1
|
Perrin F, Anderson LC, Mitchell SPC, Sinha P, Turchyna Y, Maesako M, Houser MCQ, Zhang C, Wagner SL, Tanzi RE, Berezovska O. PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. Acta Neuropathol Commun 2024; 12:166. [PMID: 39434170 PMCID: PMC11492509 DOI: 10.1186/s40478-024-01876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
The recently discovered interaction between presenilin 1 (PS1), a subunit of γ-secretase involved in amyloid-β (Aβ) peptide production, and GLT-1, the major brain glutamate transporter (EAAT2 in the human), may link two pathological aspects of Alzheimer's disease: abnormal Aβ occurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based fluorescence lifetime imaging microscopy (FLIM) to characterize the PS1/GLT-1 interaction in brain tissue from sporadic AD (sAD) patients. sAD brains showed significantly less PS1/GLT-1 interaction than those with frontotemporal lobar degeneration or non-demented controls. Familial AD (fAD) PS1 mutations, inducing a "closed" PS1 conformation similar to that in sAD brain, and gamma-secretase modulators (GSMs), inducing a "relaxed" conformation, respectively reduced and increased the interaction. Furthermore, PS1 influences GLT-1 cell surface expression and homomultimer formation, acting as a chaperone but not affecting GLT-1 stability. The diminished PS1/GLT-1 interaction suggests that these functions may not work properly in AD.
Collapse
Affiliation(s)
- Florian Perrin
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Lauren C Anderson
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shane P C Mitchell
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Priyanka Sinha
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yuliia Turchyna
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Masato Maesako
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mei C Q Houser
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Can Zhang
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, La Jolla, CA, 92161, USA
| | - Rudolph E Tanzi
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Oksana Berezovska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
2
|
Soares C, Da Ros LU, Machado LS, Rocha A, Lazzarotto G, Carello-Collar G, De Bastiani MA, Ferrari-Souza JP, Lussier FZ, Souza DO, Rosa-Neto P, Pascoal TA, Bellaver B, Zimmer ER. The glutamatergic system in Alzheimer's disease: a systematic review with meta-analysis. Mol Psychiatry 2024; 29:2261-2273. [PMID: 38366114 DOI: 10.1038/s41380-024-02473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain. We searched PubMed and Web of Science (database origin-October 2023) reports evaluating glutamate, glutamine, glutaminase, glutamine synthetase, glutamate reuptake, aspartate, excitatory amino acid transporters, vesicular glutamate transporters, glycine, D-serine, metabotropic and ionotropic glutamate receptors in the AD human brain (PROSPERO #CDRD42022299518). The studies were synthesized by outcome and brain region. We included cortical regions, the whole brain (cortical and subcortical regions combined), the entorhinal cortex and the hippocampus. Pooled effect sizes were determined with standardized mean differences (SMD), random effects adjusted by false discovery rate, and heterogeneity was examined by I2 statistics. The search retrieved 6 936 articles, 63 meeting the inclusion criteria (N = 709CN/786AD; mean age 75/79). We showed that the brain of AD individuals presents decreased glutamate (SMD = -0.82; I2 = 74.54%; P < 0.001) and aspartate levels (SMD = -0.64; I2 = 89.71%; P = 0.006), and reuptake (SMD = -0.75; I2 = 83.04%; P < 0.001. We also found reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-GluA2/3 levels (SMD = -0.63; I2 = 95.55%; P = 0.046), hypofunctional N-methyl-D-aspartate receptor (NMDAR) (SMD = -0.60; I2 = 91.47%; P < 0.001) and selective reduction of NMDAR-GluN2B subunit levels (SMD = -1.07; I2 = 41.81%; P < 0.001). Regional differences include lower glutamate levels in cortical areas and aspartate levels in cortical areas and in the hippocampus, reduced glutamate reuptake, reduced AMPAR-GluA2/3 in the entorhinal cortex, hypofunction of NMDAR in cortical areas, and a decrease in NMDAR-GluN2B subunit levels in the entorhinal cortex and hippocampus. Other parameters studied were not altered. Our findings show depletion of the glutamatergic system and emphasize the importance of understanding glutamate-mediated neurotoxicity in AD. This study has implications for the development of therapies and biomarkers in AD.
Collapse
Affiliation(s)
- Carolina Soares
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucas Uglione Da Ros
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luiza Santos Machado
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andreia Rocha
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gabriela Lazzarotto
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Giovanna Carello-Collar
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marco A De Bastiani
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil
| | - João Pedro Ferrari-Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Firoza Z Lussier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil.
- Department of Biochemistry, UFRGS, Porto Alegre, Brazil.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Brain Institute of Rio Grande do Sul - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.
- Department of Pharmacology, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
3
|
Li L, Li W, Jiang W, Xu R. Sulbactam protects neurons against double neurotoxicity of amyloid beta and glutamate load by upregulating glial glutamate transporter 1. Cell Death Discov 2024; 10:64. [PMID: 38320997 PMCID: PMC10847450 DOI: 10.1038/s41420-024-01827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Amyloid beta (Abeta) synergistically enhances excitotoxicity of glutamate load by impairing glutamate transporter 1 (GLT1) expression and function, which exacerbates the development of Alzheimer's disease (AD). Our previous studies suggested that sulbactam can upregulate the expression levels and capacity of GLT1. Therefore, this study aims to investigate whether sulbactam improves neuronal tolerance against neurotoxicity of Abeta and glutamate load by up-regulating GLT1 in primary neuron-astrocyte co-cultures. Early postnatal P0-P1 Wistar rat pups' cortices were collected for primary neuron-astrocyte cultures. Hoechst-propidium iodide (HO-PI) stain and lactate dehydrogenase (LDH) assays were used to analyze neuronal death. Cell counting kit 8 (CCK8) was applied to determine cell viability. Immunofluorescence staining and western blotting were used to assess protein expressions including GLT1, B-cell lymphoma 2 (BCL2), BCL2 associated X (BAX), and cleaved caspase 3 (CCP3). Under the double effect of Abeta and glutamate load, more neurons were lost than that induced by Abeta or glutamate alone, shown as decreased cell viability, increased LDH concentration in the cultural medium, HO-PI positive stains, high CCP3 expression, and high BAX/BCL2 ratio resulting from increased BAX and decreased BCL2 expressions. Notably, pre-incubation with sulbactam significantly attenuated the neuronal loss and activation of apoptosis induced by both Abeta and glutamate in a dose-dependent manner. Simultaneously, both astrocytic and neuronal GLT1 expressions were upregulated after sulbactam incubation. Taken together, it could be concluded that sulbactam protected neurons against double neurotoxicity of Abeta and glutamate load by upregulating GLT1 expression. The conclusion provides evidence for potential intervention using sulbactam in AD research.
Collapse
Affiliation(s)
- Li Li
- The Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Wenbin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Jiang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Vascular Homeostasis Key Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Vascular Homeostasis Key Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Perrin F, Anderson LC, Mitchell SPC, Sinha P, Turchyna Y, Maesako M, Houser MCQ, Zhang C, Wagner SL, Tanzi RE, Berezovska O. PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-3495211. [PMID: 37986905 PMCID: PMC10659539 DOI: 10.21203/rs.3.rs-3495211/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The recently discovered interaction between presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for the generation of amyloid-β(Aβ) peptides, and GLT-1, the major glutamate transporter in the brain (EAAT2 in the human) may provide a mechanistic link between two important pathological aspects of Alzheimer's disease (AD): abnormal Aβoccurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based approach, fluorescence lifetime imaging microscopy (FLIM), to characterize the PS1/GLT-1 interaction in its native environment in the brain tissue of sporadic AD (sAD) patients. There was significantly less interaction between PS1 and GLT-1 in sAD brains, compared to tissue from patients with frontotemporal lobar degeneration (FTLD), or non-demented age-matched controls. Since PS1 has been shown to adopt pathogenic "closed" conformation in sAD but not in FTLD, we assessed the impact of changes in PS1 conformation on the interaction. Familial AD (fAD) PS1 mutations which induce a "closed" PS1 conformation similar to that in sAD brain and gamma-secretase modulators (GSMs) which induce a "relaxed" conformation, reduced and increased the interaction, respectively. This indicates that PS1 conformation seems to have a direct effect on the interaction with GLT-1. Furthermore, using biotinylation/streptavidin pull-down, western blotting, and cycloheximide chase assays, we determined that the presence of PS1 increased GLT-1 cell surface expression and GLT-1 homomultimer formation, but did not impact GLT-1 protein stability. Together, the current findings suggest that the newly described PS1/GLT-1 interaction endows PS1 with chaperone activity, modulating GLT-1 transport to the cell surface and stabilizing the dimeric-trimeric states of the protein. The diminished PS1/GLT-1 interaction suggests that these functions of the interaction may not work properly in AD.
Collapse
|
5
|
Israel LL, Braubach O, Shatalova ES, Chepurna O, Sharma S, Klymyshyn D, Galstyan A, Chiechi A, Cox A, Herman D, Bliss B, Hasen I, Ting A, Arechavala R, Kleinman MT, Patil R, Holler E, Ljubimova JY, Koronyo-Hamaoui M, Sun T, Black KL. Exposure to environmental airborne particulate matter caused wide-ranged transcriptional changes and accelerated Alzheimer's-related pathology: A mouse study. Neurobiol Dis 2023; 187:106307. [PMID: 37739136 DOI: 10.1016/j.nbd.2023.106307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Air pollution poses a significant threat to human health, though a clear understanding of its mechanism remains elusive. In this study, we sought to better understand the effects of various sized particulate matter from polluted air on Alzheimer's disease (AD) development using an AD mouse model. We exposed transgenic Alzheimer's mice in their prodromic stage to different sized particulate matter (PM), with filtered clean air as control. After 3 or 6 months of exposure, mouse brains were harvested and analyzed. RNA-seq analysis showed that various PM have differential effects on the brain transcriptome, and these effects seemed to correlate with PM size. Many genes and pathways were affected after PM exposure. Among them, we found a strong activation in mRNA Nonsense Mediated Decay pathway, an inhibition in pathways related to transcription, neurogenesis and survival signaling as well as angiogenesis, and a dramatic downregulation of collagens. Although we did not detect any extracellular Aβ plaques, immunostaining revealed that both intracellular Aβ1-42 and phospho-Tau levels were increased in various PM exposure conditions compared to the clean air control. NanoString GeoMx analysis demonstrated a remarkable activation of immune responses in the PM exposed mouse brain. Surprisingly, our data also indicated a strong activation of various tumor suppressors including RB1, CDKN1A/p21 and CDKN2A/p16. Collectively, our data demonstrated that exposure to airborne PM caused a profound transcriptional dysregulation and accelerated Alzheimer's-related pathology.
Collapse
Affiliation(s)
- Liron L Israel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Oliver Braubach
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Ekaterina S Shatalova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Oksana Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Sachin Sharma
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Dmytro Klymyshyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Alysia Cox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - David Herman
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Bishop Bliss
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Irene Hasen
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Amanda Ting
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Rebecca Arechavala
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Eggehard Holler
- Terasaki Institute, Los Angeles, CA 90024, United States of America
| | | | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America.
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America.
| |
Collapse
|
6
|
Fontana IC, Souza DG, Souza DO, Gee A, Zimmer ER, Bongarzone S. A Medicinal Chemistry Perspective on Excitatory Amino Acid Transporter 2 Dysfunction in Neurodegenerative Diseases. J Med Chem 2023; 66:2330-2346. [PMID: 36787643 PMCID: PMC9969404 DOI: 10.1021/acs.jmedchem.2c01572] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The excitatory amino acid transporter 2 (EAAT2) plays a key role in the clearance and recycling of glutamate - the major excitatory neurotransmitter in the mammalian brain. EAAT2 loss/dysfunction triggers a cascade of neurodegenerative events, comprising glutamatergic excitotoxicity and neuronal death. Nevertheless, our current knowledge regarding EAAT2 in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), is restricted to post-mortem analysis of brain tissue and experimental models. Thus, detecting EAAT2 in the living human brain might be crucial to improve diagnosis/therapy for ALS and AD. This perspective article describes the role of EAAT2 in physio/pathological processes and provides a structure-activity relationship of EAAT2-binders, bringing two perspectives: therapy (activators) and diagnosis (molecular imaging tools).
Collapse
Affiliation(s)
- Igor C Fontana
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 - Neo floor seventh, 141 83 Stockholm, Sweden
| | - Débora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil
| | - Antony Gee
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Eduardo R Zimmer
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 90035-003 Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry (PPGBioq), and Pharmacology and Therapeutics (PPGFT), Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 305 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil.,McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Salvatore Bongarzone
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| |
Collapse
|
7
|
Alijanpour S, Miryounesi M, Ghafouri-Fard S. The role of excitatory amino acid transporter 2 (EAAT2) in epilepsy and other neurological disorders. Metab Brain Dis 2023; 38:1-16. [PMID: 36173507 DOI: 10.1007/s11011-022-01091-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Excitatory amino acid transporters (EAATs) have important roles in the uptake of glutamate and termination of glutamatergic transmission. Up to now, five EAAT isoforms (EAAT1-5) have been identified in mammals. The main focus of this review is EAAT2. This protein has an important role in the pathoetiology of epilepsy. De novo dominant mutations, as well as inherited recessive mutation in this gene, have been associated with epilepsy. Moreover, dysregulation of this protein is implicated in a range of neurological diseases, namely amyotrophic lateral sclerosis, alzheimer's disease, parkinson's disease, schizophrenia, epilepsy, and autism. In this review, we summarize the role of EAAT2 in epilepsy and other neurological disorders, then provide an overview of the therapeutic modulation of this protein.
Collapse
Affiliation(s)
- Sahar Alijanpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Wood OWG, Yeung JHY, Faull RLM, Kwakowsky A. EAAT2 as a therapeutic research target in Alzheimer's disease: A systematic review. Front Neurosci 2022; 16:952096. [PMID: 36033606 PMCID: PMC9399514 DOI: 10.3389/fnins.2022.952096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the human central nervous system, responsible for a wide variety of normal physiological processes. Glutamatergic metabolism and its sequestration are tightly regulated in the normal human brain, and it has been demonstrated that dysregulation of the glutamatergic system can have wide-ranging effects both in acute brain injury and neurodegenerative diseases. The excitatory amino acid transporter 2 (EAAT2) is the dominant glutamatergic transporter in the human brain, responsible for efficient removal of glutamate from the synaptic cleft for recycling within glial cells. As such, it has a key role in maintaining excitatory-inhibitory homeostasis. Animal studies have demonstrated dysregulation or alterations of EAAT2 expression can have implications in neurodegenerative disorders. Despite extensive research into glutamatergic alterations in AD mouse models, there is a lack of studies examining the expression of EAAT2 within the AD human brain. In this systematic review, 29 articles were identified that either analyzed EAAT2 expression in the AD human brain or used a human-derived cell culture. Studies were inconclusive as to whether EAAT2 was upregulated or downregulated in AD. However, changes in localization and correlation between EAAT2 expression and symptomatology was noted. These findings implicate EAAT2 alterations as a key process in AD progression and highlight the need for further research into the characterization of EAAT2 processes in normal physiology and disease in human tissue and to identify compounds that can act as EAAT2 neuromodulators.
Collapse
Affiliation(s)
- Oliver W. G. Wood
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jason H. Y. Yeung
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, Galway Neuroscience Centre, School of Medicine, Ollscoil na Gaillimhe – University of Galway, Galway, Ireland
- *Correspondence: Andrea Kwakowsky
| |
Collapse
|
9
|
Bao Y, Yang X, Fu Y, Li Z, Gong R, Lu W. NMDAR-dependent somatic potentiation of synaptic inputs is correlated with β amyloid-mediated neuronal hyperactivity. Transl Neurodegener 2021; 10:34. [PMID: 34496956 PMCID: PMC8424869 DOI: 10.1186/s40035-021-00260-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND β Amyloid (Aβ)-mediated neuronal hyperactivity, a key feature of the early stage of Alzheimer's disease (AD), is recently proposed to be initiated by the suppression of glutamate reuptake. Nevertheless, the underlying mechanism by which the impaired glutamate reuptake causes neuronal hyperactivity remains unclear. Chronic suppression of the glutamate reuptake causes accumulation of ambient glutamate that could diffuse from synaptic sites at the dendrites to the soma to elevate the tonic activation of somatic N-methyl-D-aspartate receptors (NMDARs). However, less attention has been paid to the potential role of tonic activity change in extrasynaptic glutamate receptors (GluRs) located at the neuronal soma on generation of neuronal hyperactivity. METHODS Whole-cell patch-clamp recordings were performed on CA1 pyramidal neurons in acute hippocampal slices exposed to TFB-threo-β-benzyloxyaspartic acid (TBOA) or human Aβ1-42 peptide oligomer. A series of dendritic patch-clamp recordings were made at different distances from the soma to identify the location of the changes in synaptic inputs. Moreover, single-channel recording in the cell-attached mode was performed to investigate the activity changes of single NMDARs at the soma. RESULTS Blocking glutamate uptake with either TBOA or the human Aβ1-42 peptide oligomer elicited potentiation of synaptic inputs in CA1 hippocampal neurons. Strikingly, this potentiation specifically occurred at the soma, depending on the activation of somatic GluN2B-containing NMDARs (GluN2B-NMDARs) and accompanied by a substantial and persistent increment in the open probability of somatic NMDARs. Blocking the activity of GluN2B-NMDARs at the soma completely reversed both the TBOA-induced or the Aβ1-42-induced somatic potentiation and neuronal hyperactivity. CONCLUSIONS The somatic potentiation of synaptic inputs may represent a novel amplification mechanism that elevates cell excitability and thus contributes to neuronal hyperactivity initiated by impaired glutamate reuptake in AD.
Collapse
Affiliation(s)
- Yifei Bao
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Xin Yang
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Yi Fu
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Zhengyan Li
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Ru Gong
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China. .,Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Fudan University, Shanghai, 200032, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Li X, Tsolis KC, Koper MJ, Ronisz A, Ospitalieri S, von Arnim CAF, Vandenberghe R, Tousseyn T, Scheuerle A, Economou A, Carpentier S, Otto M, Thal DR. Sequence of proteome profiles in preclinical and symptomatic Alzheimer's disease. Alzheimers Dement 2021; 17:946-958. [PMID: 33871169 DOI: 10.1002/alz.12345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Proteome profile changes in Alzheimer's disease (AD) brains have been reported. However, it is unclear whether they represent a continuous process, or whether there is a sequential involvement of distinct proteins. To address this question, we used mass spectrometry. We analyzed soluble, dispersible, sodium dodecyl sulfate, and formic acid fractions of neocortex homogenates (mainly Brodmann area 17-19) from 18 pathologically diagnosed preclinical AD, 17 symptomatic AD, and 18 cases without signs of neurodegeneration. By doing so, we identified four groups of AD-related proteins being changed in levels in preclinical and symptomatic AD cases: early-responding, late-responding, gradually-changing, and fraction-shifting proteins. Gene ontology analysis of these proteins and all known AD-risk/causative genes identified vesicle endocytosis and the secretory pathway-related processes as an early-involved AD component. In conclusion, our findings suggest that subtle changes involving the secretory pathway and endocytosis precede severe proteome changes in symptomatic AD as part of the preclinical phase of AD. The respective early-responding proteins may also contribute to synaptic vesicle cycle alterations in symptomatic AD.
Collapse
Affiliation(s)
- Xiaohang Li
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Konstantinos C Tsolis
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Alicja Ronisz
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Simona Ospitalieri
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Rik Vandenberghe
- Department of Neurology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium
| | - Thomas Tousseyn
- Department of Pathology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium
| | | | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Sebastien Carpentier
- BIOMED facility for SYstems BIOlogy based MAss spectrometry, KU Leuven (University of Leuven), Leuven, Belgium
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.,Department of Pathology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium
| |
Collapse
|
11
|
Du X, Shi Q, Zhao Y, Xie Y, Li X, Liu Q, Iqbal J, Zhang H, Liu X, Shen L. Se-Methylselenocysteine (SMC) Improves Cognitive Deficits by Attenuating Synaptic and Metabolic Abnormalities in Alzheimer's Mice Model: A Proteomic Study. ACS Chem Neurosci 2021; 12:1112-1132. [PMID: 33689275 DOI: 10.1021/acschemneuro.0c00549] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Se-methylselenocysteine (SMC) is a major selenocompound in selenium (Se) enriched plants and has been found to ameliorate neuropathology and cognitive deficits in triple-transgenic mice model of Alzheimer's disease (3 × Tg-AD mice). To explore the underlying molecular mechanisms, the present study is designed to elucidate the protein changes in the cortex of SMC-treated 3 × Tg-AD mice. After SMC supplementation, proteomic analysis revealed that 181, 271, and 41 proteins were identified as differentially expressed proteins (DEPs) between 3 × Tg-AD mice vs wild type (AD/WT group), SMC-treated AD mice vs AD (AD + SMC/AD), and AD + SMC/WT group, respectively. Among these, 138 proteins in the diseased group were reversed by SMC treatment. The DEPs in AD/WT group and AD + SMC/AD group were mainly related to metabolism, synapses, and antioxidant proteins, while their levels were decreased in AD mice but up-regulated after treating with SMC. In addition, we found reduced ATP levels and destroyed synaptic structures in the AD mice brains, which were significantly ameliorated upon SMC treatment. Our study suggests that energy metabolism disorders, abnormal amino acid metabolism, synaptic dysfunction, and oxidative stress may be the key pathogenic phenomena of AD. SMC reversed the expression of proteins associated with them, which might be the main mechanism of its intervention in AD.
Collapse
Affiliation(s)
- Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingqing Shi
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yuxi Zhao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yongli Xie
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xuexia Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Javed Iqbal
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Bay Laboratory, Shenzhen 518055, P.R. China
| | - Xukun Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, P. R. China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
12
|
Yang MH, Chen YMA, Tu SC, Chi PL, Chuang KP, Chang CC, Lee CH, Chen YL, Lee CH, Yuan CH, Tyan YC. Utilizing an Animal Model to Identify Brain Neurodegeneration-Related Biomarkers in Aging. Int J Mol Sci 2021; 22:ijms22063278. [PMID: 33807010 PMCID: PMC8004625 DOI: 10.3390/ijms22063278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
Glycine N-methyltransferase (GNMT) regulates S-adenosylmethionine (SAMe), a methyl donor in methylation. Over-expressed SAMe may cause neurogenic capacity reduction and memory impairment. GNMT knockout mice (GNMT-KO) was applied as an experimental model to evaluate its effect on neurons. In this study, proteins from brain tissues were studied using proteomic approaches, Haemotoxylin and Eosin staining, immunohistochemistry, Western blotting, and ingenuity pathway analysis. The expression of Receptor-interacting protein 1(RIPK1) and Caspase 3 were up-regulated and activity-dependent neuroprotective protein (ADNP) was down-regulated in GNMT-KO mice regardless of the age. Besides, proteins related to neuropathology, such as excitatory amino acid transporter 2, calcium/calmodulin-dependent protein kinase type II subunit alpha, and Cu-Zn superoxide dismutase were found only in the group of aged wild-type mice; 4-aminobutyrate amino transferase, limbic system-associated membrane protein, sodium- and chloride-dependent GABA transporter 3 and ProSAAS were found only in the group of young GNMT-KO mice and are related to function of neurons; serum albumin and Rho GDP dissociation inhibitor 1 were found only in the group of aged GNMT-KO mice and are connected to neurodegenerative disorders. With proteomic analyses, a pathway involving Gonadotropin-releasing hormone (GnRH) signal was found to be associated with aging. The GnRH pathway could provide additional information on the mechanism of aging and non-aging related neurodegeneration, and these protein markers may be served in developing future therapeutic treatments to ameliorate aging and prevent diseases.
Collapse
Affiliation(s)
- Ming-Hui Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (M.-H.Y.); (P.-L.C.)
| | - Yi-Ming Arthur Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Shan-Chen Tu
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (M.-H.Y.); (P.-L.C.)
| | - Kuo-Pin Chuang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Medicine, College of Medicine, Kaoshiung Medical University, Kaoshiung 807, Taiwan;
| | - Chin-Chuan Chang
- School of Medicine, College of Medicine, Kaoshiung Medical University, Kaoshiung 807, Taiwan;
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Electrical Engineering, I-Shou University, Kaohsiung 840, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chiang-Hsuan Lee
- Department of Nuclear Medicine, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Yi-Ling Chen
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Cheng-Hui Yuan
- Mass Spectrometry Laboratory, Department of Chemistry, National University of Singapore, Singapore 119077, Singapore;
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Medicine, College of Medicine, Kaoshiung Medical University, Kaoshiung 807, Taiwan;
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
13
|
Manisha C, Selvaraj A, Jubie S, Moola Joghee Nanjan C, Moola Joghee N, Clement JP, Justin A. Positive allosteric activation of glial EAAT-2 transporter protein: A novel strategy for Alzheimer’s disease. Med Hypotheses 2020; 142:109794. [DOI: 10.1016/j.mehy.2020.109794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
|
14
|
Ayka A, Şehirli AÖ. The Role of the SLC Transporters Protein in the Neurodegenerative Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:174-187. [PMID: 32329299 PMCID: PMC7236796 DOI: 10.9758/cpn.2020.18.2.174] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
The solute carrier (SLC) superfamily is one of the major sub-groups of membrane proteins in mammalian cells. The solute carrier proteins include more than 400 different membrane-spanning solute carriers organized with 65 families in the human. In solute carrier family neurons, neurotransmitter is considered to be a pharmacological target of neuropsychiatric drugs because of their important role in the recovery of neurotransmitters such as GABA, glutamate, serotonin, dopamine and noradrenaline and regulation of their concentration in synaptic regions. Therefore, solute carrier transporters play vital and different roles in neurodegenerative disorders. In this article, the role of solute carrier transporters in neurodegenerative disorders such as Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease, Parkinson’s diseases, depression, post-traumatic stress disorder, dementia, schizophrenia, and Epilepsy reviewed and discussed to see how defects or absences in SLC transporter cause neurodegenerative disorders. In this review, we try to summarize what is known about solute carriers with respect to brain distribution and expression. The review summarizes current knowledge on the roles of solute carrier transporters in neurodegenerative disorders.
Collapse
|
15
|
Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer's brain. J Neurochem 2020; 154:583-597. [PMID: 32180217 DOI: 10.1111/jnc.15007] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
It is increasingly accepted that early cognitive impairment in Alzheimer's disease results in considerable part from synaptic dysfunction caused by the accumulation of a range of oligomeric assemblies of amyloid β-protein (Aβ). Most studies have used synthetic Aβ peptides to explore the mechanisms of memory deficits in rodent models, but recent work suggests that Aβ assemblies isolated from human (AD) brain tissue are far more potent and disease-relevant. Although reductionist experiments show Aβ oligomers to impair synaptic plasticity and neuronal viability, the responsible mechanisms are only partly understood. Glutamatergic receptors, GABAergic receptors, nicotinic receptors, insulin receptors, the cellular prion protein, inflammatory mediators, and diverse signaling pathways have all been suggested. Studies using AD brain-derived soluble Aβ oligomers suggest that only certain bioactive forms (principally small, diffusible oligomers) can disrupt synaptic plasticity, including by binding to plasma membranes and changing excitatory-inhibitory balance, perturbing mGluR, PrP, and other neuronal surface proteins, down-regulating glutamate transporters, causing glutamate spillover, and activating extrasynaptic GluN2B-containing NMDA receptors. We synthesize these emerging data into a mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Zulfiqar S, Garg P, Nieweg K. Contribution of astrocytes to metabolic dysfunction in the Alzheimer's disease brain. Biol Chem 2020; 400:1113-1127. [PMID: 31188740 DOI: 10.1515/hsz-2019-0140] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/28/2019] [Indexed: 11/15/2022]
Abstract
Historically considered as accessory cells to neurons, there is an increasing interest in the role of astrocytes in normal and pathological conditions. Astrocytes are involved in neurotransmitter recycling, antioxidant supply, ion buffering and neuroinflammation, i.e. a lot of the same pathways that go astray in Alzheimer's disease (AD). AD remains the leading cause of dementia in the elderly, one for which there is still no cure. Efforts in AD drug development have largely focused on treating neuronal pathologies that appear relatively late in the disease. The neuroenergetic hypothesis, however, focuses on the early event of glucose hypometabolism in AD, where astrocytes play a key role, caused by an imbalanced neuron-astrocyte lactate shuttle. This further results in a state of oxidative stress and neuroinflammation, thereby compromising the integrity of astrocyte-neuron interaction. Compromised astrocytic energetics also enhance amyloid generation, further increasing the severity of the disease. Additionally, apolipoprotein E (APOE), the major genetic risk factor for AD, is predominantly secreted by astrocytes and plays a critical role in amyloid clearance and regulates glucose metabolism in an amyloid-independent manner. Thus, boosting the neuroprotective properties of astrocytes has potential applications in delaying the onset and progression of AD. This review explores how the metabolic dysfunction arising from astrocytes acts as a trigger for the development of AD.
Collapse
Affiliation(s)
- Shadaan Zulfiqar
- Institute for Pharmacology and Clinical Pharmacy, Philipps University, Karl-von-Frisch Strasse, Marburg D-35043, Germany.,Marburg Center for Mind, Brain and Behavior, Philipps University, Marburg, Germany
| | - Pretty Garg
- Institute for Pharmacology and Clinical Pharmacy, Philipps University, Karl-von-Frisch Strasse, Marburg D-35043, Germany.,Marburg Center for Mind, Brain and Behavior, Philipps University, Marburg, Germany.,Institute for Neuro and Sensory Physiology, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Katja Nieweg
- Institute for Pharmacology and Clinical Pharmacy, Philipps University, Karl-von-Frisch Strasse, Marburg D-35043, Germany.,Marburg Center for Mind, Brain and Behavior, Philipps University, Marburg, Germany
| |
Collapse
|
17
|
Fan S, Xian X, Li L, Yao X, Hu Y, Zhang M, Li W. Ceftriaxone Improves Cognitive Function and Upregulates GLT-1-Related Glutamate-Glutamine Cycle in APP/PS1 Mice. J Alzheimers Dis 2019; 66:1731-1743. [PMID: 30452416 DOI: 10.3233/jad-180708] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive impairment of learning, memory, and cognitive deficits. Glutamate is the major excitatory neurotransmitter in the central nervous system and plays an important role in learning, memory, and cognition. The homeostasis and reutilization of glutamate are dependent on astrocytic uptake by glutamate transporter-1 (GLT-1) and the subsequent glutamate-glutamine cycle. Increasing evidence showed impairments in GLT-1 expression and uptake activity and glutamate-glutamine cycle in AD. Ceftriaxone (Cef) has been reported to upregulate the expression and uptake of GLT-1. Therefore, the present study was undertaken to explore whether Cef can improve cognitive deficits of APP/PS1 mice in early stage of AD by upregulating GLT-1 expression, and then promoting the glutamate-glutamine cycle. It was shown that Cef treatment significantly alleviated the cognitive deficits measured by Morris water maze test and upregulated GLT-1 protein expression in the hippocampus of APP/PS1 mice. Particularly, the activity of glutamine synthetase (GS) and the protein expression of system N glutamine transporter 1 (SN1), which are the key factors involved in the glutamate-glutamine cycle, were significantly upregulated as well after the Cef treatment. Furthermore, inhibition of GLT-1 uptake activity by dihydrokainic acid, an inhibitor of GLT-1, blocked the Cef-induced improvement on the cognitive deficits, GS activity, and SN1 expression. The above results suggested that Cef could improve cognitive deficits of APP/PS1 mice in early stage of AD by upregulating the GLT-1 expression, GS activity, and SN1 expression, which would lead to stimulating the glutamate-glutamine cycle.
Collapse
Affiliation(s)
- ShuJuan Fan
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China
| | - XiaoHui Xian
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China
| | - Li Li
- Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - XiaoGuang Yao
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China
| | - YuYan Hu
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China
| | - Min Zhang
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China
| | - WenBin Li
- Department of Pathophysiology, Neuroscience Center, Hebei Medical University, Shijiazhuang, P.R. China.,Aging and Cognition Neuroscience Laboratory of Hebei Province, Shijiazhuang, P.R. China
| |
Collapse
|
18
|
The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci 2019; 15:131-144. [PMID: 32373195 PMCID: PMC7193445 DOI: 10.1016/j.ajps.2019.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/17/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023] Open
Abstract
Solute carriers (SLCs) are the largest family of transmembrane transporters that determine the exchange of various substances, including nutrients, ions, metabolites, and drugs across biological membranes. To date, the presence of about 287 SLC genes have been identified in the brain, among which mutations or the resultant dysfunctions of 71 SLC genes have been reported to be correlated with human brain disorders. Although increasing interest in SLCs have focused on drug development, SLCs are currently still under-explored as drug targets, especially in the brain. We summarize the main substrates and functions of SLCs that are expressed in the brain, with an emphasis on selected SLCs that are important physiologically, pathologically, and pharmacologically in the blood-brain barrier, astrocytes, and neurons. Evidence suggests that a fraction of SLCs are regulated along with the occurrences of brain disorders, among which epilepsy, neurodegenerative diseases, and autism are representative. Given the review of SLCs involved in the onset and procession of brain disorders, we hope these SLCs will be screened as promising drug targets to improve drug delivery to the brain.
Collapse
|
19
|
Sex-dependent impaired locomotion and motor coordination in the HdhQ200/200 mouse model of Huntington's Disease. Neurobiol Dis 2019; 132:104607. [PMID: 31499139 DOI: 10.1016/j.nbd.2019.104607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/02/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Huntington's Disease (HD) is a fatal neurodegenerative disease characterized by severe loss of medium spiny neuron (MSN) function and striatal-dependent behaviors. We report that female HdhQ200/200 mice display an earlier onset and more robust deterioration in spontaneous locomotion and motor coordination measured at 8 months of age compared to male HdhQ200/200 mice. Remarkably, HdhQ200/200 mice of both sexes exhibit comparable impaired spontaneous locomotion and motor coordination at 10 months of age and reach moribund stage by 12 months of age, demonstrating reduced life span in this model system. Histopathological analysis revealed enhanced mutant huntingtin protein aggregation in male HdhQ200/200 striatal tissue at 8 months of age compared to female HdhQ200/200. Functional analysis of calcium dynamics in MSNs of female HdhQ200/200 mice using GCaMP6m imaging revealed elevated responses to excitatory cortical-striatal stimulation suggesting increased MSN excitability. Although there was no down-regulation of the expression of common HD biomarkers (DARPP-32, enkephalin and CB1R), we measured a sex-dependent reduction of the astrocytic glutamate transporter, GLT-1, in female HdhQ200/200 mice that was not detected in male HdhQ200/200 mice when compared to respective wild-type littermates. Our study outlines a sex-dependent rapid deterioration of striatal-dependent behaviors occurring in the HdhQ200/200 mouse line that does not involve alterations in the expression of common HD biomarkers and yet includes impaired MSN function.
Collapse
|
20
|
Cabrera-Pastor A, Arenas YM, Taoro-Gonzalez L, Montoliu C, Felipo V. Chronic hyperammonemia alters extracellular glutamate, glutamine and GABA and membrane expression of their transporters in rat cerebellum. Modulation by extracellular cGMP. Neuropharmacology 2019; 161:107496. [PMID: 30641078 DOI: 10.1016/j.neuropharm.2019.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/15/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Trafficking of glutamate, glutamine and GABA between astrocytes and neurons is essential to maintain proper neurotransmission. Chronic hyperammonemia alters neurotransmission and cognitive function. The aims of this work were to analyze in cerebellum of rats the effects of chronic hyperammonemia on: a) extracellular glutamate, glutamine and GABA concentrations; b) membrane expression of glutamate, glutamine and GABA transporters; c) how they are modulated by extracellular cGMP. Hyperammonemic rats show increased levels of extracellular glutamate, glutamine, GABA and citrulline in cerebellum in vivo. Hyperammonemic rats show: a) increased membrane expression of the astrocytic glutamine transporter SNAT3 and reduced membrane expression of the neuronal transporter SNAT1; b) reduced membrane expression of the neuronal GABA transporter GAT1 and increased membrane expression of the astrocytic GAT3 transporter; c) reduced membrane expression of the astrocytic glutamate transporters GLAST and GLT-1 and of the neuronal transporter EAAC1. Increasing extracellular cGMP normalizes membrane expression of SNAT3, GAT3, GAT1 and GLAST and extracellular glutamate, glutamine, GABA and citrulline hyperammonemic rats. Extracellular cGMP also modulates membrane expression of most transporters in control rats, reducing membrane expression of SNAT1, GLT-1 and EAAC1 and increasing that of GAT1 and GAT3. Modulation of SNAT3, SNAT1, GLT-1 and EAAC1 by extracellular cGMP would be mediated by inhibition of glycine receptors. These data suggest that, in pathological situations such as hyperammonemia, hepatic encephalopathy or Alzheimer's disease, reduced levels of extracellular cGMP contribute to alterations in membrane expression of glutamine, glutamate and GABA transporters, in the extracellular levels of glutamine, glutamate and GABA and in neurotransmission. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain; Fundacion Investigacion Hospital Clinico Valencia, Instituto de Investigacion Sanitaria INCLIVA, Valencia, Spain
| | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Carmina Montoliu
- Fundacion Investigacion Hospital Clinico Valencia, Instituto de Investigacion Sanitaria INCLIVA, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
21
|
Lemche E. Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Curr Genomics 2018; 19:522-602. [PMID: 30386171 PMCID: PMC6194433 DOI: 10.2174/1389202919666171229145156] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Involvement of life stress in Late-Onset Alzheimer's Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have successfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper-phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of autophagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal studies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epigenomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation mechanisms were published for the compiled loci. Genomic association studies support close relations of both noradrenergic and glucocorticoid systems with LOAD. For HPA involvement, a CRHR1 haplotype with MAPT was described, but further association of only HSD11B1 with LOAD found; however, association of FKBP1 and NC3R1 polymorphisms was documented in support of stress influence to LOAD. In the brain insulin system, IGF2R, INSR, INSRR, and plasticity regulator ARC, were associated with LOAD. Pertaining to compromised myelin stability in LOAD, relevant associations were found for BIN1, RELN, SORL1, SORCS1, CNP, MAG, and MOG. Regarding epigenetic modifications, both methylation variability and de-acetylation were reported for LOAD. The majority of up-to-date epigenomic findings include reported modifications in the well-known LOAD core pathology loci MAPT, BACE1, APP (with FOS, EGR1), PSEN1, PSEN2, and highlight a central role of BDNF. Pertaining to ELS, relevant loci are FKBP5, EGR1, GSK3B; critical roles of inflammation are indicated by CRP, TNFA, NFKB1 modifications; for cholesterol biosynthesis, DHCR24; for myelin stability BIN1, SORL1, CNP; pertaining to (epi)genetic mechanisms, hTERT, MBD2, DNMT1, MTHFR2. Findings on gene regulation were accumulated for BACE1, MAPK signalling, TLR4, BDNF, insulin signalling, with most reports for miR-132 and miR-27. Unclear in epigenomic studies remains the role of noradrenergic signalling, previously demonstrated by neuropathological findings of childhood nucleus caeruleus degeneration for LOAD tauopathy.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
22
|
Novel interaction between Alzheimer's disease-related protein presenilin 1 and glutamate transporter 1. Sci Rep 2018; 8:8718. [PMID: 29880815 PMCID: PMC5992168 DOI: 10.1038/s41598-018-26888-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neuronal hyperactivity is one of the earliest events observed in Alzheimer’s disease (AD). Moreover, alterations in the expression of glutamate transporters have been reported to exacerbate amyloid pathology and cognitive deficits in transgenic AD mouse models. However, the molecular links between these pathophysiological changes remain largely unknown. Here, we report novel interaction between presenilin 1 (PS1), the catalytic component of the amyloid precursor protein-processing enzyme, γ-secretase, and a major glutamate transporter-1 (GLT-1). Our data demonstrate that the interaction occurs between PS1 and GLT-1 expressed at their endogenous levels in vivo and in vitro, takes place in both neurons and astrocytes, and is independent of the PS1 autoproteolysis and γ-secretase activity. This intriguing discovery may shed light on the molecular crosstalk between the proteins linked to the maintenance of glutamate homeostasis and Aβ pathology.
Collapse
|
23
|
Zhang D, Mably AJ, Walsh DM, Rowan MJ. Peripheral Interventions Enhancing Brain Glutamate Homeostasis Relieve Amyloid β- and TNFα- Mediated Synaptic Plasticity Disruption in the Rat Hippocampus. Cereb Cortex 2018; 27:3724-3735. [PMID: 27390019 DOI: 10.1093/cercor/bhw193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of glutamate homeostasis in the interstitial fluid of the brain is strongly implicated in causing synaptic dysfunction in many neurological and psychiatric illnesses. In the case of Alzheimer's disease (AD), amyloid β (Aβ)-mediated disruption of synaptic plasticity and memory can be alleviated by interventions that directly remove glutamate or block certain glutamate receptors. An alternative strategy is to facilitate the removal of excess glutamate from the nervous system by activating peripheral glutamate clearance systems. One such blood-based system, glutamate oxaloacetate transaminase (GOT), is activated by oxaloacetate, which acts as a co-substrate. We report here that synthetic and AD brain-derived Aβ-mediated inhibition of synaptic long-term potentiation in the hippocampus is alleviated by oxaloacetate. Moreover the effect of oxaloacetate was GOT-dependent. The disruptive effects of a general inhibitor of excitatory amino acid transport or TNFα, a pro-inflammatory mediator of Aβ action, were also reversed by oxaloacetate. Furthermore, another intervention that increases peripheral glutamate clearance, peritoneal dialysis, mimicked the beneficial effect of oxaloacetate. These findings lend support to the promotion of the peripheral clearance of glutamate as a means to alleviate synaptic dysfunction that is caused by impaired glutamate homeostasis in the brain.
Collapse
Affiliation(s)
- Dainan Zhang
- Department of Pharmacology and Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Alexandra J Mably
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Institute of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Institute of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
24
|
Reactive Astrocytes as Drug Target in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4160247. [PMID: 29888263 PMCID: PMC5977027 DOI: 10.1155/2018/4160247] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by deposition of extracellular amyloid-β, intracellular neurofibrillary tangles, and loss of cortical neurons. However, the mechanism underlying neurodegeneration in Alzheimer's disease (AD) remains to be explored. Many of the researches on AD have been primarily focused on neuronal changes. Current research, however, broadens to give emphasis on the importance of nonneuronal cells, such as astrocytes. Astrocytes play fundamental roles in several cerebral functions and their dysfunctions promote neurodegeneration and, eventually, retraction of neuronal synapses, which leads to cognitive deficits found in AD. Astrocytes become reactive as a result of deposition of Aβ, which in turn have detrimental consequences, including decreased glutamate uptake due to reduced expression of uptake transporters, altered energy metabolism, altered ion homeostasis (K+ and Ca+), increased tonic inhibition, and increased release of cytokines and inflammatory mediators. In this review, recent insights on the involvement of, tonic inhibition, astrocytic glutamate transporters and aquaporin in the pathogenesis of Alzheimer's disease are provided. Compounds which increase expression of GLT1 have showed efficacy for AD in preclinical studies. Tonic inhibition mediated by GABA could also be a promising target and drugs that block the GABA synthesizing enzyme, MAO-B, have shown efficacy. However, there are contradictory evidences on the role of AQP4 in AD.
Collapse
|
25
|
Garcia-Esparcia P, Diaz-Lucena D, Ainciburu M, Torrejón-Escribano B, Carmona M, Llorens F, Ferrer I. Glutamate Transporter GLT1 Expression in Alzheimer Disease and Dementia With Lewy Bodies. Front Aging Neurosci 2018; 10:122. [PMID: 29755340 PMCID: PMC5932187 DOI: 10.3389/fnagi.2018.00122] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/11/2018] [Indexed: 01/23/2023] Open
Abstract
Glutamate transporter solute carrier family 1, member 2 (GLT1/EAAT2), a major modulator of glutamate homeostasis in astrocytes, is assessed in post-mortem human brain samples of frontal cortex area 8 in advanced stages of Alzheimer disease (AD) and terminal stages of dementia with Lewy bodies (DLB) in order to gain understanding of astrogliopathy in diseases manifested by dementia. Glial fibrillary acidic protein (GFAP) mRNA expression is significantly increased in AD but not in DLB, whereas GLT1, vesicular glutamate transporter 1 (vGLUT1) and aldehyde dehydrogenase 1 family member 1 (ALDH1L1) are not modified in AD and DLB when compared with controls. GLT1 protein levels are not altered in AD and DLB but GFAP and ALDH1L1 are significantly increased in AD, and GFAP in DLB. As a result, a non-significant decrease in the ratio between GLT1 and GFAP, and between GLT1 and ALDH1L1, is found in both AD and DLB. Double-labeling immunofluorescence and confocal microscopy revealed no visible reduction of GLT1 immunoreactivity in relation to β-amyloid plaques in AD. These data suggest a subtle imbalance between GLT1, and GFAP and ALDH1L1 expression, with limited consequences in glutamate transport.
Collapse
Affiliation(s)
- Paula Garcia-Esparcia
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBERNED (Biomedical Network Research Centre of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
| | - Daniela Diaz-Lucena
- CIBERNED (Biomedical Network Research Centre of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
| | - Marina Ainciburu
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Benjamin Torrejón-Escribano
- Biology Unit, Scientific and Technical Services, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Margarita Carmona
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBERNED (Biomedical Network Research Centre of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
| | - Franc Llorens
- CIBERNED (Biomedical Network Research Centre of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain.,Bellvitge Biomedical Research Institute, l'Hospitalet de Llobregat (IDIBELL), Barcelona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBERNED (Biomedical Network Research Centre of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain.,Senior Consultant Service of Pathology, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Perez-Nievas BG, Serrano-Pozo A. Deciphering the Astrocyte Reaction in Alzheimer's Disease. Front Aging Neurosci 2018; 10:114. [PMID: 29922147 PMCID: PMC5996928 DOI: 10.3389/fnagi.2018.00114] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer's disease (AD) patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.
Collapse
Affiliation(s)
| | - Alberto Serrano-Pozo
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
27
|
Hoshi A, Tsunoda A, Yamamoto T, Tada M, Kakita A, Ugawa Y. Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer's disease. Neuropathol Appl Neurobiol 2018; 44:628-638. [PMID: 29405337 DOI: 10.1111/nan.12475] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
AIMS Glutamate neurotoxicity plays an important role in the pathogenesis of various neurodegenerative disorders. Many studies have demonstrated that glutamate transporter-1 (GLT-1), the dominant astrocytic glutamate transporter, is significantly reduced in the cerebral cortex of patients with Alzheimer's disease (AD), suggesting that glutamate-mediated excitotoxicity might contribute to the pathogenesis of AD. In a previous study, we have demonstrated marked alterations in the expression of the astrocytic water channel protein aquaporin-4 (AQP4) in relation to amyloid β deposition in human AD brains. As a functional complex, GLT-1 and AQP4 in astrocytes may play a neuroprotective role in the progression of AD pathology. However, few studies have examined the correlation between the expression of GLT-1 and that of AQP4 in human AD brain. METHODS Here, using immunohistochemistry with antibodies against GLT-1 and AQP4, we studied the expression levels and distribution patterns of GLT-1 in areas showing various patterns of AQP4 expression in autopsied temporal lobes from eight patients with AD and five controls without neurological disorders. RESULTS GLT-1 staining in the control group was present throughout the neocortex as uniform neuropil staining with co-localized AQP4. The AD group showed a significant reduction in GLT-1 expression, whereas cortical AQP4 immunoreactivity was more intense in the AD group than in the control group. There were two different patterns of GLT-1 and AQP4 expression in the AD group: (i) uneven GLT-1 expression in the neuropil where diffuse but intense AQP4 expression was evident, and (ii) senile plaque-like co-expression of GLT-1 and AQP4. CONCLUSIONS These findings suggest disruption of glutamate/water homoeostasis in the AD brain.
Collapse
Affiliation(s)
- A Hoshi
- Department of Neurology, Fukushima Medical University, Fukushima, Japan.,IMS Shin Katsushika Royal Clinic, Tokyo, Japan
| | - A Tsunoda
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - T Yamamoto
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - M Tada
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - A Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Y Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan.,Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
28
|
Chi-Castañeda D, Ortega A. Circadian Regulation of Glutamate Transporters. Front Endocrinol (Lausanne) 2018; 9:340. [PMID: 29977228 PMCID: PMC6021491 DOI: 10.3389/fendo.2018.00340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
Abstract
L-glutamate is the major excitatory amino acid in the mammalian central nervous system (CNS). This neurotransmitter is essential for higher brain functions such as learning, cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried out by a family of sodium-dependent high-affinity transporters, collectively known as excitatory amino acid transporters. Dysfunction of glutamate transporters is generally involved in acute neuronal injury and neurodegenerative diseases, so characterizing and understanding the mechanisms that lead to the development of these disorders is an important goal in the design of novel treatments for the neurodegenerative diseases. Increasing evidence indicates glutamate transporters are controlled by the circadian system in direct and indirect manners, so in this contribution we focus on the mechanisms of circadian regulation (transcriptional, translational, post-translational and post-transcriptional regulation) of glutamate transport in neuronal and glial cells, and their consequence in brain function.
Collapse
|
29
|
Drugs to Alter Extracellular Concentration of Glutamate: Modulators of Glutamate Uptake Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7228-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Ferrer I. Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol 2017; 27:645-674. [PMID: 28804999 PMCID: PMC8029391 DOI: 10.1111/bpa.12538] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
Astrogliopathy refers to alterations of astrocytes occurring in diseases of the nervous system, and it implies the involvement of astrocytes as key elements in the pathogenesis and pathology of diseases and injuries of the central nervous system. Reactive astrocytosis refers to the response of astrocytes to different insults to the nervous system, whereas astrocytopathy indicates hypertrophy, atrophy/degeneration and loss of function and pathological remodeling occurring as a primary cause of a disease or as a factor contributing to the development and progression of a particular disease. Reactive astrocytosis secondary to neuron loss and astrocytopathy due to intrinsic alterations of astrocytes occur in neurodegenerative diseases, overlap each other, and, together with astrocyte senescence, contribute to disease-specific astrogliopathy in aging and neurodegenerative diseases with abnormal protein aggregates in old age. In addition to the well-known increase in glial fibrillary acidic protein and other proteins in reactive astrocytes, astrocytopathy is evidenced by deposition of abnormal proteins such as β-amyloid, hyper-phosphorylated tau, abnormal α-synuclein, mutated huntingtin, phosphorylated TDP-43 and mutated SOD1, and PrPres , in Alzheimer's disease, tauopathies, Lewy body diseases, Huntington's disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease, respectively. Astrocytopathy in these diseases can also be manifested by impaired glutamate transport; abnormal metabolism and release of neurotransmitters; altered potassium, calcium and water channels resulting in abnormal ion and water homeostasis; abnormal glucose metabolism; abnormal lipid and, particularly, cholesterol metabolism; increased oxidative damage and altered oxidative stress responses; increased production of cytokines and mediators of the inflammatory response; altered expression of connexins with deterioration of cell-to-cell networks and transfer of gliotransmitters; and worsening function of the blood brain barrier, among others. Increased knowledge of these aspects will permit a better understanding of brain aging and neurodegenerative diseases in old age as complex disorders in which neurons are not the only players.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Institute of NeuropathologyPathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos IIIMadridSpain
| |
Collapse
|
31
|
Amyloid-beta peptide decreases expression and function of glutamate transporters in nervous system cells. Int J Biochem Cell Biol 2017; 85:75-84. [DOI: 10.1016/j.biocel.2017.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/26/2016] [Accepted: 01/29/2017] [Indexed: 12/26/2022]
|
32
|
Astrocytic transporters in Alzheimer's disease. Biochem J 2017; 474:333-355. [DOI: 10.1042/bcj20160505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022]
Abstract
Astrocytes play a fundamental role in maintaining the health and function of the central nervous system. Increasing evidence indicates that astrocytes undergo both cellular and molecular changes at an early stage in neurological diseases, including Alzheimer's disease (AD). These changes may reflect a change from a neuroprotective to a neurotoxic phenotype. Given the lack of current disease-modifying therapies for AD, astrocytes have become an interesting and viable target for therapeutic intervention. The astrocyte transport system covers a diverse array of proteins involved in metabolic support, neurotransmission and synaptic architecture. Therefore, specific targeting of individual transporter families has the potential to suppress neurodegeneration, a characteristic hallmark of AD. A small number of the 400 transporter superfamilies are expressed in astrocytes, with evidence highlighting a fraction of these are implicated in AD. Here, we review the current evidence for six astrocytic transporter subfamilies involved in AD, as reported in both animal and human studies. This review confirms that astrocytes are indeed a viable target, highlights the complexities of studying astrocytes and provides future directives to exploit the potential of astrocytes in tackling AD.
Collapse
|
33
|
Hefendehl JK, LeDue J, Ko RWY, Mahler J, Murphy TH, MacVicar BA. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Aβ plaques by iGluSnFR two-photon imaging. Nat Commun 2016; 7:13441. [PMID: 27834383 PMCID: PMC5114608 DOI: 10.1038/ncomms13441] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022] Open
Abstract
Amyloid-β (Aβ) plaques, a hallmark of Alzheimer's disease (AD), are surrounded by regions of neuronal and glial hyperactivity. We use in vivo two-photon and wide-field imaging of the glutamate sensor iGluSnFR to determine whether pathological changes in glutamate dynamics in the immediate vicinity of Aβ deposits in APPPS1 transgenic mice could alter neuronal activity in this microenvironment. In regions close to Aβ plaques chronic states of high spontaneous glutamate fluctuations are observed and the timing of glutamate responses evoked by sensory stimulation exhibit slower decay rates in two cortical brain areas. GLT-1 expression is reduced around Aβ plaques and upregulation of GLT-1 expression and activity by ceftriaxone partially restores glutamate dynamics to values in control regions. We conclude that the toxic microenvironment surrounding Aβ plaques results, at least partially, from enhanced glutamate levels and that pharmacologically increasing GLT-1 expression and activity may be a new target for early therapeutic intervention. In Alzheimer's disease (AD), neural hyperactivity has been shown to occur in the regions surrounding Aβ plaques. Here, the authors use in vivo two-photon imaging in mouse models of AD and report abnormal glutamate dynamics in the vicinity of plaques which can be partially restored via GLT-1 upregulation through Ceftriaxone treatment.
Collapse
Affiliation(s)
- J K Hefendehl
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - J LeDue
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - R W Y Ko
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - J Mahler
- Hertie-Institut für klinische Hirnforschung, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany
| | - T H Murphy
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - B A MacVicar
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
34
|
Martin S, Lazzarini M, Dullin C, Balakrishnan S, Gomes FV, Ninkovic M, El Hady A, Pardo LA, Stühmer W, Del-Bel E. SK3 Channel Overexpression in Mice Causes Hippocampal Shrinkage Associated with Cognitive Impairments. Mol Neurobiol 2016; 54:1078-1091. [PMID: 26803493 PMCID: PMC5310555 DOI: 10.1007/s12035-015-9680-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022]
Abstract
The dysfunction of the small-conductance calcium-activated K+ channel SK3 has been described as one of the factors responsible for the progress of psychoneurological diseases, but the molecular basis of this is largely unknown. This report reveals through use of immunohistochemistry and computational tomography that long-term increased expression of the SK3 small-conductance calcium-activated potassium channel (SK3-T/T) in mice induces a notable bilateral reduction of the hippocampal area (more than 50 %). Histological analysis showed that SK3-T/T mice have cellular disarrangements and neuron discontinuities in the hippocampal formation CA1 and CA3 neuronal layer. SK3 overexpression resulted in cognitive loss as determined by the object recognition test. Electrophysiological examination of hippocampal slices revealed that SK3 channel overexpression induced deficiency of long-term potentiation in hippocampal microcircuits. In association with these results, there were changes at the mRNA levels of some genes involved in Alzheimer’s disease and/or linked to schizophrenia, epilepsy, and autism. Taken together, these features suggest that augmenting the function of SK3 ion channel in mice may present a unique opportunity to investigate the neural basis of central nervous system dysfunctions associated with schizophrenia, Alzheimer’s disease, or other neuropsychiatric/neurodegenerative disorders in this model system. As a more detailed understanding of the role of the SK3 channel in brain disorders is limited by the lack of specific SK3 antagonists and agonists, the results observed in this study are of significant interest; they suggest a new approach for the development of neuroprotective strategies in neuropsychiatric/neurodegenerative diseases with SK3 representing a potential drug target.
Collapse
Affiliation(s)
- Sabine Martin
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Marcio Lazzarini
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075, Göttingen, Germany
| | - Christian Dullin
- Department of Diagnostic and Interventional Radiology, Georg-August University Medical Center, 37075, Göttingen, Germany
| | - Saju Balakrishnan
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Department of Neuro- and Sensory Physiology, Georg-August University Medical Center, 37073, Göttingen, Germany
| | - Felipe V Gomes
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, 14040-900, Ribeirão Preto, Brazil
| | - Milena Ninkovic
- Department of Neurosurgery, Georg-August University Medical Center, 37075, Göttingen, Germany
| | - Ahmed El Hady
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075, Göttingen, Germany
- Bernstein Focus for Neurotechnology and Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Theoretical Neurophysics, Department of Non-linear Dynamics, Max Planck Institute for Dynamics and Self-Organization, 37077, Göttingen, Germany
- The Interdisciplinary Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany
| | - Luis A Pardo
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Walter Stühmer
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075, Göttingen, Germany.
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
- Bernstein Focus for Neurotechnology and Bernstein Center for Computational Neuroscience, Göttingen, Germany.
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Pathology, CNPQ Research 1B (Biophysics, Biochemistry, Pharmacology and Neuroscience), University of São Paulo Dental School of Ribeirão Preto, Avenida do Café 3400, 14040-904, Ribeirão Preto, Brazil.
| |
Collapse
|
35
|
Meeker KD, Meabon JS, Cook DG. Partial Loss of the Glutamate Transporter GLT-1 Alters Brain Akt and Insulin Signaling in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 45:509-20. [PMID: 25589729 DOI: 10.3233/jad-142304] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The glutamate transporter GLT-1 (also called EAAT2 in humans) plays a critical role in regulating extracellular glutamate levels in the central nervous system (CNS). In Alzheimer's disease (AD), EAAT2 loss is associated with neuropathology and cognitive impairment. In keeping with this, we have reported that partial GLT-1 loss (GLT-1+/-) causes early-occurring cognitive deficits in mice harboring familial AD AβPPswe/PS1ΔE9 mutations. GLT-1 plays important roles in several molecular pathways that regulate brain metabolism, including Akt and insulin signaling in astrocytes. Significantly, AD pathogenesis also involves chronic Akt activation and reduced insulin signaling in the CNS. In this report we tested the hypothesis that GLT-1 heterozygosity (which reduces GLT-1 to levels that are comparable to losses in AD patients) in AβPPswe/PS1ΔE9 mice would induce sustained activation of Akt and disturb components of the CNS insulin signaling cascade. We found that partial GLT-1 loss chronically increased Akt activation (reflected by increased phosphorylation at serine 473), impaired insulin signaling (reflected by decreased IRβ phosphorylation of tyrosines 1150/1151 and increased IRS-1 phosphorylation at serines 632/635 - denoted as 636/639 in humans), and reduced insulin degrading enzyme (IDE) activity in brains of mice expressing familial AβPPswe/PS1ΔE9 AD mutations. GLT-1 loss also caused an apparent compensatory increase in IDE activity in the liver, an organ that has been shown to regulate peripheral amyloid-β levels and expresses GLT-1. Taken together, these findings demonstrate that partial GLT-1 loss can cause insulin/Akt signaling abnormalities that are in keeping with those observed in AD.
Collapse
Affiliation(s)
- Kole D Meeker
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA
| | - James S Meabon
- Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David G Cook
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA Division of Gerontology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
36
|
The Neuroprotective Effect of the Association of Aquaporin-4/Glutamate Transporter-1 against Alzheimer's Disease. Neural Plast 2016; 2016:4626593. [PMID: 27057365 PMCID: PMC4736756 DOI: 10.1155/2016/4626593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/21/2015] [Accepted: 11/30/2015] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by memory loss and cognitive dysfunction. Aquaporin-4 (AQP4), which is primarily expressed in astrocytes, is the major water channel expressed in the central nervous system (CNS). This protein plays an important role in water and ion homeostasis in the normal brain and in various brain pathological conditions. Emerging evidence suggests that AQP4 deficiency impairs learning and memory and that this may be related to the expression of glutamate transporter-1 (GLT-1). Moreover, the colocalization of AQP4 and GLT-1 has long been studied in brain tissue; however, far less is known about the potential influence that the AQP4/GLT-1 complex may have on AD. Research on the functional interaction of AQP4 and GLT-1 has been demonstrated to be of great significance in the study of AD. Here, we review the interaction of AQP4 and GLT-1 in astrocytes, which might play a pivotal role in the regulation of distinct cellular responses that involve neuroprotection against AD. The association of AQP4 and GLT-1 could greatly supplement previous research regarding neuroprotection against AD.
Collapse
|
37
|
Fontana ACK. Current approaches to enhance glutamate transporter function and expression. J Neurochem 2015; 134:982-1007. [DOI: 10.1111/jnc.13200] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Andréia C. K. Fontana
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia Pennsylvania USA
| |
Collapse
|
38
|
Nilsson P, Loganathan K, Sekiguchi M, Winblad B, Iwata N, Saido TC, Tjernberg LO. Loss of neprilysin alters protein expression in the brain of Alzheimer's disease model mice. Proteomics 2015; 15:3349-55. [PMID: 26194619 DOI: 10.1002/pmic.201400211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 04/28/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease displaying extracellular plaques formed by the neurotoxic amyloid β-peptide (Aβ), and intracellular neurofibrillary tangles consisting of protein tau. However, how these pathologies relate to the massive neuronal death that occurs in AD brains remain elusive. Neprilysin is the major Aβ-degrading enzyme and a lack thereof increases Aβ levels in the brain twofold. To identify altered protein expression levels induced by increased Aβ levels, we performed a proteomic analysis of the brain of the AD mouse model APPsw and compared it to that of APPsw mice lacking neprilysin. To this end we established an LC-MS/MS method to analyze brain homogenate, using an (18) O-labeled internal standard to accurately quantify the protein levels. To distinguish between alterations in protein levels caused by increased Aβ levels and those induced by neprilysin deficiency independently of Aβ, the brain proteome of neprilysin deficient APPsw mice was also compared to that of neprilysin deficient mice. By this approach we identified approximately 600 proteins and the levels of 300 of these were quantified. Pathway analysis showed that many of the proteins with altered expression were involved in neurological disorders, and that tau, presenilin and APP were key regulators in the identified networks. The data have been deposited to the ProteomeXchange Consortium with identifiers PXD000968 and PXD001786 (http://proteomecentral.proteomexchange.org/dataset/PXD000968 and (http://proteomecentral.proteomexchange.org/dataset/PXD001786). Interestingly, the levels of several proteins, including some not previously reported to be linked to AD, were associated with increased Aβ levels.
Collapse
Affiliation(s)
- Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan.,Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Huddinge, Sweden
| | - Krishnapriya Loganathan
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan.,Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Huddinge, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Bengt Winblad
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Huddinge, Sweden
| | - Nobuhisa Iwata
- Dept of Biotechnology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Lars O Tjernberg
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Huddinge, Sweden
| |
Collapse
|
39
|
Ben Haim L, Carrillo-de Sauvage MA, Ceyzériat K, Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 2015; 9:278. [PMID: 26283915 PMCID: PMC4522610 DOI: 10.3389/fncel.2015.00278] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Astrocytes play crucial roles in the brain and are involved in the neuroinflammatory response. They become reactive in response to virtually all pathological situations in the brain such as axotomy, ischemia, infection, and neurodegenerative diseases (ND). Astrocyte reactivity was originally characterized by morphological changes (hypertrophy, remodeling of processes) and the overexpression of the intermediate filament glial fibrillary acidic protein (GFAP). However, it is unclear how the normal supportive functions of astrocytes are altered by their reactive state. In ND, in which neuronal dysfunction and astrocyte reactivity take place over several years or decades, the issue is even more complex and highly debated, with several conflicting reports published recently. In this review, we discuss studies addressing the contribution of reactive astrocytes to ND. We describe the molecular triggers leading to astrocyte reactivity during ND, examine how some key astrocyte functions may be enhanced or altered during the disease process, and discuss how astrocyte reactivity may globally affect ND progression. Finally we will consider the anticipated developments in this important field. With this review, we aim to show that the detailed study of reactive astrocytes may open new perspectives for ND.
Collapse
Affiliation(s)
- Lucile Ben Haim
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Kelly Ceyzériat
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| |
Collapse
|
40
|
Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 2015; 14:543-60. [PMID: 26111766 DOI: 10.1038/nrd4626] [Citation(s) in RCA: 525] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carrier (SLC) transporters - a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes - have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets.
Collapse
Affiliation(s)
- Lawrence Lin
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London Health Science Centre, London, Ontario N6A 5A5, Canada
| | - Kathleen M Giacomini
- 1] Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA. [2] Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
41
|
Zumkehr J, Rodriguez-Ortiz CJ, Cheng D, Kieu Z, Wai T, Hawkins C, Kilian J, Lim SL, Medeiros R, Kitazawa M. Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease. Neurobiol Aging 2015; 36:2260-2271. [PMID: 25964214 DOI: 10.1016/j.neurobiolaging.2015.04.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 01/06/2023]
Abstract
Glial glutamate transporter, GLT-1, is the major Na(+)-driven glutamate transporter to control glutamate levels in synapses and prevent glutamate-induced excitotoxicity implicated in neurodegenerative disorders including Alzheimer's disease (AD). Significant functional loss of GLT-1 has been reported to correlate well with synaptic degeneration and severity of cognitive impairment among AD patients, yet the underlying molecular mechanism and its pathological consequence in AD are not well understood. Here, we find the temporal decrease in GLT-1 levels in the hippocampus of the 3xTg-AD mouse model and that the pharmacological upregulation of GLT-1 significantly ameliorates the age-dependent pathological tau accumulation, restores synaptic proteins, and rescues cognitive decline with minimal effects on Aβ pathology. In primary neuron and astrocyte coculture, naturally secreted Aβ species significantly downregulate GLT-1 steady-state and expression levels. Taken together, our data strongly suggest that GLT-1 restoration is neuroprotective and Aβ-induced astrocyte dysfunction represented by a functional loss of GLT-1 may serve as one of the major pathological links between Aβ and tau pathology.
Collapse
Affiliation(s)
- Joannee Zumkehr
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Carlos J Rodriguez-Ortiz
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - David Cheng
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Zanett Kieu
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Thin Wai
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Charlesice Hawkins
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Jason Kilian
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Siok Lam Lim
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Rodrigo Medeiros
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Masashi Kitazawa
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| |
Collapse
|
42
|
Rudy CC, Hunsberger HC, Weitzner DS, Reed MN. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer's disease. Aging Dis 2015; 6:131-48. [PMID: 25821641 PMCID: PMC4365957 DOI: 10.14336/ad.2014.0423] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/23/2014] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in individuals over 65 years of age and is characterized by accumulation of beta-amyloid (Aβ) and tau. Both Aβ and tau alter synaptic plasticity, leading to synapse loss, neural network dysfunction, and eventually neuron loss. However, the exact mechanism by which these proteins cause neurodegeneration is still not clear. A growing body of evidence suggests perturbations in the glutamatergic tripartite synapse, comprised of a presynaptic terminal, a postsynaptic spine, and an astrocytic process, may underlie the pathogenic mechanisms of AD. Glutamate is the primary excitatory neurotransmitter in the brain and plays an important role in learning and memory, but alterations in glutamatergic signaling can lead to excitotoxicity. This review discusses the ways in which both beta-amyloid (Aβ) and tau act alone and in concert to perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of N-methyl-D-aspartate (NMDA) as a possible convergence point for Aβ and tau toxicity.
Collapse
Affiliation(s)
- Carolyn C. Rudy
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Holly C. Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Daniel S. Weitzner
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Miranda N. Reed
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
- Center for Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
43
|
Ren RJ, Dammer EB, Wang G, Seyfried NT, Levey AI. Proteomics of protein post-translational modifications implicated in neurodegeneration. Transl Neurodegener 2014; 3:23. [PMID: 25671099 PMCID: PMC4323146 DOI: 10.1186/2047-9158-3-23] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022] Open
Abstract
Mass spectrometry (MS)-based proteomics has developed into a battery of approaches that is exceedingly adept at identifying with high mass accuracy and precision any of the following: oxidative damage to proteins (redox proteomics), phosphorylation (phosphoproteomics), ubiquitination (diglycine remnant proteomics), protein fragmentation (degradomics), and other posttranslational modifications (PTMs). Many studies have linked these PTMs to pathogenic mechanisms of neurodegeneration. To date, identifying PTMs on specific pathology-associated proteins has proven to be a valuable step in the evaluation of functional alteration of proteins and also elucidates biochemical and structural explanations for possible pathophysiological mechanisms of neurodegenerative diseases. This review provides an overview of methods applicable to the identification and quantification of PTMs on proteins and enumerates historic, recent, and potential future research endeavours in the field of proteomics furthering the understanding of PTM roles in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Ru-Jing Ren
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Eric B Dammer
- />Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Gang Wang
- />Department of Pharmacology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Nicholas T Seyfried
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
- />Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
- />Emory Proteomics Service Center, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Allan I Levey
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
44
|
GLT-1 transporter: an effective pharmacological target for various neurological disorders. Pharmacol Biochem Behav 2014; 127:70-81. [PMID: 25312503 DOI: 10.1016/j.pbb.2014.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/01/2014] [Accepted: 10/03/2014] [Indexed: 11/23/2022]
Abstract
L-Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS) and is directly and indirectly involved in a variety of brain functions. Glutamate is released in the synaptic cleft at a particular concentration that further activates the various glutaminergic receptors. This concentration of glutamate in the synapse is maintained by either glutamine synthetase or excitatory amino acid proteins which reuptake the excessive glutamate from the synapse and named as excitatory amino acid transporters (EAATs). Out of all the subtypes GLT-1 (glutamate transporter 1) is abundantly distributed in the CNS. Down-regulation of GLT-1 is reported in various neurological diseases such as, epilepsy, stroke, Alzheimer's disease and movement disorders. Therefore, positive modulators of GLT-1 which up-regulate the GLT-1 expression can serve as a potential target for the treatment of neurological disorders. GLT-1 translational activators such as ceftriaxone are found to have significant protective effects in ALS and epilepsy animal models, suggesting that this translational activation approach works well in rodents and that these compounds are worth further pursuit for various neurological disorders. This drug is currently in human clinical trials for ALS. In addition, a thorough understanding of the mechanisms underlying translational regulation of GLT-1, such as identifying the molecular targets of the compounds, signaling pathways involved in the regulation, and translational activation processes, is very important for this novel drug-development effort. This review mainly emphasizes the role of glutamate and its transporter, GLT-1 subtype in excitotoxicity. Further, recent reports on GLT-1 transporters for the treatment of various neurological diseases, including a summary of the presumed physiologic mechanisms behind the pharmacology of these disorders are also explained.
Collapse
|
45
|
Adav SS, Qian J, Ang YL, Kalaria RN, Lai MKP, Chen CP, Sze SK. iTRAQ quantitative clinical proteomics revealed role of Na(+)K(+)-ATPase and its correlation with deamidation in vascular dementia. J Proteome Res 2014; 13:4635-46. [PMID: 25152327 DOI: 10.1021/pr500754j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dementia is a major public health burden characterized by impaired cognition and loss of function. There are limited treatment options due to inadequate understanding of its pathophysiology and underlying causative mechanisms. Discovery-driven iTRAQ-based quantitative proteomics techniques were applied on frozen brain samples to profile the proteome from vascular dementia (VaD) and age-matched nondementia controls to elucidate the perturbed pathways contributing to pathophysiology of VaD. The iTRAQ quantitative data revealed significant up-regulation of protein-l-isoaspartate O-methyltransferase and sodium-potassium transporting ATPase, while post-translational modification analysis suggested deamidation of catalytic and regulatory subunits of sodium-potassium transporting ATPase. Spontaneous protein deamidation of labile asparagines, generating abnormal l-isoaspartyl residues, is associated with cell aging and dementia due to Alzheimer's disease and may be a cause of neurodegeneration. As ion channel proteins play important roles in cellular signaling processes, alterations in their function by deamidation may lead to perturbations in membrane excitability and neuronal function. Structural modeling of sodium-potassium transporting ATPase revealed the close proximity of these deamidated residues to the catalytic site during E2P confirmation. The deamidated residues may disrupt electrostatic interaction during E1 phosphorylation, which may affect ion transport and signal transduction. Our findings suggest impaired regulation and compromised activity of ion channel proteins contribute to the pathophysiology of VaD.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | | | | | |
Collapse
|
46
|
Schmouth JF, Dion PA, Rouleau GA. Genetics of essential tremor: From phenotype to genes, insights from both human and mouse studies. Prog Neurobiol 2014; 119-120:1-19. [DOI: 10.1016/j.pneurobio.2014.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/16/2014] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
|
47
|
Amyloid-β1-42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J Neurosci 2013; 33:5312-8. [PMID: 23516295 DOI: 10.1523/jneurosci.5274-12.2013] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
GLT-1, the major glutamate transporter in the adult brain, is abundantly expressed in astrocytic processes enveloping synapses. By limiting glutamate escape into the surrounding neuropil, GLT-1 preserves the spatial specificity of synaptic signaling. Here we show that the amyloid-β peptide Aβ1-42 markedly prolongs the extracellular lifetime of synaptically released glutamate by reducing GLT-1 surface expression in mouse astrocytes and that this effect is prevented by the vitamin E derivative Trolox. These findings indicate that astrocytic glutamate transporter dysfunction may play an important role in the pathogenesis of Alzheimer's disease and suggest possible mechanisms by which several current treatment strategies could protect against the disease.
Collapse
|
48
|
Brothers HM, Bardou I, Hopp SC, Kaercher RM, Corona AW, Fenn AM, Godbout JP, Wenk GL. Riluzole partially rescues age-associated, but not LPS-induced, loss of glutamate transporters and spatial memory. J Neuroimmune Pharmacol 2013; 8:1098-105. [PMID: 23709339 DOI: 10.1007/s11481-013-9476-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/15/2013] [Indexed: 01/22/2023]
Abstract
Impaired memory may result from synaptic glutamatergic dysregulation related to chronic neuroinflammation. GLT1 is the primary excitatory amino acid transporter responsible for regulating extracellular glutamate levels in the hippocampus. We tested the hypothesis that if impaired spatial memory results from increased extracellular glutamate due to age or experimentally induced chronic neuroinflammation in the hippocampus, then pharmacological augmentation of the glutamate transporter GLT1 will attenuate deficits in a hippocampal-dependent spatial memory task. The profile of inflammation-related genes and proteins associated with normal aging, or chronic neuroinflammation experimentally-induced via a four-week LPS infusion into the IV(th) ventricle, were correlated with performance in the Morris water maze following treatment with Riluzole, a drug that can enhance glutamate clearance by increasing GLT1 expression. Age-associated inflammation was qualitatively different from LPS-induced neuro-inflammation in young rats. LPS produced a pro-inflammatory phenotype characterized by increased IL-1ß expression in the hippocampus, whereas aging was not associated with a strong central pro-inflammatory response but with a mixed peripheral immune phenotype. Riluzole attenuated the spatial memory impairment, the elevation of serum cytokines and the decrease in GLT1 gene expression in Aged rats, but had no effect on young rats infused with LPS. Our findings highlight the therapeutic potential of reducing glutamatergic function upon memory impairment in neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Holly M Brothers
- Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, OH, 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Searcy JL, Phelps JT, Pancani T, Kadish I, Popovic J, Anderson KL, Beckett TL, Murphy MP, Chen KC, Blalock EM, Landfield PW, Porter NM, Thibault O. Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer's disease. J Alzheimers Dis 2013; 30:943-61. [PMID: 22495349 DOI: 10.3233/jad-2012-111661] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thiazolidinediones (TZDs) are agonists at peroxisome proliferator-activated gamma-type (PPAR-γ) receptors and are used clinically for the treatment of type 2 diabetes where they have been shown to reestablish insulin sensitivity, improve lipid profiles, and reduce inflammation. Recent work also suggests that TZDs may be beneficial in Alzheimer's disease (AD), ameliorating cognitive decline early in the disease process. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. Starting at 10 months of age, the triple transgenic mouse model of AD (3xTg-AD) with accelerated amyloid-β (Aβ) deposition and tau pathology was treated with the TZD pioglitazone (PIO-Actos) at 18 mg/Kg body weight/day. After four months, PIO-treated animals showed multiple beneficial effects, including improved learning on the active avoidance task, reduced serum cholesterol, decreased hippocampal amyloid-β and tau deposits, and enhanced short- and long-term plasticity. Electrophysiological membrane properties and post-treatment blood glucose levels were unchanged by PIO. Gene microarray analyses of hippocampal tissue identified predicted transcriptional responses following TZD treatment as well as potentially novel targets of TZDs, including facilitation of estrogenic processes and decreases in glutamatergic and lipid metabolic/cholesterol dependent processes. Taken together, these results confirm prior animal studies showing that TZDs can ameliorate cognitive deficits associated with AD-related pathology, but also extend these findings by pointing to novel molecular targets in the brain.
Collapse
Affiliation(s)
- James L Searcy
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, KY 40536-0084, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhao W, Marchani EE, Cheung CYK, Steinbart EJ, Schellenberg GD, Bird TD, Wijsman EM. Genome scan in familial late-onset Alzheimer's disease: a locus on chromosome 6 contributes to age-at-onset. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:201-12. [PMID: 23355194 PMCID: PMC3654841 DOI: 10.1002/ajmg.b.32133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 12/26/2012] [Indexed: 01/31/2023]
Abstract
Alzheimer's disease (AD) is a common, genetically complex, fatal neurodegenerative disorder of late life. Although several genes are known to play a role in early-onset AD, identification of the genetic basis of late onset AD (LOAD) has been challenging, with only the APOE gene known to have a high contribution to both AD risk and age-at-onset. Here, we present the first genome-scan analysis of the complete, well-characterized University of Washington LOAD sample of 119 pedigrees, using age-at-onset as the trait of interest. The analysis approach used allows for a multilocus trait model while at the same time accommodating age censoring, effects of APOE as a known genetic covariate, and full pedigree and marker information. The results provide strong evidence for linkage of loci contributing to age-at-onset to genomic regions on chromosome 6q16.3, and to 19q13.42 in the region of the APOE locus. There was evidence for interaction between APOE and the locus on chromosome 6q and suggestive evidence for linkage to chromosomes 11p13, 15q12-14, and 19p13.12. These results provide the first independent confirmation of an AD age-at-onset locus on chromosome 6 and suggest that further efforts towards identifying the underlying causal locus or loci are warranted.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Elizabeth E. Marchani
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | | | - Ellen J. Steinbart
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, WA,Department of Neurology, University of Washington, Seattle, WA
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia PA
| | - Thomas D. Bird
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, WA,Department of Neurology, University of Washington, Seattle, WA
| | - Ellen M. Wijsman
- Department of Biostatistics, University of Washington, Seattle, WA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA,Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|