1
|
Nikolić L, Ferracin C, Legname G. Recent advances in cellular models for discovering prion disease therapeutics. Expert Opin Drug Discov 2022; 17:985-996. [PMID: 35983689 DOI: 10.1080/17460441.2022.2113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Prion diseases are a group of rare and lethal rapidly progressive neurodegenerative diseases arising due to conversion of the physiological cellular prion protein into its pathological counterparts, denoted as "prions". These agents are resistant to inactivation by standard decontamination procedures and can be transmitted between individuals, consequently driving the irreversible brain damage typical of the diseases. AREAS COVERED Since its infancy, prion research has mainly depended on animal models for untangling the pathogenesis of the disease as well as for the drug development studies. With the advent of prion-infected cell lines, relevant animal models have been complemented by a variety of cell-based models presenting a much faster, ethically acceptable alternative. EXPERT OPINION To date, there are still either no effective prophylactic regimens or therapies for human prion diseases. Therefore, there is an urgent need for more relevant cellular models that best approximate in vivo models. Each cellular model presented and discussed in detail in this review has its own benefits and limitations. Once embarking in a drug screening campaign for the identification of molecules that could interfere with prion conversion and replication, one should carefully consider the ideal cellular model.
Collapse
Affiliation(s)
- Lea Nikolić
- PhD Student in Functional and Structural Genomics, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy,
| | - Chiara Ferracin
- PhD Student in Functional and Structural Genomics, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- D.Phil., Full Professor of Biochemistry, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
2
|
Arshad H, Watts JC. Genetically engineered cellular models of prion propagation. Cell Tissue Res 2022; 392:63-80. [PMID: 35581386 DOI: 10.1007/s00441-022-03630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
For over three decades, cultured cells have been a useful tool for dissecting the molecular details of prion replication and the identification of candidate therapeutics for prion disease. A major issue limiting the translatability of these studies has been the inability to reliably propagate disease-relevant, non-mouse strains of prions in cells relevant to prion pathogenesis. In recent years, fueled by advances in gene editing technology, it has become possible to propagate prions from hamsters, cervids, and sheep in immortalized cell lines originating from the central nervous system. In particular, the use of CRISPR-Cas9-mediated gene editing to generate versions of prion-permissive cell lines that lack endogenous PrP expression has provided a blank canvas upon which re-expression of PrP leads to species-matched susceptibility to prion infection. When coupled with the ability to propagate prions in cells or organoids derived from stem cells, these next-generation cellular models should provide an ideal paradigm for identifying small molecules and other biological therapeutics capable of interfering with prion replication in animal and human prion disorders. In this review, we summarize recent advances that have widened the spectrum of prion strains that can be propagated in cultured cells and cutting-edge tissue-based models.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada. .,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Pineau H, Sim VL. From Cell Culture to Organoids-Model Systems for Investigating Prion Strain Characteristics. Biomolecules 2021; 11:biom11010106. [PMID: 33466947 PMCID: PMC7830147 DOI: 10.3390/biom11010106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are the hallmark protein folding neurodegenerative disease. Their transmissible nature has allowed for the development of many different cellular models of disease where prion propagation and sometimes pathology can be induced. This review examines the range of simple cell cultures to more complex neurospheres, organoid, and organotypic slice cultures that have been used to study prion disease pathogenesis and to test therapeutics. We highlight the advantages and disadvantages of each system, giving special consideration to the importance of strains when choosing a model and when interpreting results, as not all systems propagate all strains, and in some cases, the technique used, or treatment applied, can alter the very strain properties being studied.
Collapse
Affiliation(s)
- Hailey Pineau
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Valerie L. Sim
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| |
Collapse
|
4
|
Krance SH, Luke R, Shenouda M, Israwi AR, Colpitts SJ, Darwish L, Strauss M, Watts JC. Cellular models for discovering prion disease therapeutics: Progress and challenges. J Neurochem 2020; 153:150-172. [PMID: 31943194 DOI: 10.1111/jnc.14956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Prions, which cause fatal neurodegenerative disorders such as Creutzfeldt-Jakob disease, are misfolded and infectious protein aggregates. Currently, there are no treatments available to halt or even delay the progression of prion disease in the brain. The infectious nature of prions has resulted in animal paradigms that accurately recapitulate all aspects of prion disease, and these have proven to be instrumental for testing the efficacy of candidate therapeutics. Nonetheless, infection of cultured cells with prions provides a much more powerful system for identifying molecules capable of interfering with prion propagation. Certain lines of cultured cells can be chronically infected with various types of mouse prions, and these models have been used to unearth candidate anti-prion drugs that are at least partially efficacious when administered to prion-infected rodents. However, these studies have also revealed that not all types of prions are equal, and that drugs active against mouse prions are not necessarily effective against prions from other species. Despite some recent progress, the number of cellular models available for studying non-mouse prions remains limited. In particular, human prions have proven to be particularly challenging to propagate in cultured cells, which has severely hindered the discovery of drugs for Creutzfeldt-Jakob disease. In this review, we summarize the cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions and highlight challenges that remain on the path towards developing therapies for prion disease.
Collapse
Affiliation(s)
- Saffire H Krance
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Russell Luke
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Marc Shenouda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah J Colpitts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina Darwish
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maximilian Strauss
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Ellett LJ, Revill ZT, Koo YQ, Lawson VA. Strain variation in treatment and prevention of human prion diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:121-145. [PMID: 32958230 DOI: 10.1016/bs.pmbts.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases describe a number of different human disorders that differ in their clinical phenotypes, which are nonetheless united by their transmissible nature and common pathology. Clinical variation in the absence of a conventional infectious agent is believed to be encoded by different conformations of the misfolded prion protein. This misfolded protein is the target of methods designed to prevent disease transmission in a surgical setting and reduction of the misfolded seed or preventing its continued propagation have been the focus of therapeutic strategies. It is therefore possible that strain variation may influence the efficacy of prevention and treatment approaches. Historically, an understanding of prion disease transmission and pathogenesis has been focused on research tools developed using agriculturally relevant strains of prion disease. However, an increased understanding of the molecular biology of human prion disorders has highlighted differences not only between different forms of the disease affecting humans and animals but also within diseases such as Creutzfeldt-Jakob Disease (CJD), which is represented by several sporadic CJD specific conformations and an additional conformation associated with variant CJD. In this chapter we will discuss whether prion strain variation can affect the efficacy of methods used to decontaminate prions and whether strain variation in pre-clinical models of prion disease can be used to identify therapeutic strategies that have the best possible chance of success in the clinic.
Collapse
Affiliation(s)
- Laura J Ellett
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Zoe T Revill
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Yong Qian Koo
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Victoria A Lawson
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Lei J, Calvo P, Vigh R, Burd I. Journey to the Center of the Fetal Brain: Environmental Exposures and Autophagy. Front Cell Neurosci 2018; 12:118. [PMID: 29773977 PMCID: PMC5943497 DOI: 10.3389/fncel.2018.00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/13/2018] [Indexed: 01/28/2023] Open
Abstract
Fetal brain development is known to be affected by adverse environmental exposures during pregnancy, including infection, inflammation, hypoxia, alcohol, starvation, and toxins. These exposures are thought to alter autophagy activity in the fetal brain, leading to adverse perinatal outcomes, such as cognitive and sensorimotor deficits. This review introduces the physiologic autophagy pathways in the fetal brain. Next, methods to detect and monitor fetal brain autophagy activity are outlined. An additional discussion explores possible mechanisms by which environmental exposures during pregnancy alter fetal brain autophagy activity. In the final section, a correlation of fetal autophagy activity with the observed postnatal phenotype is attempted. Our main purpose is to provide the current understanding or a lack thereof mechanisms on autophagy, underlying the fetal brain injury exposed to environmental insults.
Collapse
Affiliation(s)
- Jun Lei
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pilar Calvo
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard Vigh
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
DeArmond SJ. Autobiography Series: From Sleep-Wake Mechanisms to Prion Diseases. J Neuropathol Exp Neurol 2017; 76:631-642. [PMID: 28863454 DOI: 10.1093/jnen/nlx045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Majumder P, Chakrabarti O. Lysosomal Quality Control in Prion Diseases. Mol Neurobiol 2017; 55:2631-2644. [PMID: 28421536 DOI: 10.1007/s12035-017-0512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/04/2017] [Indexed: 11/28/2022]
Abstract
Prion diseases are transmissible, familial or sporadic. The prion protein (PrP), a normal cell surface glycoprotein, is ubiquitously expressed throughout the body. While loss of function of PrP does not elicit apparent phenotypes, generation of misfolded forms of the protein or its aberrant metabolic isoforms has been implicated in a number of neurodegenerative disorders such as scrapie, kuru, Creutzfeldt-Jakob disease, fatal familial insomnia, Gerstmann-Sträussler-Scheinker and bovine spongiform encephalopathy. These diseases are all phenotypically characterised by spongiform vacuolation of the adult brain, hence collectively termed as late-onset spongiform neurodegeneration. Misfolded form of PrP (PrPSc) and one of its abnormal metabolic isoforms (the transmembrane CtmPrP) are known to be disease-causing agents that lead to progressive loss of structure or function of neurons culminating in neuronal death. The aberrant forms of PrP utilise and manipulate the various intracellular quality control mechanisms during pathogenesis of these diseases. Amongst these, the lysosomal quality control machinery emerges as one of the primary targets exploited by the disease-causing isoforms of PrP. The autophagosomal-lysosomal degradation pathway is adversely affected in multiple ways in prion diseases and may hence be regarded as an important modulator of neurodegeneration. Some of the ESCRT pathway proteins have also been shown to be involved in the manifestation of disease phenotype. This review discusses the significance of the lysosomal quality control pathway in affecting transmissible and familial types of prion diseases.
Collapse
Affiliation(s)
- Priyanka Majumder
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal, 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal, 700064, India.
| |
Collapse
|
9
|
Ahn M, Kalume F, Pitstick R, Oehler A, Carlson G, DeArmond SJ. Brain Aggregates: An Effective In Vitro Cell Culture System Modeling Neurodegenerative Diseases. J Neuropathol Exp Neurol 2016; 75:256-62. [PMID: 26851378 DOI: 10.1093/jnen/nlv025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Drug discovery for neurodegenerative diseases is particularly challenging because of the discrepancies in drug effects between in vitro and in vivo studies. These discrepancies occur in part because current cell culture systems used for drug screening have many limitations. First, few cell culture systems accurately model human aging or neurodegenerative diseases. Second, drug efficacy may differ between dividing and stationary cells, the latter resembling nondividing neurons in the CNS. Brain aggregates (BrnAggs) derived from embryonic day 15 gestation mouse embryos may represent neuropathogenic processes in prion disease and reflect in vivo drug efficacy. Here, we report a new method for the production of BrnAggs suitable for drug screening and suggest that BrnAggs can model additional neurological diseases such as tauopathies. We also report a functional assay with BrnAggs by measuring electrophysiological activities. Our data suggest that BrnAggs could serve as an effective in vitro cell culture system for drug discovery for neurodegenerative diseases.
Collapse
Affiliation(s)
- Misol Ahn
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC).
| | - Franck Kalume
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC)
| | - Rose Pitstick
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC)
| | - Abby Oehler
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC)
| | - George Carlson
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC)
| | - Stephen J DeArmond
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC)
| |
Collapse
|
10
|
Tousseyn T, Bajsarowicz K, Sánchez H, Gheyara A, Oehler A, Geschwind M, DeArmond B, DeArmond SJ. Prion Disease Induces Alzheimer Disease-Like Neuropathologic Changes. J Neuropathol Exp Neurol 2015; 74:873-88. [PMID: 26226132 PMCID: PMC5094352 DOI: 10.1097/nen.0000000000000228] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We examined the brains of 266 patients with prion disease (PrionD) and found that 46 patients (17%) had Alzheimer disease (AD)-like changes. To explore potential mechanistic links between PrionD and AD, we exposed human brain aggregates (BrnAggs) to a brain homogenate from a patient with sporadic Creutzfeldt-Jakob disease and found that neurons in human BrnAggs produced many β-amyloid (Aβ; Aβ42) inclusions, whereas uninfected control-exposed human BrnAggs did not. Western blot analysis of 20 pooled Creutzfeldt-Jakob disease-infected BrnAggs verified Aβ42 levels higher than those in controls. We next examined the CA1 region of the hippocampus from 14 patients with PrionD and found that 5 patients had low levels of scrapie-associated prion protein (PrP), many Aβ42 intraneuronal inclusions, low apolipoprotein E-4 (APOE-4), and no significant nerve cell loss. Seven patients had high levels of PrP, low Aβ42, high APOE-4, and 40% nerve cell loss, suggesting that APOE-4 and PrP together cause neuron loss in PrionD. There were also increased levels of hyperphosphorylated tau protein (Hτ) and Hτ-positive neuropil threads and neuron bodies in both PrionD and AD groups. The brains of 6 age-matched control patients without dementia did not contain Aβ42 deposits; however, there were rare Hτ-positive threads in 5 controls, and 2 controls had few Hτ-positive nerve cell bodies. We conclude that PrionD may trigger biochemical changes similar to those triggered by AD and suggest that PrionD is a disease involving PrP, Aβ42, APOE-4, and abnormal tau.
Collapse
Affiliation(s)
- Thomas Tousseyn
- From the Department of Pathology (Neuropathology) (TT, KB, HS, AG, AO, BD, SJD), Department of Neurology (MG), Memory and Aging Center (MG), and Institute for Neurodegenerative Diseases (SJD), University of California San Francisco, San Francisco, California
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu TS, Cai YT, Mao ZF, Huang J, Fan T, Geng Q. Dynamic imaging of autophagy-lysosomal pathway and autophagy function following pulmonary hypoxia/reoxygenation in vitro. ACTA ACUST UNITED AC 2015; 35:302-308. [PMID: 25877369 DOI: 10.1007/s11596-015-1428-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 03/04/2015] [Indexed: 01/02/2023]
Abstract
Alterations of the autophagy-lysosomal pathway (ALP) and autophagy have been involved in lung ischemia-reperfusion (I/R) injury. However, dynamic imaging of ALP function under lung I/R injury particularly is not fully understood. Here we depicted the live-cell fluorescence imaging of autophagosome to monitor ALP activation and autophagy function. The pAsRed2-N1-LC3 vectors were transfected into CRL-2192 NR8383 (an alveolar macrophage cell line) and CCL149 (an alveolar epithelial cell line) successfully. 0-h, 2-h, 4-h, and 6-h hypoxia/0-h, 2-h, 4-h, and 6-h reoxygenation were then induced with an ALP inhibitor (3-MA) or activator (rapamycin) in the culture of transfected cells separately. ALP activation was conformed by up-regulating AMPK and beclin1 expression. Apoptosis was not obvious in 2-h hypoxia/2-h reoxygenation. pAsRed2-N1-LC3 CCL149 and pAsRed2-N1-LC3 NR8383 cells revealed gradually enhanced AsRed2 from 2-h to 6-h hypoxia/reoxygenation. AsRed2 varied sensitively to 3-MA and rapamycin interventions during 2-h hypoxia/reoxygenation. Our data provides a simple method of autophagosome imaging to monitor ALP activation and autophagy function in lung I/R injury.
Collapse
Affiliation(s)
- Tian-Shu Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Ting Cai
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Fu Mao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Huang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tao Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Caverzasi E, Mandelli ML, DeArmond SJ, Hess CP, Vitali P, Papinutto N, Oehler A, Miller BL, Lobach IV, Bastianello S, Geschwind MD, Henry RG. White matter involvement in sporadic Creutzfeldt-Jakob disease. ACTA ACUST UNITED AC 2014; 137:3339-54. [PMID: 25367029 PMCID: PMC4240303 DOI: 10.1093/brain/awu298] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sporadic Creutzfeldt-Jakob disease is considered primarily a disease of grey matter, although the extent of white matter involvement has not been well described. We used diffusion tensor imaging to study the white matter in sporadic Creutzfeldt-Jakob disease compared to healthy control subjects and to correlated magnetic resonance imaging findings with histopathology. Twenty-six patients with sporadic Creutzfeldt-Jakob disease and nine age- and gender-matched healthy control subjects underwent volumetric T1-weighted and diffusion tensor imaging. Six patients had post-mortem brain analysis available for assessment of neuropathological findings associated with prion disease. Parcellation of the subcortical white matter was performed on 3D T1-weighted volumes using Freesurfer. Diffusion tensor imaging maps were calculated and transformed to the 3D-T1 space; the average value for each diffusion metric was calculated in the total white matter and in regional volumes of interest. Tract-based spatial statistics analysis was also performed to investigate the deeper white matter tracts. There was a significant reduction of mean (P = 0.002), axial (P = 0.0003) and radial (P = 0.0134) diffusivities in the total white matter in sporadic Creutzfeldt-Jakob disease. Mean diffusivity was significantly lower in most white matter volumes of interest (P < 0.05, corrected for multiple comparisons), with a generally symmetric pattern of involvement in sporadic Creutzfeldt-Jakob disease. Mean diffusivity reduction reflected concomitant decrease of both axial and radial diffusivity, without appreciable changes in white matter anisotropy. Tract-based spatial statistics analysis showed significant reductions of mean diffusivity within the white matter of patients with sporadic Creutzfeldt-Jakob disease, mainly in the left hemisphere, with a strong trend (P = 0.06) towards reduced mean diffusivity in most of the white matter bilaterally. In contrast, by visual assessment there was no white matter abnormality either on T2-weighted or diffusion-weighted images. Widespread reduction in white matter mean diffusivity, however, was apparent visibly on the quantitative attenuation coefficient maps compared to healthy control subjects. Neuropathological analysis showed diffuse astrocytic gliosis and activated microglia in the white matter, rare prion deposition and subtle subcortical microvacuolization, and patchy foci of demyelination with no evident white matter axonal degeneration. Decreased mean diffusivity on attenuation coefficient maps might be associated with astrocytic gliosis. We show for the first time significant global reduced mean diffusivity within the white matter in sporadic Creutzfeldt-Jakob disease, suggesting possible primary involvement of the white matter, rather than changes secondary to neuronal degeneration/loss. Sporadic Creutzfeldt-Jakob disease (sCJD) is considered primarily a disease of grey matter. However, Caverzasi et al. now show a global decrease in mean diffusivity in white matter. The changes appear to be associated with reactive astrocytic gliosis and activated microglia, and suggest primary involvement of the white matter in sCJD.
Collapse
Affiliation(s)
- Eduardo Caverzasi
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA 2 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Maria Luisa Mandelli
- 2 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen J DeArmond
- 3 Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA 4 Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94143, USA
| | - Christopher P Hess
- 5 Neuroradiology Division, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Paolo Vitali
- 6 Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia 27100, Italy
| | - Nico Papinutto
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Abby Oehler
- 3 Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA 4 Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94143, USA
| | - Bruce L Miller
- 2 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Irina V Lobach
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stefano Bastianello
- 7 Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - Michael D Geschwind
- 2 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Roland G Henry
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA 8 Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA 94143, USA 9 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Ahn M, Bajsarowicz K, Oehler A, Lemus A, Bankiewicz K, DeArmond SJ. Convection-enhanced delivery of AAV2-PrPshRNA in prion-infected mice. PLoS One 2014; 9:e98496. [PMID: 24866748 PMCID: PMC4035323 DOI: 10.1371/journal.pone.0098496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/02/2014] [Indexed: 12/22/2022] Open
Abstract
Prion disease is caused by a single pathogenic protein (PrPSc), an abnormal conformer of the normal cellular prion protein PrPC. Depletion of PrPC in prion knockout mice makes them resistant to prion disease. Thus, gene silencing of the Prnp gene is a promising effective therapeutic approach. Here, we examined adeno-associated virus vector type 2 encoding a short hairpin RNA targeting Prnp mRNA (AAV2-PrP-shRNA) to suppress PrPC expression both in vitro and in vivo. AAV2-PrP-shRNA treatment suppressed PrP levels and prevented dendritic degeneration in RML-infected brain aggregate cultures. Infusion of AAV2-PrP-shRNA-eGFP into the thalamus of CD-1 mice showed that eGFP was transported to the cerebral cortex via anterograde transport and the overall PrPC levels were reduced by ∼70% within 4 weeks. For therapeutic purposes, we treated RML-infected CD-1 mice with AAV2-PrP-shRNA beginning at 50 days post inoculation. Although AAV2-PrP-shRNA focally suppressed PrPSc formation in the thalamic infusion site by ∼75%, it did not suppress PrPSc formation efficiently in other regions of the brain. Survival of mice was not extended compared to the untreated controls. Global suppression of PrPC in the brain is required for successful therapy of prion diseases.
Collapse
Affiliation(s)
- Misol Ahn
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- Department of Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Krystyna Bajsarowicz
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Abby Oehler
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Azucena Lemus
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Krystof Bankiewicz
- Department of Neurosurgery and Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Stephen J. DeArmond
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- Department of Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Yang Y, Coleman M, Zhang L, Zheng X, Yue Z. Autophagy in axonal and dendritic degeneration. Trends Neurosci 2013; 36:418-28. [PMID: 23639383 DOI: 10.1016/j.tins.2013.04.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 12/19/2022]
Abstract
Degeneration of axons and dendrites is a common and early pathological feature of many neurodegenerative disorders, and is thought to be regulated by mechanisms distinct from those determining death of the cell body. The unique structures of axons and dendrites (collectively neurites) may cause them to be particularly vulnerable to the accumulation of protein aggregates and damaged organelles. Autophagy is a catabolic mechanism in which cells clear protein aggregates and damaged organelles. Basal autophagy occurs continuously as a housekeeping function, and can be acutely expanded in response to stress or injury. Emerging evidence shows that insufficient or excessive autophagy contributes to neuritic degeneration. Here, we review the recent progress that has begun to reveal the role of autophagy in neurite function and degeneration.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou 310036, PR China.
| | | | | | | | | |
Collapse
|
15
|
Silvius D, Pitstick R, Ahn M, Meishery D, Oehler A, Barsh GS, DeArmond SJ, Carlson GA, Gunn TM. Levels of the Mahogunin Ring Finger 1 E3 ubiquitin ligase do not influence prion disease. PLoS One 2013; 8:e55575. [PMID: 23383230 PMCID: PMC3559536 DOI: 10.1371/journal.pone.0055575] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/03/2013] [Indexed: 01/30/2023] Open
Abstract
Prion diseases are rare but invariably fatal neurodegenerative disorders. They are associated with spongiform encephalopathy, a histopathology characterized by the presence of large, membrane-bound vacuolar structures in the neuropil of the brain. While the primary cause is recognized as conversion of the normal form of prion protein (PrPC) to a conformationally distinct, pathogenic form (PrPSc), the cellular pathways and mechanisms that lead to spongiform change, neuronal dysfunction and death are not known. Mice lacking the Mahogunin Ring Finger 1 (MGRN1) E3 ubiquitin ligase develop spongiform encephalopathy by 9 months of age but do not become ill. In cell culture, PrP aberrantly present in the cytosol was reported to interact with and sequester MGRN1. This caused endo-lysosomal trafficking defects similar to those observed when Mgrn1 expression is knocked down, implicating disrupted MGRN1-dependent trafficking in the pathogenesis of prion disease. As these defects were rescued by over-expression of MGRN1, we investigated whether reduced or elevated Mgrn1 expression influences the onset, progression or pathology of disease in mice inoculated with PrPSc. No differences were observed, indicating that disruption of MGRN1-dependent pathways does not play a significant role in the pathogenesis of transmissible spongiform encephalopathy.
Collapse
Affiliation(s)
- Derek Silvius
- McLaughlin Research Institute, Great Falls, Montana, United States of America
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, Montana, United States of America
| | - Misol Ahn
- Institute for Neurodegenerative Diseases and Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Delisha Meishery
- McLaughlin Research Institute, Great Falls, Montana, United States of America
| | - Abby Oehler
- Institute for Neurodegenerative Diseases and Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Gregory S. Barsh
- Departments of Genetics and Pediatrics, Stanford University, Stanford, California, United States of America
| | - Stephen J. DeArmond
- Institute for Neurodegenerative Diseases and Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - George A. Carlson
- McLaughlin Research Institute, Great Falls, Montana, United States of America
| | - Teresa M. Gunn
- McLaughlin Research Institute, Great Falls, Montana, United States of America
- * E-mail:
| |
Collapse
|