1
|
Jacob SM, Lee S, Kim SH, Sharkey KA, Pfeffer G, Nguyen MD. Brain-body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis. Nat Rev Neurol 2024; 20:475-494. [PMID: 38965379 DOI: 10.1038/s41582-024-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of human motor neuron disease. It is characterized by the progressive degeneration of upper and lower motor neurons, leading to generalized motor weakness and, ultimately, respiratory paralysis and death within 3-5 years. The disease is shaped by genetics, age, sex and environmental stressors, but no cure or routine biomarkers exist for the disease. Male individuals have a higher propensity to develop ALS, and a different manifestation of the disease phenotype, than female individuals. However, the mechanisms underlying these sex differences remain a mystery. In this Review, we summarize the epidemiology of ALS, examine the sexually dimorphic presentation of the disease and highlight the genetic variants and molecular pathways that might contribute to sex differences in humans and animal models of ALS. We advance the idea that sexual dimorphism in ALS arises from the interactions between the CNS and peripheral organs, involving vascular, metabolic, endocrine, musculoskeletal and immune systems, which are strikingly different between male and female individuals. Finally, we review the response to treatments in ALS and discuss the potential to implement future personalized therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sarah M Jacob
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sukyoung Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University Hospital, Seoul, South Korea
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Pepe GJ, Albrecht ED. Microvascular Skeletal-Muscle Crosstalk in Health and Disease. Int J Mol Sci 2023; 24:10425. [PMID: 37445602 DOI: 10.3390/ijms241310425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
As an organ system, skeletal muscle is essential for the generation of energy that underpins muscle contraction, plays a critical role in controlling energy balance and insulin-dependent glucose homeostasis, as well as vascular well-being, and regenerates following injury. To achieve homeostasis, there is requirement for "cross-talk" between the myogenic and vascular components and their regulatory factors that comprise skeletal muscle. Accordingly, this review will describe the following: [a] the embryonic cell-signaling events important in establishing vascular and myogenic cell-lineage, the cross-talk between endothelial cells (EC) and myogenic precursors underpinning the development of muscle, its vasculature and the satellite-stem-cell (SC) pool, and the EC-SC cross-talk that maintains SC quiescence and localizes ECs to SCs and angio-myogenesis postnatally; [b] the vascular-myocyte cross-talk and the actions of insulin on vasodilation and capillary surface area important for the uptake of glucose/insulin by myofibers and vascular homeostasis, the microvascular-myocyte dysfunction that characterizes the development of insulin resistance, diabetes and hypertension, and the actions of estrogen on muscle vasodilation and growth in adults; [c] the role of estrogen in utero on the development of fetal skeletal-muscle microvascularization and myofiber hypertrophy required for metabolic/vascular homeostasis after birth; [d] the EC-SC interactions that underpin myofiber vascular regeneration post-injury; and [e] the role of the skeletal-muscle vasculature in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Eugene D Albrecht
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Schreiber S, Bernal J, Arndt P, Schreiber F, Müller P, Morton L, Braun-Dullaeus RC, Valdés-Hernández MDC, Duarte R, Wardlaw JM, Meuth SG, Mietzner G, Vielhaber S, Dunay IR, Dityatev A, Jandke S, Mattern H. Brain Vascular Health in ALS Is Mediated through Motor Cortex Microvascular Integrity. Cells 2023; 12:957. [PMID: 36980297 PMCID: PMC10047140 DOI: 10.3390/cells12060957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Brain vascular health appears to be critical for preventing the development of amyotrophic lateral sclerosis (ALS) and slowing its progression. ALS patients often demonstrate cardiovascular risk factors and commonly suffer from cerebrovascular disease, with evidence of pathological alterations in their small cerebral blood vessels. Impaired vascular brain health has detrimental effects on motor neurons: vascular endothelial growth factor levels are lowered in ALS, which can compromise endothelial cell formation and the integrity of the blood-brain barrier. Increased turnover of neurovascular unit cells precedes their senescence, which, together with pericyte alterations, further fosters the failure of toxic metabolite removal. We here provide a comprehensive overview of the pathogenesis of impaired brain vascular health in ALS and how novel magnetic resonance imaging techniques can aid its detection. In particular, we discuss vascular patterns of blood supply to the motor cortex with the number of branches from the anterior and middle cerebral arteries acting as a novel marker of resistance and resilience against downstream effects of vascular risk and events in ALS. We outline how certain interventions adapted to patient needs and capabilities have the potential to mechanistically target the brain microvasculature towards favorable motor cortex blood supply patterns. Through this strategy, we aim to guide novel approaches to ALS management and a better understanding of ALS pathophysiology.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Jose Bernal
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Philipp Arndt
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Frank Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Patrick Müller
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Department of Internal Medicine/Cardiology and Angiology, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | | | | - Roberto Duarte
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK Dementia Research Institute Centre, Edinburgh EH16 4UX, UK
| | - Joanna Marguerite Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK Dementia Research Institute Centre, Edinburgh EH16 4UX, UK
| | - Sven Günther Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Grazia Mietzner
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Solveig Jandke
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
4
|
Correlation between Retinal Vascularization and Disease Aggressiveness in Amyotrophic Lateral Sclerosis. Biomedicines 2022; 10:biomedicines10102390. [PMID: 36289652 PMCID: PMC9598742 DOI: 10.3390/biomedicines10102390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Abnormalities in retinal vascularization and neural density have been found in many neurodegenerative diseases; however, conflicting results are described in Amyotrophic Lateral Sclerosis (ALS). The aim of the present study was, therefore, to systematically analyze retinal layers and vascularization by means of spectral-domain (SD-OCT) and optical coherence tomography angiography (OCT-A) in ALS patients. We enrolled 48 ALS patients and 45 healthy controls. ALS patients were divided into three groups: slow progressors (n = 10), intermediate progressors (n = 24) and fast progressors (n = 14), according to the disease progression rate. For SD-OCT, we evaluated the Subfoveal choroidal thickness (SFCT), ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL). Regarding the OCT-A, we assessed the vessel density (VD) in superficial and deep capillary plexuses, radial peripapillary capillary plexus, choriocapillary and the foveal avascular zone (FAZ) area. SD-OCT exam did not show any significant differences in GCC and RNFL thickness between patients and controls and among the three ALS groups. The SFCT was statistically greater in patients compared with controls (357.95 ± 55.15 µm vs. 301.3 ± 55.80 µm, p < 0.001); interestingly, the SFCT was thicker in patients with slow and intermediate disease progression than in those with fast disease progression (394.45 ± 53.73 µm vs. 393.09 ± 42.17 µm vs. 267.71 ± 56.24 µm, p < 0.001). OCT-A did not reveal any significant results. Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-r) and disease duration did not correlate with any of the OCT parameters, except for SFCT with ALSFRS-r (r = 0.753, p = 0.024). This study demonstrated the possible association between choroidal thickness and disease activity in ALS. OCT could be a useful biomarker in the management of the disease.
Collapse
|
5
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|
6
|
Rizzo G, Di Maggio R, Benedetti A, Morroni J, Bouche M, Lozanoska-Ochser B. Splenic Ly6Chi monocytes are critical players in dystrophic muscle injury and repair. JCI Insight 2020; 5:130807. [PMID: 31874104 DOI: 10.1172/jci.insight.130807] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Dystrophic muscle is characterized by chronic injury and a steady recruitment of inflammatory Ly6Chi monocytes. Recent studies have identified the spleen as the dominant reservoir of these cells during chronic inflammation. Here, we investigated the contribution of splenic Ly6Chi monocytes to dystrophic muscle pathology. Using the mdx mouse model of muscular dystrophy, we show that Ly6Chi monocytes accumulate in great numbers in the spleen over the course of the disease. The chemokine receptor CCR2 was upregulated on Ly6Chi monocytes in mdx spleen before disease onset, thereby enabling their recruitment to dystrophic muscle. Splenectomy performed before disease onset significantly reduced the number of Ly6Chi monocytes infiltrating dystrophic limb muscle. Moreover, in the absence of splenic Ly6Chi monocytes there was a significant reduction in dystrophic muscle inflammation and necrosis, along with improved regeneration during early disease. However, during late disease, a lack of splenic Ly6Chi monocytes adversely affected muscle fiber repair, due to a delay in the phenotypic shift of proinflammatory F4/80+Ly6ChiCD206lo to antiinflammatory F4/80+Ly6CloCD206+ macrophages. Overall, we show that the spleen is an indispensable source of Ly6Chi monocytes in muscular dystrophy and that splenic monocytes are critical players in both muscle fiber injury and repair.
Collapse
|
7
|
Cerveró A, Casado A, Riancho J. Retinal changes in amyotrophic lateral sclerosis: looking at the disease through a new window. J Neurol 2019; 268:2083-2089. [PMID: 31792674 DOI: 10.1007/s00415-019-09654-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent degenerative disease affecting motor neurons (MN). ALS has been traditionally considered as a pure motor system disease; however, there are currently sufficient evidences supporting the involvement of other non-motor systems. Recently, the development and the implementation of the optical coherence tomography (OCT) have provided new data regarding the ocular involvement in the disease. In this sense, alterations in retinal nerve fiber layer thickness (RNFL), other retinal layers thicknesses such as outer nuclear layer (ONL) and inner nuclear layer (INL) and changes in the retinal blood vessels have been described in ALS patients. Interestingly, the study of ocular alterations in ALS appears not only as new biomarker tool, but also as a new opportunity to deep into the pathogenesis of the disease. In this article we will review and standardize published studies regarding OCT and ALS, emphasizing both their strengths and weaknesses.
Collapse
Affiliation(s)
- Andrea Cerveró
- Department of Ophthalmology, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Alfonso Casado
- Department of Ophthalmology, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Barrio Ganzo, s/n, 39300, Torrelavega, Cantabria, Spain. .,CIBERNED, Madrid, Spain.
| |
Collapse
|
8
|
Diaz M, Avila A, Degens H, Coeckelberghs E, Vanhees L, Cornelissen V, Azzawi M. Acute resveratrol supplementation in coronary artery disease: towards patient stratification. SCAND CARDIOVASC J 2019; 54:14-19. [PMID: 31429599 DOI: 10.1080/14017431.2019.1657584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Resveratrol (RV) is a polyphenol with antioxidant, anti-inflammatory and cardio-protective properties. Our objective was to investigate whether acute supplementation with high doses of RV would improve flow-mediated dilation (FMD) and oxygen consumption (VO2) kinetics in older coronary artery disease (CAD) patients. Design: We employed a placebo-controlled, single-blind, crossover design in which ten participants (aged 66.6 ± 7.8 years) received either RV or placebo (330 mg, 3× day-1) during three consecutive days plus additional 330 mg in the morning of the fourth day with a seven-day wash-out period in-between. On the fourth day, FMD of the brachial artery and VO2 on-kinetics were determined. Results: RV improved FMD in patients who had undergone coronary artery bypass grafting (CABG; -1.4 vs. 5.0%; p = .004), but not in those who had undergone percutaneous coronary intervention (PCI; 4.2 vs. -0.2%; NS). Conclusion: Acute high dose supplementation with RV improved FMD in patients after CABG surgery but impaired FMD in patients who underwent PCI. The revascularization method-related differential effects of RV may be due to its direct effects on endothelial-dependent dilator responses. Our findings have important implications for personalized treatment and stratification of older CAD patients.
Collapse
Affiliation(s)
- M Diaz
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.,Swedish Red Cross University College, Huddinge, Sweden
| | - A Avila
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.,Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - H Degens
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - E Coeckelberghs
- Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - L Vanhees
- Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - V Cornelissen
- Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - M Azzawi
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
9
|
Andersen IT, Harrison A, Broholm R, Harder A, Nielsen JB, Bülow J, Pingel J. Microvascularization is not a limiting factor for exercise in adults with cerebral palsy. J Appl Physiol (1985) 2018; 125:536-544. [DOI: 10.1152/japplphysiol.00827.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Muscle contractures are a common complication in patients with central nervous system (CNS) lesions which limit range of movement and cause joint deformities. Furthermore, it has previously been shown that muscles with contractures have a reduced number of capillaries, indicating decreased tissue vascularization. The aim of the present study was to investigate the microvascular volume (MV) at rest and after acute exercise in the muscle tissue of individuals with cerebral palsy (CP) and healthy control individuals. Contrast-enhanced ultrasound (CEUS) was used before and after 30 min of walking or running on a treadmill in 10 healthy control participants and 10 individuals with CP to detect MV of their skeletal muscle tissue. A significant increase in the MV was observed after exercise both in the adult CP group (21–53 yr) and in the control group (21–52 yr) (1.8 ± 0.8 ΔdB to 3.1 ± 0.9 ΔdB or 42.9% and 1.5 ± 0.6 ΔdB to 2.5 ± 0.9 ΔdB or 39.0%, respectively). Furthermore, a difference in the resting MV was observed between the most severe cases of CP [gross motor function classification scale (GMFCS) 3 and 4] (2.3 ± 0.5 ΔdB) and the less severe cases (GMFCS 1 and 2) (1.5 ± 0.2 ΔdB). When the CP group was walking (3.4 km/h), the lactate levels, Borg score, and heart rate matched the level of controls when they were running (9.8 km/h). In conclusion, individuals with CP become exhausted at much lower exercise intensities than healthy individuals. This is not explained by impaired microvascularization, since the MV of the individuals with CP respond normally to increased O2 demand during acute exercise. NEW & NOTEWORTHY Cerebral palsy (CP) patients were less physically active compared with typically developed individuals. This may affect the microvascularization. We observed that the CP group became exhausted at much lower exercise intensities compared with healthy individuals. However, impaired microvascularization was not the reason for the decreased physical activity as the CP group responded normally to increased O2 demand during acute exercise. These results indicate that walking may be recommended as an intervention to train and maintain skeletal muscle tissue in individuals with CP.
Collapse
Affiliation(s)
| | - Adrian Harrison
- MyoDynamik ApS, Copenhagen, Denmark
- Department of Veterinary & Animal Sciences, Faculty of Health & Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Rikke Broholm
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
| | | | - Jens Bo Nielsen
- Center for Neuroscience, Copenhagen University, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Jessica Pingel
- Center for Neuroscience, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
10
|
Abdelhak A, Hübers A, Böhm K, Ludolph AC, Kassubek J, Pinkhardt EH. In vivo assessment of retinal vessel pathology in amyotrophic lateral sclerosis. J Neurol 2018; 265:949-953. [PMID: 29464376 DOI: 10.1007/s00415-018-8787-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Changes in skin and muscle small blood vessels (SBVs) and microvascular structures of the brain have been reported in patients with amyotrophic lateral sclerosis (ALS). A direct assessment of brain SBVs in vivo is currently not feasible. Retinal vessels are considered a "mirror" of brain SBVs. In this study, we used optic coherence tomography (OCT)-based measurements to detect changes in retinal blood vessels of ALS patients compared to those of healthy controls. METHODS We analysed Spectralis-OCT images of 34 ALS patients and 20 HCs. The inner wall thickness (IWT), outer wall thickness (OWT), and lumen diameter (LD) of retinal vessels were assessed using intensity-based measurements. In addition, the different retinal layers were analysed using automated segmentation software. The correlations between the various retinal layers and clinical parameters [e.g., disease duration and revised ALS functional rating scale (ALS-FRS-R)] were examined. RESULTS The OWT of retinal vessels was higher in ALS patients than in HCs (p = 0.04). There were no differences in the IWT, LD. ALS patients showed a thinning of the outer nuclear layer (ONL) compared to HCs (median 1.63 vs. 1.77, p = 0.002). The whole retinal thickness negatively correlated with the ALS-FRS scale (r = 0.3, p = 0.03). CONCLUSION Our study reports retinal vessel pathology in ALS patients. These changes may be related to those observed in SBVs in skin and muscle biopsies. Furthermore, we report a thinning of the ONL in ALS, revealing a possible affection of rods and cones function in ALS.
Collapse
Affiliation(s)
- A Abdelhak
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - A Hübers
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - K Böhm
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - A C Ludolph
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - J Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - E H Pinkhardt
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany.
| |
Collapse
|
11
|
Latroche C, Gitiaux C, Chrétien F, Desguerre I, Mounier R, Chazaud B. Skeletal Muscle Microvasculature: A Highly Dynamic Lifeline. Physiology (Bethesda) 2016; 30:417-27. [PMID: 26525341 DOI: 10.1152/physiol.00026.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is highly irrigated by blood vessels. Beyond oxygen and nutrient supply, new vessel functions have been identified. This review presents vessel microanatomy and functions at tissue, cellular, and molecular levels. Mechanisms of vessel plasticity are described during skeletal muscle development and acute regeneration, and in physiological and pathological contexts.
Collapse
Affiliation(s)
- Claire Latroche
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; Institut Pasteur, Paris, France
| | - Cyril Gitiaux
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; Institut Pasteur, Paris, France
| | | | - Isabelle Desguerre
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France
| | - Rémi Mounier
- CGPhyMC, CNRS UMR5534, Villeurbanne, France; and Université Claude Bernard Lyon1, Villeurbanne, France
| | - Bénédicte Chazaud
- Institut Cochin, INSERM U1016, Paris, France; CNRS 8104, Paris, France; Université Paris Descartes, Paris, France; CGPhyMC, CNRS UMR5534, Villeurbanne, France; and Université Claude Bernard Lyon1, Villeurbanne, France
| |
Collapse
|
12
|
Braczynski AK, Harter PN, Zeiner PS, Drott U, Tews DS, Preusse C, Penski C, Dunst M, Weis J, Stenzel W, Mittelbronn M. C5b-9 deposits on endomysial capillaries in non-dermatomyositis cases. Neuromuscul Disord 2016; 26:283-91. [PMID: 27020463 DOI: 10.1016/j.nmd.2016.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 11/28/2022]
Abstract
Deposits of the terminal-membrane-attack-complex (MAC) C5b-9 on perfascicular endomysial capillaries are generally regarded as diagnostic hallmark of dermatomyositis (DM). Although the pathophysiology is not clear, C5b-9 deposits on capillaries seem to be associated with microinfarctions and vascular damage. Here, we report on a series of 19 patients presenting with C5b-9 accumulation on endomysial capillaries in the absence of features for DM. To decipher differences in the capillary C5b-9 accumulation pattern between DM and non-DM cases, we assessed the extent of endomysial capillary C5b-9 deposits related to capillary density and extent of myofiber necrosis by immunohistochemistry in 12 DM and 8 control patients. We found similar numbers of C5b-9-positive myofibers in both DM and non-DM C5b-9(+) cases. The distribution pattern differed as DM cases showed significantly more perifascicular capillary C5b-9 deposits as compared to non-DM cases, which presented stronger endomysial capillary C5b-9 deposits in a diffuse pattern. While total capillary density was not differing, DM patients displayed significantly more C5b-9(+) necrotic fibers as compared to non-DM C5b-9(+). In summary, endomysial capillary C5b-9 deposits are present in a variety of non-DM cases, however with differing distribution pattern. In conclusion, capillary C5b-9(+) deposits should be assessed critically, taking into consideration the distribution pattern.
Collapse
Affiliation(s)
- Anne K Braczynski
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Germany
| | - Patrick N Harter
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Germany
| | - Pia S Zeiner
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Germany
| | - Ulrich Drott
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Germany
| | | | | | - Cornelia Penski
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Germany
| | - Maika Dunst
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH, Aachen, Germany
| | | | - Michel Mittelbronn
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Dermatomyositis, polymyositis and immune-mediated necrotising myopathies. Biochim Biophys Acta Mol Basis Dis 2015; 1852:622-32. [DOI: 10.1016/j.bbadis.2014.05.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 12/11/2022]
|