582 DOI: 10.1136/bmjopen-2023-081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Breast cancer survivors have an increased risk for chronic fatigue and altered gut microbiota composition, both with negative health and quality of life affects. Exercise modestly improves fatigue and is linked to gut microbial diversity and production of beneficial metabolites. Studies suggest that gut microbiota composition is a potential mechanism underlying fatigue response to exercise. Randomised controlled trials testing the effects of exercise on the gut microbiome are limited and there is a scarcity of findings specific to breast cancer survivors. The objective of this study is to determine if fitness-related modifications to gut microbiota occur and, if so, mediate the effects of aerobic exercise on fatigue response. METHODS AND ANALYSIS The research is a randomised controlled trial among breast cancer survivors aged 18-74 with fatigue. The primary aim is to determine the effects of aerobic exercise training compared with an attention control on gut microbiota composition. The secondary study aims are to test if exercise training (1) affects the gut microbiota composition directly and/or indirectly through inflammation (serum cytokines), autonomic nervous system (heart rate variability) or hypothalamic-pituitary-adrenal axis mediators (hair cortisol assays), and (2) effects on fatigue are direct and/or indirect through changes in the gut microbiota composition. All participants receive a standardised controlled diet. Assessments occur at baseline, 5 weeks, 10 weeks and 15 weeks (5 weeks post intervention completion). Faecal samples collect the gut microbiome and 16S gene sequencing will identify the microbiome. Fatigue is measured by a 13-item multidimensional fatigue scale. ETHICS AND DISSEMINATION The University of Alabama at Birmingham Institutional Review Board (IRB) approved this study on 15 May 2019, UAB IRB#30000320. A Data and Safety Monitoring Board convenes annually or more often if indicated. Findings will be disseminated in peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT04088708.
Collapse
Affiliation(s)
- Rebecca B Little
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen J Carter
- Department of Kinesiology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gary Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abby Cook
- Baylor Scott & White Medical Center Temple, Temple, Texas, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Helen Krontiras
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elliot J Lefkowitz
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bulent Turan
- Department of Psychology, Koc University, Istanbul, Turkey
| | - Erica Schleicher
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Laura Q Rogers
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Colonetti T, Limas Carmo Teixeira D, Grande AJ, Rodrigues Uggioni ML, Generoso J, Harding S, Rodriguez-Mateos A, Rech P, Rosa Silva F, Toreti I, Ceretta L, Rosa MI. The role of intestinal microbiota on pre-eclampsia: Systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2023; 291:49-58. [PMID: 37826991 DOI: 10.1016/j.ejogrb.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
AIM To investigate differences between gut microbiota diversity and composition of healthy pregnant women and women with pre-eclampsia (PE). METHODS AND RESULTS This is a systematic review and meta-analysis of the literature, in which the terms "pre-eclampsia", "gastrointestinal microbiome" and "pregnant women" were used to search MEDLINE (PubMed), BVS (LILACS and others), Embase (Elsevier) and Cochrane Library, including observational studies and case-control that investigated changes in the gut microbiota during pregnancy. Six studies were included, with 479 pregnant women. A significantly lower gut microbiota alpha diversity measured as the Shannon index was found in pregnant women with PE in comparison with healthy controls (SMD: -0.47; 95 %IC: -0.77 to -0.18; P = 0.02; I2 = 0 %; three studies, 179 participants), while no significant differences were found in the relative abundance of Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria, despite significant differences reported in the individual studies. CONCLUSION Pregnant women with PE have lower gut microbiome diversity, however, there is insufficient evidence to determine whether there are changes in gut microbiota composition. SIGNIFICANCE AND IMPACT OF THE STUDY The gut microbiota can be a new treatment target to try to prevent changes in maternal bacterial proportions, aiming to reduce complications during pregnancy.
Collapse
Affiliation(s)
- Tamy Colonetti
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Diandra Limas Carmo Teixeira
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Antonio José Grande
- Laboratory of Evidence-based Health, Universidade Estadual de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria Laura Rodrigues Uggioni
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Seeromanie Harding
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, SE1 9NH London, UK
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, SE1 9NH London, UK
| | - Peterson Rech
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fabio Rosa Silva
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Indianara Toreti
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luciane Ceretta
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maria Inês Rosa
- Translational Biomedicine Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
5
|
Lu G, Zhang S, Wang R, Zhang Z, Wang W, Wen Q, Zhang F, Li P. Global Trends in Research of Pain-Gut-Microbiota Relationship and How Nutrition Can Modulate This Link. Nutrients 2023; 15:3704. [PMID: 37686738 PMCID: PMC10490108 DOI: 10.3390/nu15173704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION The link between gut microbiota and chronic painful conditions has recently gained attention. Nutrition, as a common intervention in daily life and medical practice, is closely related to microbiota and pain. However, no published bibliometric reports have analyzed the scientific literature concerning the link. METHODS AND RESULTS We used bibliometrics to identify the characteristics of the global scientific output over the past 20 years. We also aimed to capture and describe how nutrition can modulate the abovementioned link. Relevant papers were searched in the Web of Science database. All necessary publication and citation data were acquired and exported to Bibliometrix for further analyses. The keywords mentioned were illustrated using visualization maps. In total, 1551 papers shed light on the relationship from 2003 to 2022. However, only 122 papers discussed how nutritional interventions can modulate this link. The citations and attention were concentrated on the gut microbiota, pain, and probiotics in terms of the pain-gut relationship. Nutritional status has gained attention in motor themes of a thematic map. CONCLUSIONS This bibliometric analysis was applied to identify the scientific literature linking gut microbiota, chronic painful conditions, and nutrition, revealing the popular research topics and authors, scientific institutions, countries, and journals in this field. This study enriches the evidence moving boundaries of microbiota medicine as a clinical medicine.
Collapse
Affiliation(s)
- Gaochen Lu
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Sheng Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Rui Wang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Zulun Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Weihong Wang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Quan Wen
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Faming Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| | - Pan Li
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
6
|
Lai J, Zhuo X, Yin K, Jiang F, Liu L, Xu X, Liu H, Wang J, Zhao J, Xu W, Yang S, Guo H, Yuan X, Lin X, Qi F, Fu G. Potential mechanism of pyrotinib-induced diarrhea was explored by gut microbiome and ileum metabolomics. Anticancer Drugs 2023; 34:747-762. [PMID: 36378136 DOI: 10.1097/cad.0000000000001440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pyrotinib is a novel epidermal growth factor receptor/human epidermal growth factor receptor-2 (HER2) tyrosine kinase inhibitor that exhibited clinical efficacy in patients with HER2-positive breast cancer and HER2-mutant/amplified lung cancer. However, severe diarrhea adverse responses preclude its practical use. At present, the mechanism of pyrotinib-induced diarrhea is unknown and needs further study. First, to develop a suitable and reproducible animal model, we compared the effects of different doses of pyrotinib (20, 40, 60 and 80 mg/kg) in Wistar rats. Second, we used this model to examine the intestinal toxicity of pyrotinib. Finally, the mechanism underlying pyrotinib-induced diarrhea was fully studied using gut microbiome and host intestinal tissue metabolomics profiling. Reproducible diarrhea occurred in rats when they were given an 80 mg/kg daily dose of pyrotinib. Using the pyrotinib-induced model, we observed that Lachnospiraceae and Acidaminococcaceae decreased in the pyrotinib groups, whereas Enterobacteriaceae, Helicobacteraceae and Clostridiaceae increased at the family level by 16S rRNA gene sequence. Multiple bioinformatics methods revealed that glycocholic acid, ursodeoxycholic acid and cyclic AMP increased in the pyrotinib groups, whereas kynurenic acid decreased, which may be related to the pathogenesis of pyrotinib-induced diarrhea. Additionally, pyrotinib-induced diarrhea may be associated with a number of metabolic changes mediated by the gut microbiome, such as Primary bile acid biosynthesis. We reported the establishment of a reproducible pyrotinib-induced animal model for the first time. Furthermore, we concluded from this experiment that gut microbiome imbalance and changes in related metabolites are significant contributors to pyrotinib-induced diarrhea.
Collapse
Affiliation(s)
- Jingjiang Lai
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Xiaoli Zhuo
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine)
| | - Ke Yin
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine
| | - Fengxian Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Lei Liu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine)
| | - Xiaoying Xu
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine
| | - Hongjing Liu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Jingliang Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Jing Zhao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine)
| | | | - Shuping Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Honglin Guo
- Department of Central Laboratory, Shandong Provincial Hospital
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | | | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine
- Department of Pathology
| | - Fanghua Qi
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Guobin Fu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- Department of Oncology
| |
Collapse
|
7
|
Tümkaya Yılmaz S, Malfliet A, Elma Ö, Deliens T, Nijs J, Clarys P, De Groef A, Coppieters I. Diet/Nutrition: Ready to Transition from a Cancer Recurrence/Prevention Strategy to a Chronic Pain Management Modality for Cancer Survivors? J Clin Med 2022; 11:653. [PMID: 35160104 PMCID: PMC8837082 DOI: 10.3390/jcm11030653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence for the relationship between chronic pain and nutrition is mounting, and chronic pain following cancer is gaining recognition as a significant area for improving health care in the cancer survivorship population. This review explains why nutrition should be considered to be an important component in chronic pain management in cancer survivors by exploring relevant evidence from the literature and how to translate this knowledge into clinical practice. This review was built on relevant evidence from both human and pre-clinical studies identified in PubMed, Web of Science and Embase databases. Given the relationship between chronic pain, inflammation, and metabolism found in the literature, it is advised to look for a strategic dietary intervention in cancer survivors. Dietary interventions may result in weight loss, a healthy body weight, good diet quality, systemic inflammation, and immune system regulations, and a healthy gut microbiota environment, all of which may alter the pain-related pathways and mechanisms. In addition to being a cancer recurrence or prevention strategy, nutrition may become a chronic pain management modality for cancer survivors. Although additional research is needed before implementing nutrition as an evidence-based management modality for chronic pain in cancer survivors, it is already critical to counsel and inform this patient population about the importance of a healthy diet based on the data available so far.
Collapse
Affiliation(s)
- Sevilay Tümkaya Yılmaz
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (S.T.Y.); (A.M.); (Ö.E.); (J.N.)
- Pain in Motion International Research Group, 1090 Brussels, Belgium;
| | - Anneleen Malfliet
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (S.T.Y.); (A.M.); (Ö.E.); (J.N.)
- Pain in Motion International Research Group, 1090 Brussels, Belgium;
- Research Foundation Flanders (FWO), 1000 Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
| | - Ömer Elma
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (S.T.Y.); (A.M.); (Ö.E.); (J.N.)
- Pain in Motion International Research Group, 1090 Brussels, Belgium;
| | - Tom Deliens
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (T.D.); (P.C.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (S.T.Y.); (A.M.); (Ö.E.); (J.N.)
- Pain in Motion International Research Group, 1090 Brussels, Belgium;
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Institute of Neuroscience and Physiology, Unit of Physiotherapy, Department of Health & Rehabilitation, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Peter Clarys
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (T.D.); (P.C.)
| | - An De Groef
- Pain in Motion International Research Group, 1090 Brussels, Belgium;
- Research Foundation Flanders (FWO), 1000 Brussels, Belgium
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, 3000 Leuven, Belgium
- Department of Rehabilitation Sciences, MOVANT Research Group, University of Antwerp, 2000 Antwerp, Belgium
| | - Iris Coppieters
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (S.T.Y.); (A.M.); (Ö.E.); (J.N.)
- Pain in Motion International Research Group, 1090 Brussels, Belgium;
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Song BC, Bai J. Microbiome-gut-brain axis in cancer treatment-related psychoneurological toxicities and symptoms: a systematic review. Support Care Cancer 2021; 29:605-617. [PMID: 32918608 PMCID: PMC7769970 DOI: 10.1007/s00520-020-05739-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE The microbiome-gut-brain (MGB) axis provides a dynamic model to understand associations between the gut microbiota and psychoneurological comorbidities. The role of the MGB axis in cancer treatment-related psychoneurological symptoms (PNS) remains unknown. The purpose of this study was to conduct a systematic review of the existing literature to identify the influence of the gut microbiota on cancer and cancer treatment-related PNS and toxicities mediated by the MGB axis. METHODS We searched the databases of PubMed, Embase, and Web of Science from their earliest records to October 2019. All studies identified in the database searches were screened by title and abstract, followed by a review of the full texts. The Johns Hopkins Nursing Evidence-Based Practice Model was adopted to assess the evidence levels and qualities; the Joanna Briggs Institute critical appraisal tools were used to assess the methodological quality and the possibility of bias for each included study. All the study findings were combined, synthesized, and presented through narrative format. RESULTS Six studies were included in this systematic review. These studies primarily focused on cancer survivorship while receiving chemotherapy, and they were conducted between 2016 and 2019. The gut microbiome was assessed via fecal samples, which were analyzed using 16S rRNA sequencing approaches. With small-scale studies, the gut microbiota was associated with cancer treatment-related PNS, including fatigue, anxiety, depression, sleep disturbance, cognitive impairment, and chemotherapy-induced peripheral neuropathy. A higher relative abundance of Bacteroides was associated with a higher level of fear of cancer recurrence but a higher relative abundance of Lachnospiraceae.g and Ruminococcus was associated with a lower level in fear of cancer recurrence. Changes in fatigue interference were associated with the frequency of genera Faecalibacterium and Prevotella, and changes in anxiety were associated with the frequency of genera Coprococcus and Bacteroides. CONCLUSIONS The gut microbiota showed significant associations with cancer treatment-related PNS. Recent work regarding the MGB axis in cancer psychoneurological toxicities focused primarily on individual toxicity and symptoms in cancer survivors with chemotherapy exposure. Associations between the gut microbiota and PNS should be further studied in cancer populations across different ages, cancer types, and treatment modalities.
Collapse
Affiliation(s)
- Byron Chang Song
- Department of Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Chinna Meyyappan A, Milev R. The Safety, Efficacy, and Tolerability of Microbial Ecosystem Therapeutic-2 in People With Major Depression and/or Generalized Anxiety Disorder: Protocol for a Phase 1, Open-Label Study. JMIR Res Protoc 2020; 9:e17223. [PMID: 32495743 PMCID: PMC7303825 DOI: 10.2196/17223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The bidirectional signaling between the gut microbiota and the brain, known as the gut-brain axis, is being heavily explored in current neuropsychiatric research. Analyses of the human gut microbiota have shown considerable individual variability in bacterial content, which is hypothesized to influence brain function, and potentially mood and anxiety symptoms, through gut-brain axis communication. Preclinical and clinical research examining these effects suggests that fecal microbiota transplant (FMT) may aid in improving the severity of depression and anxiety symptoms by recolonizing the gastrointestinal (GI) tract with healthy bacteria. The microbial ecosystem therapeutic (ie, microbial ecosystem therapeutic-2 [MET-2]) used in this study is an alternative treatment to FMT, which comprises 40 different strains of gut bacteria from a healthy donor. OBJECTIVE The primary objective of this study is to assess subjective changes in mood and anxiety symptoms before, during, and after administration of MET-2. The secondary objectives of this study are to assess the changes in metabolic functioning and the level of repopulation of healthy gut bacteria, the safety and tolerability of MET-2, and the effects of early stress on biomarkers of depression/anxiety and the response to treatment. METHODS Adults experiencing depressive or anxiety symptoms will be recruited from the Kingston area. These participants will orally consume an encapsulated MET-2 once daily-containing 40 strains of purified and laboratory-grown bacteria from a single healthy donor-for 8 weeks, followed by a 2-week treatment-free follow-up period. Participants will undergo a series of clinical assessments measuring mood, anxiety, and GI symptoms using validated clinical scales and questionnaires. Molecular data will be collected from blood and fecal samples to assess metabolic changes, neurotransmitter levels, inflammatory markers, and the level of engraftment of the fecal samples that may predict outcomes in depression or anxiety. RESULTS Given the association between the gut bacteria and the risk factors of depression, we expect to observe an improvement in the severity of depressive and anxiety symptoms following treatment, and we expect that this improvement is mediated by the recolonization of the GI tract with healthy bacteria. The recruitment for this study has been completed, and the data obtained are currently being analyzed. CONCLUSIONS This is the first time MET-2 is being tested in psychiatric indications, specifically depression and anxiety. As such, this may be the first study to show the potential effects of microbial therapy in alleviating psychiatric symptoms as well as its safety and tolerability. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/17223.
Collapse
Affiliation(s)
- Arthi Chinna Meyyappan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Roumen Milev
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Department of Psychology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
10
|
Singh K, Paul SM, Kober KM, Conley YP, Wright F, Levine JD, Joseph PV, Miaskowski C. Neuropsychological Symptoms and Intrusive Thoughts Are Associated With Worse Trajectories of Chemotherapy-Induced Nausea. J Pain Symptom Manage 2020; 59:668-678. [PMID: 31689477 PMCID: PMC7024637 DOI: 10.1016/j.jpainsymman.2019.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
CONTEXT Although chemotherapy-induced vomiting is well controlled with evidence-based antiemetic regimens, chemotherapy-induced nausea (CIN) remains a significant clinical problem. OBJECTIVES Study purposes, in a sample of outpatients with breast, gastrointestinal, gynecological, or lung cancer who received two cycles of chemotherapy (CTX, n = 1251), were to evaluate for interindividual differences in the severity of CIN and to determine which demographic, clinical, symptom, and stress characteristics are associated with higher initial levels as well as with the trajectories of CIN. METHODS Patients were recruited during their first or second cycle of CTX. Patients completed self-report questionnaires a total of six times over two cycles of CTX. Hierarchical linear modeling was used to evaluate for interindividual differences in and characteristics associated with the severity of CIN. RESULTS Across the two cycles of CTX, higher levels of sleep disturbance, depression, and morning fatigue, as well as higher levels of intrusive thoughts, were associated with higher initial levels of CIN. In addition, lower functional status scores and shorter cycle lengths were associated with higher initial levels of CIN, and younger age and higher emetogenicity of the CTX regimen were associated with both higher initial levels as well as worse trajectories of CIN severity. CONCLUSION These findings suggest that common symptoms associated with cancer and its treatment are associated with increased severity of CIN. Targeted interventions for these symptoms may reduce the burden of unrelieved CIN.
Collapse
Affiliation(s)
- Komal Singh
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, USA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, California, USA
| | - Kord M Kober
- School of Nursing, University of California, San Francisco, California, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fay Wright
- Rory Meyers College of Nursing, New York University, New York, New York, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, California, USA
| | - Paule V Joseph
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
11
|
González-Mercado VJ, Pérez-Santiago J, Lyon D, Dilán-Pantojas I, Henderson W, McMillan S, Groer M, Kane B, Marrero S, Pedro E, Saligan LN. The Role of Gut Microbiome Perturbation in Fatigue Induced by Repeated Stress from Chemoradiotherapy: A Proof of Concept Study. Adv Med 2020; 2020:6375876. [PMID: 32090133 PMCID: PMC7029262 DOI: 10.1155/2020/6375876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The objectives of this proof of concept study were to (a) examine the temporal changes in fatigue and diversity of the gut microbiome over the course of chemoradiotherapy (CRT) in adults with rectal cancers; (b) investigate whether there are differences in diversity of the gut microbiome between fatigued and nonfatigued participants at the middle and at the end of CRT; and (c) investigate whether there are differences in the relative abundance of fecal microbiota at the phylum and genus levels between fatigued and nonfatigued participants at the middle and at the end of CRT. METHODS Stool samples and symptom ratings were collected prior to the inception of CRT, at the middle (after 12-16 treatments) and at the end (after 24-28 treatments) of the CRT. Descriptive statistics and Mann-Whitney U test were computed for fatigue. Gut microbiome data were analyzed using the QIIME2 software. RESULTS Participants (N = 29) ranged in age from 37 to 80 years. The median fatigue score significantly changed at the end of CRT (median = 23.0) compared with the median score before the initiation of CRT for the total sample (median = 17.0; p ≤ 0.05). At the middle of CRT, the alpha diversity (abundance of Operational Taxonomic Units) was lower for fatigued participants (149.30 ± 53.1) than for nonfatigued participants (189.15 ± 44.18, t(23) = 2.08, p ≤ 0.05). At the middle of CRT, the alpha diversity (abundance of Operational Taxonomic Units) was lower for fatigued participants (149.30 ± 53.1) than for nonfatigued participants (189.15 ± 44.18, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla for fatigued participants, and Escherichia, Bacteroides, Faecalibacterium, and Oscillospira were the most abundant genera for fatigued participants. CONCLUSION CRT-associated perturbation of the gut microbiome composition may contribute to fatigue.
Collapse
Affiliation(s)
| | - Josué Pérez-Santiago
- Puerto Rico Omics Center, Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, USA
| | - Debra Lyon
- College of Nursing, University of Florida, Gainesville, FL, USA
| | - Israel Dilán-Pantojas
- Puerto Rico Omics Center, Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, USA
| | - Wendy Henderson
- Intramural Program, National Institute of Nursing Research/National Institute of Health, Bethesda, MD, USA
| | - Susan McMillan
- College of Nursing, University of South Florida, Tampa, FL, USA
| | - Maureen Groer
- College of Nursing, University of South Florida, Tampa, FL, USA
| | - Brad Kane
- College of Nursing, University of South Florida, Tampa, FL, USA
| | - Sara Marrero
- College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Elsa Pedro
- School of Pharmacy, Medical Science Campus, University of Puerto Rico, San Juan, PR, USA
| | - Leorey N. Saligan
- Intramural Program, National Institute of Nursing Research/National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Misra BB. The Connection and Disconnection Between Microbiome and Metabolome: A Critical Appraisal in Clinical Research. Biol Res Nurs 2020; 22:561-576. [PMID: 32013533 DOI: 10.1177/1099800420903083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Big data-driven omics research has led to a steep rise in investigations involving two of the most functional omes, the metabolome and microbiome. The former is touted as the closest to the phenotype, and the latter is implicated in general well-being and a plethora of human diseases. Although some research publications have integrated the concepts of the two domains, most focus their analyses on evidence solely originating from one or the other. With a growing interest in connecting the microbiome and metabolome in the context of disease, researchers must also appreciate the disconnect between the two domains. In the present review, drawing examples from the current literature, tools, and resources, I discuss the connections between the microbiome and metabolome and highlight challenges and opportunities in linking them together for the basic, translational, clinical, and nursing research communities.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, 12279Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
13
|
Abstract
Background:Gut microbes influence the development several chronic conditions marking them as targets for holistic care, prevention strategies, and potential treatments. Microbiome studies are relatively new to health research and present unfamiliar terms to clinicians and researchers. "Dysbiosis" often refers to an alteration in the gut microbiome, but conceptual clarification is rarely provided. Purpose: The purpose of this study is to refine a conceptual definition of dysbiosis based on a review of nursing literature. Method: A Rodgerian approach to concept analysis was used. CINAHL, PubMed, and Web of Science were queried using "dysbiosis" through December 2018. Each article was analyzed with regard to the antecedents, attributes, and consequences of dysbiosis. Essential elements were tabulated and compared across studies to determine recurring themes and notable outliers. Findings: Analysis revealed several important antecedences, attributes, and consequences of dysbiosis. The findings also elucidated notable gaps and highlighted the co-evolving nature of the proposed definition with advances in microbiome research. Conclusion: This article adds a proposed definition of dysbiosis, offering a contribution of conceptual clarity upon which to enhance dialogue and build research. The definition emphasizes risk factors and consequences of dysbiosis as implications for holistic nursing practice.
Collapse
|
14
|
Nycz BT, Dominguez SR, Friedman D, Hilden JM, Ir D, Robertson CE, Frank DN. Evaluation of bloodstream infections, Clostridium difficile infections, and gut microbiota in pediatric oncology patients. PLoS One 2018; 13:e0191232. [PMID: 29329346 PMCID: PMC5766145 DOI: 10.1371/journal.pone.0191232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023] Open
Abstract
Bloodstream infections (BSI) and Clostridium difficile infections (CDI) in pediatric oncology/hematology/bone marrow transplant (BMT) populations are associated with significant morbidity and mortality. The objective of this study was to explore possible associations between altered microbiome composition and the occurrence of BSI and CDI in a cohort of pediatric oncology patients. Stool samples were collected from all patients admitted to the pediatric oncology floor from Oct.-Dec. 2012. Bacterial profiles from patient stools were determined by bacterial 16S rRNA gene profiling. Differences in overall microbiome composition were assessed by a permutation-based multivariate analysis of variance test, while differences in the relative abundances of specific taxa were assessed by Kruskal-Wallis tests. At admission, 9 of 42 patients (21%) were colonized with C. difficile, while 6 of 42 (14%) subsequently developed a CDI. Furthermore, 3 patients (7%) previously had a BSI and 6 patients (14%) subsequently developed a BSI. Differences in overall microbiome composition were significantly associated with disease type (p = 0.0086), chemotherapy treatment (p = 0.018), BSI following admission from any cause (p < 0.0001) or suspected gastrointestinal organisms (p = 0.00043). No differences in baseline microbiota were observed between individuals who did or did not subsequently develop C. difficile infection. Additionally, multiple bacterial groups varied significantly between subjects with post-admission BSI compared with no BSI. Our results suggest that differences in gut microbiota not only are associated with type of cancer and chemotherapy, but may also be predictive of subsequent bloodstream infection.
Collapse
Affiliation(s)
- Bryan T. Nycz
- Division of Adult Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Samuel R. Dominguez
- Division of Pediatric Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Deborah Friedman
- Department of Epidemiology, Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Joanne M. Hilden
- Center for Blood and Cancer Disorders, Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Diana Ir
- Division of Adult Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Charles E. Robertson
- Division of Adult Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Daniel N. Frank
- Division of Adult Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
15
|
Bai J, Behera M, Bruner DW. The gut microbiome, symptoms, and targeted interventions in children with cancer: a systematic review. Support Care Cancer 2017; 26:427-439. [PMID: 29168036 DOI: 10.1007/s00520-017-3982-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE The gut microbiome plays a critical role in maintaining children's health and in preventing and treating children's disease. Current application of the gut microbiome in childhood cancer is still lacking. This study aimed to systematically review the following: (1) alternations in the gut microbiome throughout cancer treatment trajectories in children, (2) the associations between the gut microbiome and gastrointestinal (GI) symptoms and psychoneurological symptoms (PNS), and (3) the efficacy of therapeutic interventions in the gut microbiome in children with cancer. METHODS PubMed, EMBASE, the Cochrane Library, and the American Society of Clinical Oncology abstract were searched. Eligible studies included all study types in which the gut microbiome was primarily reported in children with cancer. The Mixed Methods Assessment Tool was used to evaluate the methodology quality of included studies. Seven studies met our eligibility criteria, including two cohort studies, two case-control studies, and three randomized controlled trails. RESULTS The findings showed that the diversity estimates of the gut microbiome in children with cancer were lower than those of healthy controls both pre- and post-treatment. Children with cancer showed a significantly lower relative abundance of healthy gut microbiome (e.g., Clostridium XIVa and Bifidobacterium) during and after cancer treatment. No adequate literature was identified to support the associations between dysbiosis of the gut microbiome and GI symptoms/PNS. The use of prebiotics (fructooligosaccharides) and probiotics (Bifidobacterium or Lactobacilli) appears to improve the microenvironment of the gut around 1 month (4-5 weeks) during chemotherapy rather than at the beginning of treatment. Data also suggest that both prebiotic and probiotic interventions decrease clinical side effects (e.g., infection and morbidity risk) in children with cancer. CONCLUSIONS This study adds to the evidence that dysbiosis of the gut microbiome can be improved using prebiotic and probiotic supplementations in children with cancer. More well-designed experimental studies are needed to confirm this conclusion. Further studies are needed to examine the associations between the gut microbiome and GI symptoms/PNS in childhood cancer.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.
| | - Madhusmita Behera
- Department of Hematology and Oncology, School of Medicine, Emory University, Atlanta, GA, USA.,Winship Research Informatics, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Deborah Watkins Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.,Education and Training, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
16
|
Chiu CC, Ching YH, Li YP, Liu JY, Huang YT, Huang YW, Yang SS, Huang WC, Chuang HL. Nonalcoholic Fatty Liver Disease Is Exacerbated in High-Fat Diet-Fed Gnotobiotic Mice by Colonization with the Gut Microbiota from Patients with Nonalcoholic Steatohepatitis. Nutrients 2017; 9:nu9111220. [PMID: 29113135 PMCID: PMC5707692 DOI: 10.3390/nu9111220] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious liver disorder associated with the accumulation of fat and inflammation. The objective of this study was to determine the gut microbiota composition that might influence the progression of NAFLD. Germ-free mice were inoculated with feces from patients with nonalcoholic steatohepatitis (NASH) or from healthy persons (HL) and then fed a standard diet (STD) or high-fat diet (HFD). We found that the epididymal fat weight, hepatic steatosis, multifocal necrosis, and inflammatory cell infiltration significantly increased in the NASH-HFD group. These findings were consistent with markedly elevated serum levels of alanine transaminase, aspartate transaminase, endotoxin, interleukin 6 (IL-6), monocyte chemotactic protein 1 (Mcp1), and hepatic triglycerides. In addition, the mRNA expression levels of Toll-like receptor 2 (Tlr2), Toll-like receptor 4 (Tlr4), tumor necrosis factor alpha (Tnf-α), Mcp1, and peroxisome proliferator-activated receptor gamma (Ppar-γ) significantly increased. Only abundant lipid accumulation and a few inflammatory reactions were observed in group HL-HFD. Relative abundance of Bacteroidetes and Firmicutes shifted in the HFD-fed mice. Furthermore, the relative abundance of Streptococcaceae was the highest in group NASH-HFD. Nevertheless, obesity-related Lactobacillaceae were significantly upregulated in HL-HFD mice. Our results revealed that the gut microbiota from NASH Patients aggravated hepatic steatosis and inflammation. These findings might partially explain the NAFLD progress distinctly was related to different compositions of gut microbiota.
Collapse
Affiliation(s)
- Chien-Chao Chiu
- Animal Technology Laboratories, Agricultural Technology Research Institute, Miaoli 350, Taiwan.
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
| | - Yen-Peng Li
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan.
| | - Ju-Yun Liu
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan.
| | - Yen-Te Huang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan.
| | - Yi-Wen Huang
- Liver Center, Cathay General Hospital Medical Center, Taipei 106, Taiwan.
- School of Medicine, Taipei Medical University College of Medicine, Taipei 110, Taiwan.
| | - Sien-Sing Yang
- Liver Center, Cathay General Hospital Medical Center, Taipei 106, Taiwan.
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan.
| |
Collapse
|