1
|
Zuckerman AD, Banks AM, Wawrzyniak J, Rightmier E, Simonson D, Zagel AL, Turco E, Blevins A, DeClercq J, Choi L. Patient-reported outcomes and pharmacist actions in patients with multiple sclerosis managed by health-system specialty pharmacies. Am J Health Syst Pharm 2023; 80:1650-1661. [PMID: 37556317 DOI: 10.1093/ajhp/zxad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE This study evaluated patient-reported outcomes (PROs) and pharmacist actions for patients on disease-modifying therapies (DMTs) for multiple sclerosis (MS) through health-system specialty pharmacies (HSSPs). METHODS A multisite, prospective cohort study of patients utilizing an HSSP for DMT fulfillment was performed. Primary outcomes were affirmative answers to PRO questions regarding impacted productivity, hospitalization, and relapse and pharmacist actions. Rates of pharmacist actions were reported as the number of person-years of treatment per action. Univariate and multivariate logistic regression were used to evaluate the association between each PRO and covariates, including the number of pharmacist actions performed, age, sex, insurance, site, and route of administration. RESULTS The 968 patients included had 10,562 fills and 6,946 PRO assessments. The most common affirmative PRO was impacted productivity (14.6%). Pharmacists performed 3,683 actions, most commonly general medication education (42.6%) and safety (33.3%). Rates of general medication education and nonfinancial coordination of care actions were similar across medication classes; other pharmacist actions varied by medication class. Insurance type was significantly associated with reporting impacted productivity; patients with Medicare and Medicaid were 2.2 and 3.1 times more likely to have reported impacted productivity, respectively (P < 0.001) than commercially insured patients. Patients who reported impacted productivity had more pharmacist actions (P < 0.001). CONCLUSION Patients on DMTs through an HSSP reported low rates of impacted productivity, relapse, and hospitalization due to MS, although patients with noncommercial insurance were more likely to have impacted productivity. Patients reporting impacted productivity and those taking certain DMTs may require more frequent pharmacist actions.
Collapse
Affiliation(s)
- Autumn D Zuckerman
- Specialty Pharmacy Services, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aimee M Banks
- Specialty Pharmacy Services, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie Wawrzyniak
- University of Rochester Specialty Pharmacy, UR Medicine, Rochester, NY, USA
| | | | - Dana Simonson
- Fairview Specialty Pharmacy, Fairview Pharmacy Services, Minneapolis, MN, USA
| | | | - Evan Turco
- WVU Medicine Specialty Pharmacy Services, Allied Health Solutions, Morgantown, WV, USA
| | - Abbi Blevins
- WVU Medicine Specialty Pharmacy Services, Allied Health Solutions, Morgantown, WV, USA
| | - Josh DeClercq
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leena Choi
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Beyrampour-Basmenj H, Rahmati M, Moghamddam MP, Kalan ME, Alivand M, Aliyari-Serej Z, Nastarin P, Omrani M, Khodakarimi S, Ebrahimi-Kalan A. Association between miRNAs expression and multiple sclerosis pathogenesis: A novel therapeutic approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
de Souza JM, Goncalves BDC, Gomez MV, Vieira LB, Ribeiro FM. Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases. Front Pharmacol 2018; 9:145. [PMID: 29527170 PMCID: PMC5829052 DOI: 10.3389/fphar.2018.00145] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases affect millions of individuals worldwide. So far, no disease-modifying drug is available to treat patients, making the search for effective drugs an urgent need. Neurodegeneration is triggered by the activation of several cellular processes, including oxidative stress, mitochondrial impairment, neuroinflammation, aging, aggregate formation, glutamatergic excitotoxicity, and apoptosis. Therefore, many research groups aim to identify drugs that may inhibit one or more of these events leading to neuronal cell death. Venoms are fruitful natural sources of new molecules, which have been relentlessly enhanced by evolution through natural selection. Several studies indicate that venom components can exhibit selectivity and affinity for a wide variety of targets in mammalian systems. For instance, an expressive number of natural peptides identified in venoms from animals, such as snakes, scorpions, bees, and spiders, were shown to lessen inflammation, regulate glutamate release, modify neurotransmitter levels, block ion channel activation, decrease the number of protein aggregates, and increase the levels of neuroprotective factors. Thus, these venom components hold potential as therapeutic tools to slow or even halt neurodegeneration. However, there are many technological issues to overcome, as venom peptides are hard to obtain and characterize and the amount obtained from natural sources is insufficient to perform all the necessary experiments and tests. Fortunately, technological improvements regarding heterologous protein expression, as well as peptide chemical synthesis will help to provide enough quantities and allow chemical and pharmacological enhancements of these natural occurring compounds. Thus, the main focus of this review is to highlight the most promising studies evaluating animal toxins as therapeutic tools to treat a wide variety of neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, brain ischemia, glaucoma, amyotrophic lateral sclerosis, and multiple sclerosis.
Collapse
Affiliation(s)
- Jessica M. de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno D. C. Goncalves
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus V. Gomez
- Department of Neurotransmitters, Instituto de Ensino e Pesquisa Santa Casa, Belo Horizonte, Brazil
| | - Luciene B. Vieira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Ahn YH, Jeon SB, Chang CY, Goh EA, Kim SS, Kim HJ, Song J, Park EJ. Glatiramer acetate attenuates the activation of CD4 + T cells by modulating STAT1 and -3 signaling in glia. Sci Rep 2017; 7:40484. [PMID: 28094337 PMCID: PMC5240344 DOI: 10.1038/srep40484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Interactions between immune effector cells of the central nervous system appear to directly or indirectly influence the progress/regression of multiple sclerosis (MS). Here, we report that glial STAT1 and -3 are distinctively phosphorylated following the interaction of activated lymphocytes and glia, and this effect is significantly inhibited by glatiramer acetate (GA), a disease-modifying drug for MS. GA also reduces the activations of STAT1 and -3 by MS-associated stimuli such as IFNγ or LPS in primary glia, but not neurons. Experiments in IFNγ- and IFNγ receptor-deficient mice revealed that GA-induced inhibitions of STAT signaling are independent of IFNγ and its receptor. Interestingly, GA induces the expression levels of suppressor of cytokine signaling-1 and -3, representative negative regulators of STAT signaling in glia. We further found that GA attenuates the LPS-triggered enhancement of IL-2, a highly produced cytokine in patients with active MS, in CD4+ T cells co-cultured with glia, but not in CD4+ T cells alone. Collectively, these results provide that activation of glial STATs is an essential event in the interaction between glia and T cells, which is a possible underlying mechanism of GA action in MS. These findings provide an insight for the development of targeted therapies against MS.
Collapse
Affiliation(s)
- Ye-Hyeon Ahn
- Cancer Immunology Branch, National Cancer Center, Goyang, South Korea
- Dept.of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sae-Bom Jeon
- Cancer Immunology Branch, National Cancer Center, Goyang, South Korea
| | - Chi Young Chang
- Cancer Immunology Branch, National Cancer Center, Goyang, South Korea
| | - Eun-Ah Goh
- Dept. of System Cancer Science, Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Sang Soo Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, South Korea
| | - Ho Jin Kim
- Dept. of System Cancer Science, Graduate School of Cancer Science and Policy, Goyang, South Korea
- Dept. of Neurology, National Cancer Center, Goyang, South Korea
| | - Jaewhan Song
- Dept.of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eun Jung Park
- Cancer Immunology Branch, National Cancer Center, Goyang, South Korea
- Dept. of System Cancer Science, Graduate School of Cancer Science and Policy, Goyang, South Korea
| |
Collapse
|
5
|
Lee A, Pike J, Edwards MR, Petrillo J, Waller J, Jones E. Quantifying the Benefits of Dimethyl Fumarate Over β Interferon and Glatiramer Acetate Therapies on Work Productivity Outcomes in MS Patients. Neurol Ther 2017; 6:79-90. [PMID: 28093681 PMCID: PMC5447554 DOI: 10.1007/s40120-016-0061-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Indexed: 01/01/2023] Open
Abstract
Introduction Dimethyl fumarate (DMF) is a novel oral therapy used for the treatment of relapse-remitting multiple sclerosis (RRMS). In two 2-year pivotal Phase 3 trials in patients with RRMS, DMF significantly reduced disease activity based on both clinical and magnetic resonance imaging (MRI) findings and demonstrated an acceptable safety profile. However, there is currently a lack of comparative data which explore the relationship between work productivity and health-related quality of life (HRQoL) outcomes in RRMS and how these differ among RRMS therapies, including DMF. Methods We explored this relationship through patient-reported data from the EuroQol Five-Dimensions (EQ-5D) tool, Work Productivity and Activity Impairment Questionnaire (WPAI), and the Hamburg Quality of Life Questionnaire in Multiple Sclerosis (HAQUAMS) using the Adelphi MS DSP® dataset. Results Our data demonstrated that patients receiving DMF experienced better outcomes, relative to patients receiving beta (β)interferons or glatiramer acetate, in all WPAI subscales [overall; average treatment effect (ATE) −13.92, 95% confidence interval (CI) −18.87 to −7.08; p < 0.001], EQ-5D (ATE +0.075, 95% Cl 0.014–0.136; p = 0.016) and HAQUAMS [ATE −0.45, 95% Cl −0.61 to −0.29; p < 0.001]. The EQ-5D and HAQUAMS were used with WPAI to determine the relationship between HRQoL outcomes and work productivity. Multiple linear regression analyses were performed, adjusting for age, sex, body mass index, ethnicity and number of comorbid conditions. Conclusions These data demonstrate that therapy with DMF was associated with increased work productivity and HRQoL for patients with RRMS and that these outcomes were consistently improved compared to outcomes with interferon and glatiramer acetate therapies.
Collapse
Affiliation(s)
- Andrew Lee
- Biogen, 225 Binney Street, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
6
|
Esteves S, Duarte-Silva S, Maciel P. Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts. Med Res Rev 2016; 37:860-906. [PMID: 27870126 DOI: 10.1002/med.21425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.
Collapse
Affiliation(s)
- Sofia Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| |
Collapse
|
7
|
D'Amico E, Leone C, Patti F. Offspring Number Does Not Influence Reaching the Disability's Milestones in Multiple Sclerosis: A Seven-Year Follow-Up Study. Int J Mol Sci 2016; 17:234. [PMID: 26907250 PMCID: PMC4783965 DOI: 10.3390/ijms17020234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Data on pregnancy long-term effects on multiple sclerosis (MS) course are still controversial; whether experiencing more than one pregnancy exposes one to risk of the disability's accrual is still unknown. We investigated differences existing in terms of disability progression among women with MS (wwMS) who had one or more children after their MS onset. METHODS Monoparous and multiparous wwMS were enrolled from the Catania MS Center, Italy, in a monocenter retrospective study. A Cox proportional hazards model was used to examine the effect of the number of parities on time from MS disease onset to EDSS 4.0 and 6.0. The study protocol was approved by the local Ethical Committee. RESULTS During the seven years of observation, 32.1% and 23.2% of the monoparous group reached expanded disability disease status (EDSS) 4.0 and 6.0 respectively, compared to 13.3% and 3.3% of the multiparous group (p = 0.057 and p = 0.017; respectively). The Kaplan-Meier curve analysis showed no statistically-significant differences between the two groups in reaching the two milestones. The multiparous group showed a longer time to reach the EDSS 4.0 (3.5 vs. 2.6 years, log-rank 0.57, p = 0.45). The Cox regression analysis showed that the EDSS at the time of first pregnancy (Exp(B) 9.4, CI 4.5-19.7, p< 0.001) and the time from MS onset to first pregnancy (Exp(B) 0.96, CI = 0.93-0.98, p < 0.05) were significant predictors of reaching the EDSS 4.0, whereas a model including only the EDSS one year after the first pregnancy significantly predicted (Exp(B) value of 6.4, CI 2.6-15.4, p < 0.001) the reaching of EDSS 6.0. CONCLUSIONS Our results suggest that experiencing more than one pregnancy could not convey a different clinical outcome in wwMS. Further research is needed to confirm our results.
Collapse
Affiliation(s)
- Emanuele D'Amico
- Department of Neurology, University of Catania, Multiple Sclerosis Center, Policlinico G. Rodolico, Via Santa Sofia, 78 Catania 95123, Italy.
| | - Carmela Leone
- Department of Neurology, University of Catania, Multiple Sclerosis Center, Policlinico G. Rodolico, Via Santa Sofia, 78 Catania 95123, Italy.
| | - Francesco Patti
- Department of Neurology, University of Catania, Multiple Sclerosis Center, Policlinico G. Rodolico, Via Santa Sofia, 78 Catania 95123, Italy.
| |
Collapse
|
8
|
Peña-Altamira E, Prati F, Massenzio F, Virgili M, Contestabile A, Bolognesi ML, Monti B. Changing paradigm to target microglia in neurodegenerative diseases: from anti-inflammatory strategy to active immunomodulation. Expert Opin Ther Targets 2015; 20:627-40. [PMID: 26568363 DOI: 10.1517/14728222.2016.1121237] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The importance of microglia in most neurodegenerative pathologies, from Parkinson's disease to amyotrophic lateral sclerosis and Alzheimer's disease, is increasingly recognized. Until few years ago, microglial activation in pathological conditions was considered dangerous to neurons due to its causing inflammation. Today we know that these glial cells also play a crucial physiological and neuroprotective role, which is altered in neurodegenerative conditions. AREAS COVERED The neuroinflammatory hypothesis for neurodegenerative diseases has led to the trial of anti-inflammatory agents as therapeutics with largely disappointing results. New information about the physiopathological role of microglia has highlighted the importance of immunomodulation as a potential new therapeutic approach. This review summarizes knowledge on microglia as a potential therapeutic target in the most common neurodegenerative diseases, with focus on compounds directed toward the modulation of microglial immune response through specific molecular pathways. EXPERT OPINION Here we support the innovative concept of targeting microglial cells by modulating their activity, rather than simply trying to counteract their inflammatory neurotoxicity, as a potential therapeutic approach for neurodegenerative diseases. The advantage of this therapeutic approach could be to reduce neuroinflammation and toxicity, while at the same time strengthening intrinsic neuroprotective properties of microglia and promoting neuroregeneration.
Collapse
Affiliation(s)
| | - Federica Prati
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Francesca Massenzio
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Marco Virgili
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Antonio Contestabile
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Maria Laura Bolognesi
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Barbara Monti
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| |
Collapse
|
9
|
Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools. Toxins (Basel) 2015; 7:3179-209. [PMID: 26295258 PMCID: PMC4549745 DOI: 10.3390/toxins7083179] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer’s Disease, Parkinson’s Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.
Collapse
|
10
|
D'Ambrosio A, Pontecorvo S, Colasanti T, Zamboni S, Francia A, Margutti P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun Rev 2015; 14:1097-110. [PMID: 26226413 DOI: 10.1016/j.autrev.2015.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. The heterogeneity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpredictable response to therapies. The major focus of the research on MS is the identification of biomarkers in biological fluids, such as cerebrospinal fluid or blood, to guide patient management reliably. Because of the difficulties in obtaining spinal fluid samples and the necessity for lumbar puncture to make a diagnosis has reduced, the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However, currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkers could radically alter the management of MS at critical phases of the disease spectrum, allowing for intervention strategies that may prevent evolution to long-term neurological disability. This article provides an overview of this research field and focuses on recent advances in blood-based biomarker research.
Collapse
Affiliation(s)
- Antonella D'Ambrosio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Pontecorvo
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Tania Colasanti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Zamboni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Ada Francia
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Paola Margutti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|