1
|
Berry T, Abohamza E, Moustafa AA. A disease-modifying treatment for Alzheimer's disease: focus on the trans-sulfuration pathway. Rev Neurosci 2020; 31:319-334. [PMID: 31751299 DOI: 10.1515/revneuro-2019-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
High homocysteine levels in Alzheimer's disease (AD) result from low activity of the trans-sulfuration pathway. Glutathione levels are also low in AD. L-cysteine is required for the synthesis of glutathione. The synthesis of coenzyme A (CoA) requires L-cysteine, which is synthesized via the trans-sulfuration pathway. CoA is required for the synthesis of acetylcholine and appropriate cholinergic neurotransmission. L-cysteine is required for the synthesis of molybdenum-containing proteins. Sulfite oxidase (SUOX), which is a molybdenum-containing protein, could be dysregulated in AD. SUOX detoxifies the sulfites. Glutaminergic neurotransmission could be dysregulated in AD due to low levels of SUOX and high levels of sulfites. L-cysteine provides sulfur for iron-sulfur clusters. Oxidative phosphorylation (OXPHOS) is heavily dependent on iron-sulfur proteins. The decrease in OXPHOS seen in AD could be due to dysregulations of the trans-sulfuration pathway. There is a decrease in aconitase 1 (ACO1) in AD. ACO1 is an iron-sulfur enzyme in the citric acid cycle that upon loss of an iron-sulfur cluster converts to iron regulatory protein 1 (IRP1). With the dysregulation of iron-sulfur cluster formation ACO1 will convert to IRP1 which will decrease the 2-oxglutarate synthesis dysregulating the citric acid cycle and also dysregulating iron metabolism. Selenomethionine is also metabolized by the trans-sulfuration pathway. With the low activity of the trans-sulfuration pathway in AD selenoproteins will be dysregulated in AD. Dysregulation of selenoproteins could lead to oxidant stress in AD. In this article, we propose a novel treatment for AD that addresses dysregulations resulting from low activity of the trans-sulfuration pathway and low L-cysteine.
Collapse
Affiliation(s)
- Thomas Berry
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| | - Eid Abohamza
- Department of Social Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Balasubramaniam M, Parcon PA, Bose C, Liu L, Jones RA, Farlow MR, Mrak RE, Barger SW, Griffin WST. Interleukin-1β drives NEDD8 nuclear-to-cytoplasmic translocation, fostering parkin activation via NEDD8 binding to the P-ubiquitin activating site. J Neuroinflammation 2019; 16:275. [PMID: 31882005 PMCID: PMC6935243 DOI: 10.1186/s12974-019-1669-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/02/2019] [Indexed: 01/14/2023] Open
Abstract
Background Neuroinflammation, typified by elevated levels of interleukin-1 (IL-1) α and β, and deficits in proteostasis, characterized by accumulation of polyubiquitinated proteins and other aggregates, are associated with neurodegenerative disease independently and through interactions of the two phenomena. We investigated the influence of IL-1β on ubiquitination via its impact on activation of the E3 ligase parkin by either phosphorylated ubiquitin (P-Ub) or NEDD8. Methods Immunohistochemistry and Proximity Ligation Assay were used to assess colocalization of parkin with P-tau or NEDD8 in hippocampus from Alzheimer patients (AD) and controls. IL-1β effects on PINK1, P-Ub, parkin, P-parkin, and GSK3β—as well as phosphorylation of parkin by GSK3β—were assessed in cell cultures by western immunoblot, using two inhibitors and siRNA knockdown to suppress GSK3β. Computer modeling characterized the binding and the effects of P-Ub and NEDD8 on parkin. IL-1α, IL-1β, and parkin gene expression was assessed by RT-PCR in brains of 2- and 17-month-old PD-APP mice and wild-type littermates. Results IL-1α, IL-1β, and parkin mRNA levels were higher in PD-APP mice compared with wild-type littermates, and IL-1α-laden glia surrounded parkin- and P-tau-laden neurons in human AD. Such neurons showed a nuclear-to-cytoplasmic translocation of NEDD8 that was mimicked in IL-1β-treated primary neuronal cultures. These cultures also showed higher parkin levels and GSK3β-induced parkin phosphorylation; PINK1 levels were suppressed. In silico simulation predicted that binding of either P-Ub or NEDD8 at a singular position on parkin opens the UBL domain, exposing Ser65 for parkin activation. Conclusions The promotion of parkin- and NEDD8-mediated ubiquitination by IL-1β is consistent with an acute neuroprotective role. However, accumulations of P-tau and P-Ub and other elements of proteostasis, such as translocated NEDD8, in AD and in response to IL-1β suggest either over-stimulation or a proteostatic failure that may result from chronic IL-1β elevation, easily envisioned considering its early induction in Down’s syndrome and mild cognitive impairment. The findings further link autophagy and neuroinflammation, two important aspects of AD pathogenesis, which have previously been only loosely related.
Collapse
Affiliation(s)
| | - Paul A Parcon
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Chhanda Bose
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Richard A Jones
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,Geriatric Research Education and Clinical Center at the Central Arkansas Healthcare Veterans System, Little Rock, AR, 72205, USA
| | - Martin R Farlow
- Department of Neurology, Indiana Alzheimer Disease Center, Indiana University, Bloomington, USA
| | - Robert E Mrak
- Department of Pathology, University of Toledo Health Sciences Campus, Toledo, OH, 43614, USA
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,Geriatric Research Education and Clinical Center at the Central Arkansas Healthcare Veterans System, Little Rock, AR, 72205, USA
| | - W Sue T Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA. .,Geriatric Research Education and Clinical Center at the Central Arkansas Healthcare Veterans System, Little Rock, AR, 72205, USA.
| |
Collapse
|
3
|
Tatarnikova OG, Orlov MA, Bobkova NV. Beta-Amyloid and Tau-Protein: Structure, Interaction, and Prion-Like Properties. BIOCHEMISTRY (MOSCOW) 2016; 80:1800-19. [PMID: 26878581 DOI: 10.1134/s000629791513012x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During the last twenty years, molecular genetic investigations of Alzheimer's disease (AD) have significantly broadened our knowledge of basic mechanisms of this disorder. However, still no unambiguous concept on the molecular bases of AD pathogenesis has been elaborated, which significantly impedes the development of AD therapy. In this review, we analyze issues concerning processes of generation of two proteins (β-amyloid peptide and Tau-protein) in the cell, which are believed to play the key role in AD genesis. Until recently, these agents were considered independently of each other, but in light of the latest studies, it becomes clear that it is necessary to study their interaction and combined effects. Studies of mechanisms of toxic action of these endogenous compounds, beginning from their interaction with known receptors of main neurotransmitters to specific peculiarities of functioning of signal intracellular pathways upon development of this pathology, open the way to development of new pharmaceutical substances directed concurrently on key mechanisms of interaction of toxic proteins inside the cell and on the pathways of their propagation in the extracellular space.
Collapse
Affiliation(s)
- O G Tatarnikova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
4
|
Aboud O, Parcon PA, DeWall KM, Liu L, Mrak RE, Griffin WST. Aging, Alzheimer's, and APOE genotype influence the expression and neuronal distribution patterns of microtubule motor protein dynactin-P50. Front Cell Neurosci 2015; 9:103. [PMID: 25859183 PMCID: PMC4373372 DOI: 10.3389/fncel.2015.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/09/2015] [Indexed: 01/21/2023] Open
Abstract
Reports from neural cell cultures and experimental animal studies provide evidence of age- and disease-related changes in retrograde transport of spent or misfolded proteins destined for degradation or recycling. However, few studies address these issues in human brain from those who either age without dementia and overt neuropathology, or succumb to Alzheimer's; especially as such propensity may be influenced by APOE genotype. We studied the expression and distribution of the dynein subunit dynactin-P50, the β amyloid precursor protein (βAPP), and hyperphosphorylated tau (P-tau) in tissues and tissue sections of brains from non-demented, neuropathology-free patients and from Alzheimer patients, with either APOE ε3,3 or APOE ε4,4. We found that advanced age in patients without dementia or neuropathological change was associated with coordinated increases in dynactin-P50 and βAPP in neurons in pyramidal layers of the hippocampus. In contrast, in Alzheimer's, βAPP and dynactin were significantly reduced. Furthermore, the dynactin-P50 and βAPP that was present was located primarily in dystrophic neurites in Aβ plaques. Tissues from Alzheimer patients with APOE ε3,3 had less P-tau, more βAPP, dynactin-P50, and synaptophysin than did tissues from Alzheimer patients carrying APOE ε4,4. It is logical to conclude, then, that as neurons age successfully, there is coordination between retrograde delivery and maintenance and repair, as well as between retrograde delivery and degradation and/or recycling of spent proteins. The buildup of proteins slated for repair, synaptic viability, transport, and re-cycling in neuron soma and dystrophic neurites suggest a loss of this coordination in Alzheimer neurons. Inheritance of APOE ε3,3 rather than APOE ε4,4, is associated with neuronal resilience, suggestive of better repair capabilities, more synapses, more efficient transport, and less hyperphosphorylation of tau. We conclude that even in disease the ε3 allele is neuroprotective.
Collapse
Affiliation(s)
- Orwa Aboud
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Paul A Parcon
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - K Mark DeWall
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA ; Department of Biology, Brigham Young University Idaho, Rexburg, ID, USA
| | - Ling Liu
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Robert E Mrak
- Department of Pathology, University of Toledo Health Sciences Campus Toledo, OH, USA
| | - W Sue T Griffin
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA ; Geriatric Research, Education, Clinical Center, Central Arkansas HealthCare System Little Rock, AR, USA
| |
Collapse
|
5
|
Zawada WM, Mrak RE, Biedermann J, Palmer QD, Gentleman SM, Aboud O, Griffin WST. Loss of angiotensin II receptor expression in dopamine neurons in Parkinson's disease correlates with pathological progression and is accompanied by increases in Nox4- and 8-OH guanosine-related nucleic acid oxidation and caspase-3 activation. Acta Neuropathol Commun 2015; 3:9. [PMID: 25645462 PMCID: PMC4359535 DOI: 10.1186/s40478-015-0189-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022] Open
Abstract
Background In rodent models of Parkinson’s disease (PD), dopamine neuron loss is accompanied by increased expression of angiotensin II (AngII), its type 1 receptor (AT1), and NADPH oxidase (Nox) in the nigral dopamine neurons and microglia. AT1 blockers (ARBs) stymie such oxidative damage and neuron loss. Whether changes in the AngII/AT1/Nox4 axis contribute to Parkinson neuropathogenesis is unknown. Here, we studied the distribution of AT1 and Nox4 in dopamine neurons in two nigral subregions: the less affected calbindin-rich matrix and the first-affected calbindin-poor nigrosome 1 of three patients, who were clinically asymptomatic, but had nigral dopamine cell loss and Braak stages consistent with a neuropathological diagnosis of PD (prePD). For comparison, five clinically- and neuropathologically-confirmed PD patients and seven age-matched control patients (AMC) were examined. Results AT1 and Nox4 immunoreactivity was noted in dopamine neurons in both the matrix and the nigrosome 1. The total cellular levels of AT1 in surviving dopamine neurons in the matrix and nigrosome 1 declined from AMC>prePD>PD, suggesting that an AngII/AT1/Nox4 axis orders neurodegenerative progression. In this vein, the loss of dopamine neurons was paralleled by a decline in total AT1 per surviving dopamine neuron. Similarly, AT1 in the nuclei of surviving neurons in the nigral matrix declined with disease progression, i.e., AMC>prePD>PD. In contrast, in nigrosome 1, the expression of nuclear AT1 was unaffected and similar in all groups. The ratio of nuclear AT1 to total AT1 (nuclear + cytoplasmic + membrane) in dopamine neurons increased stepwise from AMC to prePD to PD. The proportional increase in nuclear AT1 in dopamine neurons in nigrosome 1 of prePD and PD patients was accompanied by elevated nuclear expression of Nox4, oxidative damage to DNA, and caspase-3-mediated cell loss. Conclusions Our observations are consistent with the idea that AngII/AT1/Nox4 axis-mediated oxidative stress gives rise to the dopamine neuron dysfunction and loss characteristic of the neuropathological and clinical manifestations of PD and suggest that the chance for a neuron to survive increases in association with lower total as well as nuclear AT1 expression. Our results support the need for further evaluation of ARBs as disease-modifying agents in PD.
Collapse
|
6
|
Is Alzheimer's disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 2014; 121:125-46. [PMID: 25084549 DOI: 10.1016/j.pneurobio.2014.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 36 million people worldwide. AD is characterized by a progressive loss of cognitive functions. For years, it has been thought that age is the main risk factor for AD. Recent studies suggest that life style factors, including nutritional behaviors, play a critical role in the onset of dementia. Evidence about the relationship between nutritional behavior and AD includes the role of conditions such as obesity, hypertension, dyslipidemia and elevated glucose levels. The coexistence of some of these cardio-metabolic risk factors is generally known as metabolic syndrome (MS). Some clinical studies support the role of MS in the onset of AD. However, the cross-talk between the molecular signaling implicated in these disorders is unknown. In the present review, we focus on the molecular correlates that support the relationship between MS and the onset of AD. We also discuss relevant issues such as the role of leptin, insulin and renin-angiotensin signaling in the brain and the possible role of Wnt signaling in both MS and AD. We discuss the evidence supporting the use of ob/ob mice, high-fructose diets, aortic coarctation-induced hypertension and Octodon degus, which spontaneously develops β-amyloid deposits and metabolic derangements, as suitable animal models to address the relationships between MS and AD. Finally, we examine emergent data supporting the role of Wnt signaling in the modulation of AD and MS, implicating this pathway as a therapeutic target in both conditions.
Collapse
|
7
|
Chen Y, Neve RN, Zheng H, Griffin WTS, Barger SW, Mrak RE. Cycle on Wheels: Is APP Key to the AppBp1 Pathway? AUSTIN ALZHEIMER'S AND PARKINSON'S DISEASE 2014; 1:id1008. [PMID: 25568892 PMCID: PMC4283775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Alzheimer's disease (AD) is the gradual loss of the cognitive function due to neuronal death. Currently no therapy is available to slow down, reverse or prevent the disease. Here we analyze the existing data in literature and hypothesize that the physiological function of the Amyloid Precursor Protein (APP) is activating the AppBp1 pathway and this function is gradually lost during the progression of AD pathogenesis. The AppBp1 pathway, also known as the neddylation pathway, activates the small ubiquitin-like protein nedd8, which covalently modifies and switches on Cullin ubiquitin ligases, which are essential in the turnover of cell cycle proteins. Here we discuss how APP may activate the AppBp1 pathway, which downregulates cell cycle markers and protects genome integrity. More investigation of this mechanism-driven hypothesis may provide insights into disease treatment and prevention strategies.
Collapse
Affiliation(s)
- Y Chen
- Department of Geriatrics, University of Arkansas for Medical Sciences, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, USA
| | - RN Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - H Zheng
- Huffington Center on Aging, Baylor College of Medicine, USA
| | - WTS Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, USA
| | - SW Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, USA
| | - RE Mrak
- Department of Pathology, University of Toledo Health Sciences Campus, USA
| |
Collapse
|
8
|
Krstic D, Knuesel I. The airbag problem-a potential culprit for bench-to-bedside translational efforts: relevance for Alzheimer's disease. Acta Neuropathol Commun 2013; 1:62. [PMID: 24252346 PMCID: PMC3893418 DOI: 10.1186/2051-5960-1-62] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/16/2013] [Indexed: 11/10/2022] Open
Abstract
For the last 20 years, the "amyloid cascade hypothesis" has dominated research aimed at understanding, preventing, and curing Alzheimer's disease (AD). During that time researchers have acquired an enormous amount of data and have been successful, more than 300 times, in curing the disease in animal model systems by treatments aimed at clearing amyloid deposits. However, to date similar strategies have not been successful in human AD patients. Hence, before rushing into further clinical trials with compounds that aim at lowering amyloid-beta (Aβ) levels in increasingly younger people, it would be of highest priority to re-assess the initial assumption that accumulation of Aβ in the brain is the primary pathological event driving AD. Here we question this assumption by highlighting experimental evidence in support of the alternative hypothesis suggesting that APP and Aβ are part of a neuronal stress/injury system, which is up-regulated to counteract inflammation/oxidative stress-associated neurodegeneration that could be triggered by a brain injury, chronic infections, or a systemic disease. In AD, this protective program may be overridden by genetic and other risk factors, or its maintenance may become dysregulated during aging. Here, we provide a hypothetical example of a hypothesis-driven correlation between car accidents and airbag release in analogy to the evolution of the amyloid focus and as a way to offer a potential explanation for the failure of the AD field to translate the success of amyloid-related therapeutic strategies in experimental models to the clinic.
Collapse
|
9
|
Hoos MD, Richardson BM, Foster MW, Everhart A, Thompson JW, Moseley MA, Colton CA. Longitudinal study of differential protein expression in an Alzheimer's mouse model lacking inducible nitric oxide synthase. J Proteome Res 2013; 12:4462-77. [PMID: 24006891 DOI: 10.1021/pr4005103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative process that involves altered brain immune, neuronal and metabolic functions. Understanding the underlying mechanisms has relied on mouse models that mimic components of AD pathology. We used gel-free, label-free LC-MS/MS to quantify protein and phosphopeptide levels in brains of APPSwDI/NOS2-/- (CVN-AD) mice. CVN-AD mice show a full spectrum of AD-like pathology, including amyloid deposition, hyperphosphorylated and aggregated tau, and neuronal loss that worsens with age. Tryptic digests, with or without phosphopeptide enrichment on an automated titanium dioxide LC system, were separated by online two-dimensional LC and analyzed on a Waters Synapt G2 HDMS, yielding relative expression for >950 proteins and >1100 phosphopeptides. Among differentially expressed proteins were known markers found in humans with AD, including GFAP and C1Q. Phosphorylation of connexin 43, not previously described in AD, was increased at 42 weeks, consistent with dysregulation of gap junctions and activation of astrocytes. Additional alterations in phosphoproteins suggests dysregulation of mitochondria, synaptic transmission, vesicle trafficking, and innate immune pathways. These data validate the CVN-AD mouse model of AD, identify novel disease and age-related changes in the brain during disease progression, and demonstrate the utility of integrating unbiased and phosphoproteomics for understanding disease processes in AD.
Collapse
Affiliation(s)
- Michael D Hoos
- Department of Medicine/Neurology, ‡Institute for Genome Sciences & Policy, School of Medicine, and §Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Duke University , Durham, North Carolina 27710, United States
| | | | | | | | | | | | | |
Collapse
|
10
|
Aboud O, Mrak RE, Boop FA, Griffin WST. Epilepsy: neuroinflammation, neurodegeneration, and APOE genotype. Acta Neuropathol Commun 2013; 1:41. [PMID: 24252240 PMCID: PMC3893449 DOI: 10.1186/2051-5960-1-41] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022] Open
Abstract
Background Precocious development of Alzheimer-type neuropathological changes in epilepsy patients, especially in APOE ϵ4,4 carriers is well known, but not the ways in which other APOE allelic combinations influence this outcome. Frozen and paraffin-embedded tissue samples resected from superior temporal lobes of 92 patients undergoing temporal lobectomies as a treatment for medication-resistant temporal lobe epilepsy were used in this study. To determine if epilepsy-related changes reflect those in another neurological condition, analogous tissue samples harvested from 10 autopsy-verified Alzheimer brains, and from 10 neurologically and neuropathologically normal control patients were analyzed using immunofluorescence histochemistry, western immunoblot, and real-time PCR to determine genotype effects on neuronal number and size, neuronal and glial expressions of amyloid β (Aβ) precursor protein (βAPP), Aβ, apolipoprotein E (ApoE), S100B, interleukin-1α and β, and α and β secretases; and on markers of neuronal stress, including DNA/RNA damage and caspase 3 expression. Results Allelic combinations of APOE influenced each epilepsy-related neuronal and glial response measured as well as neuropathological change. APOE ϵ3,3 conferred greatest neuronal resilience denoted as greatest production of the acute phase proteins and low neuronal stress as assessed by DNA/RNA damage and caspase-3 expression. Among patients having an APOE ϵ2 allele, none had Aβ plaques; their neuronal sizes, like those with APOE ϵ3,3 genotype were larger than those with other genotypes. APOE ϵ4,4 conferred the weakest neuronal resilience in epilepsy as well as in Alzheimer patients, but there were no APOE genotype-dependent differences in these parameters in neurologically normal patients. Conclusions Our findings provide evidence that the strength of the neuronal stress response is more related to patient APOE genotype than to either the etiology of the stress or to the age of the patient, suggesting that APOE genotyping may be a useful tool in treatment decisions.
Collapse
|
11
|
Wilcock DM, Griffin WST. Down's syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J Neuroinflammation 2013; 10:84. [PMID: 23866266 PMCID: PMC3750399 DOI: 10.1186/1742-2094-10-84] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) is the result of triplication of chromosome 21 (trisomy 21) and is the prevailing cause of mental retardation. In addition to the mental deficiencies and physical anomalies noted at birth, triplication of chromosome 21 gene products results in the neuropathological and cognitive changes of Alzheimer's disease (AD). Mapping of the gene that encodes the precursor protein (APP) of the β-amyloid (Aβ) present in the Aβ plaques in both AD and DS to chromosome 21 was strong evidence that this chromosome 21 gene product was a principal neuropathogenic culprit in AD as well as DS. The discovery of neuroinflammatory changes, including dramatic proliferation of activated glia overexpressing a chromosome 2 gene product--the pluripotent immune cytokine interleukin-1 (IL-1)--and a chromosome 21 gene product--S100B--in the brains of fetuses, neonates, and children with DS opened the possibility that early events in Alzheimer pathogenesis were driven by cytokines. The specific chromosome 21 gene products and the complexity of the mechanisms they engender that give rise to the neuroinflammatory responses noted in fetal development of the DS brain and their potential as accelerators of Alzheimer neuropathogenesis in DS are topics of this review, particularly as they relate to development and propagation of neuroinflammation, the consequences of which are recognized clinically and neuropathologically as Alzheimer's disease.
Collapse
Affiliation(s)
- Donna M Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - W Sue T Griffin
- Donald W. Reynolds Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, 629 Jack Stephens Dr., Little Rock, AR 72205, USA
- The Geriatric Research Education Clinical Center, Central Arkansas HealthCare System, Little Rock, AR, USA
| |
Collapse
|
12
|
Aboud O, Mrak RE, Boop F, Griffin ST. Apolipoprotein epsilon 3 alleles are associated with indicators of neuronal resilience. BMC Med 2012; 10:35. [PMID: 22502727 PMCID: PMC3352297 DOI: 10.1186/1741-7015-10-35] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 04/13/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Epilepsy is associated with precocious development of Alzheimer-type neuropathological changes, including appearance of senile plaques, neuronal loss and glial activation. As inheritance of APOE ε4 allele(s) is reported to favor this outcome, we sought to investigate neuronal and glial responses that differ according to APOE genotype. With an eye toward defining ways in which APOE ε3 alleles may foster neuronal well-being in epilepsy and/or APOE ε4 alleles exacerbate neuronal decline, neuronal and glial characteristics were studied in temporal lobectomy specimens from epilepsy patients of either APOE ε4,4 or APOE ε3,3 genotype. METHODS Tissue and/or cellular expressions of interleukin-1 alpha (IL-1α), apolipoprotein E (ApoE), amyloid β (Aβ) precursor protein (βAPP), synaptophysin, phosphorylated tau, and Aβ were determined in frozen and paraffin-embedded tissues from 52 APOE ε3,3 and 7 APOE ε4,4 (0.25 to 71 years) epilepsy patients, and 5 neurologically normal patients using Western blot, RT-PCR, and fluorescence immunohistochemistry. RESULTS Tissue levels of IL-1α were elevated in patients of both APOE ε3,3 and APOE ε4,4 genotypes, and this elevation was apparent as an increase in the number of activated microglia per neuron (APOE ε3,3 vs APOE ε4,4 = 3.7 ± 1.2 vs 1.5 ± 0.4; P < 0.05). This, together with increases in βAPP and ApoE, was associated with apparent neuronal sparing in that APOE ε4,4 genotype was associated with smaller neuron size (APOE ε4,4 vs APOE ε3,3 = 173 ± 27 vs 356 ± 45; P ≤ 0.01) and greater DNA damage (APOE ε4,4 vs APOE ε3,3 = 67 ± 10 vs 39 ± 2; P = 0.01). 3) Aβ plaques were noted at early ages in our epilepsy patients, regardless of APOE genotype (APOE ε4,4 age 10; APOE ε3,3 age 17). CONCLUSIONS Our findings of neuronal and glial events, which correlate with lesser neuronal DNA damage and larger, more robust neurons in epilepsy patients of APOE ε3,3 genotype compared to APOE ε4,4 genotype carriers, are consistent with the idea that the APOE ε3,3 genotype better protects neurons subjected to the hyperexcitability of epilepsy and thus confers less risk of AD (Alzheimer's disease).Please see related article: http://www.biomedcentral.com/1741-7015/10/36.
Collapse
Affiliation(s)
- Orwa Aboud
- Donald W, Reynolds Department of Geriatrics, Reynolds Institute on Aging, 629 Jack Stephens Drive, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
13
|
Liu L, Aboud O, Jones RA, Mrak RE, Griffin WST, Barger SW. Apolipoprotein E expression is elevated by interleukin 1 and other interleukin 1-induced factors. J Neuroinflammation 2011; 8:175. [PMID: 22171672 PMCID: PMC3286434 DOI: 10.1186/1742-2094-8-175] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 12/15/2011] [Indexed: 01/14/2023] Open
Abstract
Background We have previously outlined functional interactions, including feedback cycles, between several of the gene products implicated in the pathogenesis of Alzheimer's disease. A number of Alzheimer-related stressors induce neuronal expression of apolipoprotein E (ApoE), β-amyloid precursor protein (βAPP), and fragments of the latter such as amyloid β-peptide (Aβ) and secreted APP (sAPP). These stressors include interleukin-1 (IL-1)-mediated neuroinflammation and glutamate-mediated excitotoxicity. Such circumstances are especially powerful when they transpire in the context of an APOE ε4 allele. Methods Semi-quantitative immunofluorescence imaging was used to analyze rat brains implanted with IL-1β slow-release pellets, sham pellets, or no pellets. Primary neuronal or NT2 cell cultures were treated with IL-1β, glutamate, Aβ, or sAPP; relative levels of ApoE mRNA and protein were measured by RT-PCR, qRT-PCR, and western immunoblot analysis. Cultures were also treated with inhibitors of multi-lineage kinases--in particular MAPK-p38 (SB203580), ERK (U0126), or JNK (SP600125)--prior to exposure of cultures to IL-1β, Aβ, sAPP, or glutamate. Results Immunofluorescence of tissue sections from pellet-implanted rats showed that IL-1β induces expression of βAPP, IL-1α, and ApoE; the latter was confirmed by western blot analysis. These protein changes were mirrored by increases in their mRNAs, as well as in those encoding IL-1β, IL-1β-converting enzyme (ICE), and tumor necrosis factor (TNF). IL-1β also increased ApoE expression in neuronal cultures. It stimulated release of sAPP and glutamate in these cultures too, and both of these agents--as well as Aβ--stimulated ApoE expression themselves, suggesting that they may contribute to the effect of IL-1β on ApoE levels. Inhibitors of MAPK-p38, ERK, and JNK inhibited ApoE induction by all these agents except glutamate, which was sensitive only to inhibitors of ERK and JNK. Conclusion Conditions of glial activation and hyperexcitation can elevate proinflammatory cytokines, ApoE, glutamate, βAPP, and its secreted fragments. Because each of these factors promotes glial activation and neuronal hyperexcitation, these relationships have the potential to sustain self-propagating neurodegenerative cycles that could culminate in a progressive neurodegenerative disorder such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Chronic spirochetal infection can cause slowly progressive dementia, cortical atrophy and amyloid deposition in the atrophic form of general paresis. There is a significant association between Alzheimer disease (AD) and various types of spirochete (including the periodontal pathogen Treponemas and Borrelia burgdorferi), and other pathogens such as Chlamydophyla pneumoniae and herpes simplex virus type-1 (HSV-1). Exposure of mammalian neuronal and glial cells and organotypic cultures to spirochetes reproduces the biological and pathological hallmarks of AD. Senile-plaque-like beta amyloid (Aβ) deposits are also observed in mice following inhalation of C. pneumoniae in vivo, and Aβ accumulation and phosphorylation of tau is induced in neurons by HSV-1 in vitro and in vivo. Specific bacterial ligands, and bacterial and viral DNA and RNA all increase the expression of proinflammatory molecules, which activates the innate and adaptive immune systems. Evasion of pathogens from destruction by the host immune reactions leads to persistent infection, chronic inflammation, neuronal destruction and Aβ deposition. Aβ has been shown to be a pore-forming antimicrobial peptide, indicating that Aβ accumulation might be a response to infection. Global attention and action is needed to support this emerging field of research because dementia might be prevented by combined antibiotic, antiviral and anti-inflammatory therapy.
Collapse
|
15
|
Pop V, Head E, Berchtold NC, Glabe CG, Studzinski CM, Weidner AM, Murphy MP, Cotman CW. Aβ aggregation profiles and shifts in APP processing favor amyloidogenesis in canines. Neurobiol Aging 2010; 33:108-20. [PMID: 20434811 DOI: 10.1016/j.neurobiolaging.2010.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 02/08/2010] [Accepted: 02/16/2010] [Indexed: 01/02/2023]
Abstract
The aged canine is a higher animal model that naturally accumulates β-amyloid (Aβ) and shows age-related cognitive decline. However, profiles of Aβ accumulation in different species (40 vs. 42), its assembly states, and Aβ precursor protein (APP) processing as a function of age remain unexplored. In this study, we show that Aβ increases progressively with age as detected in extracellular plaques and biochemically extractable Aβ40 and Aβ42 species. Soluble oligomeric forms of the peptide, with specific increases in an Aβ oligomer migrating at 56 kDa, also increase with age. Changes in APP processing could potentially explain why Aβ accumulates, and we show age-related shifts toward decreased total APP protein and nonamyloidogenic (α-secretase) processing coupled with increased amyloidogenic (β-secretase) cleavage of APP. Importantly, we describe Aβ pathology in the cingulate and temporal cortex and provide a description of oligomeric Aβ across the canine lifespan. Our findings are in line with observations in the human brain, suggesting that canines are a valuable higher animal model for the study of Aβ pathogenesis.
Collapse
Affiliation(s)
- Viorela Pop
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Excess betaCTF, not Abeta: the culprit in Alzheimer-related endocytic dysfunction. Proc Natl Acad Sci U S A 2010; 107:1263-4. [PMID: 20133888 DOI: 10.1073/pnas.0913922107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Griffin WST, Barger SW. Neuroinflammatory Cytokines-The Common Thread in Alzheimer's Pathogenesis. US NEUROLOGY 2010; 6:19-27. [PMID: 22408651 PMCID: PMC3297620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This article discusses the potential role of the cytokine cycle and its corollary as drivers of the relentless progression of Alzheimer's neuropathologies, whether they are the result of gene mutations, gene polymorphisms, and/or environmental and comorbid conditions. Based on the discovery of cytokine overexpression as an accompaniment to the dementia-related glial activation, the cytokine hypothesis was proposed. This states that in response to the negative impact on neurons of known and unknown risk factors-which include genetic inheritance, comorbid and environmental factors-microglia and astrocytes become activated and produce excess amounts of the immune-modulating cytokine interleukin-1 (IL-1) and the neuritogenic cytokine S100B, respectively. Finding that these glial events occur in fetuses and neonates with Down syndrome provided the first evidence that productive immune responses by activated glia precede rather than follow overt AD-related pathology. This finding can be added to the demonstration of IL-1 induction of amyloid β (Aβ) precursor protein and astrocyte activation with excess production of neuritogenic factor S100B. This combination suggests that IL-1 and S100B overexpression would favor the Aβ production and dystrophic neurite growth necessary for laying down neuritic Aβ plaques. This, together with demonstration of IL-1 induction of excessive production of the precursors of other features common in AD prompted a corollary to the cytokine hypothesis. The corollary states that regardless of the primary cause of the neuronal insult, the result will be chronic glial activation, which in turn will result in further neuronal injury, still more glial activation with excess cytokine expression and so on. This article discusses known causes, genetic and environmental risk factors, and comorbid conditions, and the potential contribution of glial activation with excessive cytokine expression to each.
Collapse
Affiliation(s)
- W Sue T Griffin
- Dillard Professor and Vice Chairman, Donald W Reynolds Department of Geriatrics and the Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, and Geriatric Research, Education and Clinical Center, Central Arkansas Veterans HealthCare System
| | - Steven W Barger
- Professor of Geriatrics, Neurobiology and Developmental Sciences and Internal Medicine, Donald W Reynolds Department of Geriatrics and the Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, and Geriatric Research, Education and Clinical Center, Central Arkansas Veterans HealthCare System
| |
Collapse
|
18
|
Mao XR, Moerman-Herzog AM, Chen Y, Barger SW. Unique aspects of transcriptional regulation in neurons--nuances in NFkappaB and Sp1-related factors. J Neuroinflammation 2009; 6:16. [PMID: 19450264 PMCID: PMC2693111 DOI: 10.1186/1742-2094-6-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 05/18/2009] [Indexed: 12/11/2022] Open
Abstract
The unique physiology and function of neurons create differences in their cellular physiology, including their regulation of gene expression. We began several years ago exploring the relationships between the NFκB transcription factor, neuronal survival, and glutamate receptor activation in telencephalic neurons. These studies led us to conclude that this population of cells is nearly incapable of activating the NFκB that is nonetheless expressed at reasonable levels. A subset of the κB cis elements are instead bound by members of the Sp1 family in neurons. Also surprising was our discovery that Sp1 itself, typically described as ubiquitous, is severely restricted in expression within forebrain neurons; Sp4 seems to be substituted during neuronal differentiation. These findings and their implications for neuronal differentiation – as well as potential dedifferentiation during degenerative processes – are discussed here.
Collapse
Affiliation(s)
- Xianrong R Mao
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | |
Collapse
|