1
|
Takefuji Y. Reevaluating feature importances in machine learning models for schizophrenia and bipolar disorder: The need for true associations. Brain Behav Immun 2025; 124:123-124. [PMID: 39617071 DOI: 10.1016/j.bbi.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 01/20/2025] Open
Abstract
Skorobogatov et al. developed supervised machine learning models to predict diagnoses and illness states in schizophrenia and bipolar disorder. However, their reliance on bootstrap forests and generalized regressions introduces significant biases in feature importance assessments. This paper highlights the critical distinction between feature importances generated by machine learning and actual associations, which are often model-specific and context-dependent. We underscore the limitations of biased feature importances and advocate for the use of robust statistical methods, such as Chi-squared tests and Spearman's correlation, to reveal true associations. Reassessing findings with these methods will enable more accurate interpretations and reinforce the importance of understanding the limitations inherent in machine learning methodologies.
Collapse
Affiliation(s)
- Yoshiyasu Takefuji
- Faculty of Data Science, Musashino University, 3-3-3 Ariake Koto-ku, Tokyo 135-8181, Japan.
| |
Collapse
|
2
|
Glick VJ, Webber CA, Simmons LE, Martin MC, Ahmad M, Kim CH, Adams AND, Bang S, Chao MC, Howard NC, Fortune SM, Verma M, Jost M, Beura LK, James MJ, Lee SY, Mitchell CM, Clardy J, Kim KH, Gopinath S. Vaginal lactobacilli produce anti-inflammatory β-carboline compounds. Cell Host Microbe 2024; 32:1897-1909.e7. [PMID: 39423813 DOI: 10.1016/j.chom.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
The optimal vaginal microbiome is a Lactobacillus-dominant community. Apart from Lactobacillus iners, the presence of Lactobacillus species is associated with reduced vaginal inflammation and reduced levels of pro-inflammatory cytokines. Loss of Lactobacillus-dominance is associated with inflammatory conditions, such as bacterial vaginosis (BV). We have identified that Lactobacillus crispatus, a key vaginal bacterial species, produces a family of β-carboline compounds with anti-inflammatory activity. These compounds suppress nuclear factor κB (NF-κB) and interferon (IFN) signaling downstream of multiple pattern recognition receptors in primary human cells and significantly dampen type I IFN receptor (IFNAR) activation in monocytes. Topical application of an anti-inflammatory β-carboline compound, perlolyrine, was sufficient to significantly reduce vaginal inflammation in a mouse model of genital herpes infection. These compounds are enriched in cervicovaginal lavage (CVL) of healthy people compared with people with BV. This study identifies a family of compounds by which vaginal lactobacilli mediate host immune homeostasis and highlights a potential therapeutic avenue for vaginal inflammation.
Collapse
Affiliation(s)
- Virginia J Glick
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cecilia A Webber
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lauren E Simmons
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Morgan C Martin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maryam Ahmad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cecilia H Kim
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Amanda N D Adams
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sunghee Bang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, MA 02115, USA
| | - Michael C Chao
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicole C Howard
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Manasvi Verma
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Jost
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Michael J James
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, MA 02115, USA
| | - Seo Yoon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Caroline M Mitchell
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, MA 02115, USA
| | - Ki Hyun Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, MA 02115, USA; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Smita Gopinath
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Obuobi S, Škalko-Basnet N. Understanding vaginal biofilms: The first step in harnessing antimicrobial nanomedicine. J Control Release 2024; 376:1190-1208. [PMID: 39510257 DOI: 10.1016/j.jconrel.2024.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
In spite of multipurpose technologies offering broad-spectrum prevention for sexually transmitted infections (STIs) and contraception, the STIs incidences rise worldwide. The situation is even more alarming considering continuous rise in antimicrobial resistance (AMR) that limits therapy options. In this review we address the specific challenges of efficiently treating vaginal infections locally, at the infection site, by understanding the underlying barriers to efficient treatment such as vaginal biofilms. Knowledge on vaginal biofilms remains, up to now, rather scarce and requires more attention. We therefore propose a 'back to basics' insight that seeks to probe the complexity and role of the vaginal microbiota, its relationship with vaginal biofilms and implications to future therapeutic modalities utilizing advanced nano delivery systems. Our key objective is to highlight the interplay between biofilm, (nano)formulation and therapy outcome rather than provide an overview of all nanoformulations that were challenged against biofilms. We focused on the anatomy of the female reproductive organ and its physiological changes from birth, the unique vaginal microenvironment in premenopausal and postmenopausal women, vaginal biofilm infections and current nanomedicine-based approaches to treat infections in the vaginal site. Finally, we offer our perspectives on the current challenges associated with vaginal delivery and key considerations that can aid in the design and development of safer and potent products against persisting vaginal infections.
Collapse
Affiliation(s)
- Sybil Obuobi
- Drug Transport and Delivery Research Group, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
4
|
Plummer EL, Vodstrcil LA, Bradshaw CS. Unravelling the vaginal microbiome, impact on health and disease. Curr Opin Obstet Gynecol 2024; 36:338-344. [PMID: 39109542 DOI: 10.1097/gco.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
PURPOSE OF REVIEW The vaginal microbiome has a fundamental role in supporting optimal vaginal, reproductive, and sexual health. Conversely, dysbiosis of the vaginal microbiome is linked to vaginal symptoms and adverse health outcomes. This review summarizes recent literature concerning the role of the vaginal microbiome in health and disease, with a focus on the most common vaginal dysbiosis, bacterial vaginosis. RECENT FINDINGS Molecular studies have expanded our understanding of the composition of the vaginal microbiome. Lactic acid-producing lactobacilli are an important component of host defences against pathogens, whereas a paucity of lactobacilli is associated with adverse sequelae. Bacterial vaginosis is characterized by low levels of lactobacilli and increased levels of nonoptimal anaerobes; however, the exact cause remains unclear. Furthermore, despite decades of research, bacterial vaginosis recurrence rates following standard treatment are unacceptably high. Strategies to improve bacterial vaginosis cure and promote an optimal lactobacilli-dominated vaginal microbiome are being investigated. Importantly, historical and emerging evidence supports the sexual transmission of bacterial vaginosis, which opens exciting opportunities for novel treatments that incorporate partners. SUMMARY A mechanistic and deeper understanding of the vaginal microbiome in health and disease is needed to inform ongoing development of therapeutics to improve bacterial vaginosis cure. Partner treatment holds promise for improving bacterial vaginosis cure.
Collapse
Affiliation(s)
- Erica L Plummer
- School of Translational Medicine, Monash University, Melbourne
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton
| | - Lenka A Vodstrcil
- School of Translational Medicine, Monash University, Melbourne
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Catriona S Bradshaw
- School of Translational Medicine, Monash University, Melbourne
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Hugerth LW, Krog MC, Vomstein K, Du J, Bashir Z, Kaldhusdal V, Fransson E, Engstrand L, Nielsen HS, Schuppe-Koistinen I. Defining Vaginal Community Dynamics: daily microbiome transitions, the role of menstruation, bacteriophages, and bacterial genes. MICROBIOME 2024; 12:153. [PMID: 39160615 PMCID: PMC11331738 DOI: 10.1186/s40168-024-01870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND The composition of the vaginal microbiota during the menstrual cycle is dynamic, with some women remaining eu- or dysbiotic and others transitioning between these states. What defines these dynamics, and whether these differences are microbiome-intrinsic or mostly driven by the host is unknown. To address this, we characterized 49 healthy, young women by metagenomic sequencing of daily vaginal swabs during a menstrual cycle. We classified the dynamics of the vaginal microbiome and assessed the impact of host behavior as well as microbiome differences at the species, strain, gene, and phage levels. RESULTS Based on the daily shifts in community state types (CSTs) during a menstrual cycle, the vaginal microbiome was classified into four Vaginal Community Dynamics (VCDs) and reported in a classification tool, named VALODY: constant eubiotic, constant dysbiotic, menses-related, and unstable dysbiotic. The abundance of bacteria, phages, and bacterial gene content was compared between the four VCDs. Women with different VCDs showed significant differences in relative phage abundance and bacterial composition even when assigned to the same CST. Women with unstable VCDs had higher phage counts and were more likely dominated by L. iners. Their Gardnerella spp. strains were also more likely to harbor bacteriocin-coding genes. CONCLUSIONS The VCDs present a novel time series classification that highlights the complexity of varying degrees of vaginal dysbiosis. Knowing the differences in phage gene abundances and the genomic strains present allows a deeper understanding of the initiation and maintenance of permanent dysbiosis. Applying the VCDs to further characterize the different types of microbiome dynamics qualifies the investigation of disease and enables comparisons at individual and population levels. Based on our data, to be able to classify a dysbiotic sample into the accurate VCD, clinicians would need two to three mid-cycle samples and two samples during menses. In the future, it will be important to address whether transient VCDs pose a similar risk profile to persistent dysbiosis with similar clinical outcomes. This framework may aid interdisciplinary translational teams in deciphering the role of the vaginal microbiome in women's health and reproduction. Video Abstract.
Collapse
Affiliation(s)
- Luisa W Hugerth
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Nobels Väg 6, 17177, Stockholm, Sweden
| | - Maria Christine Krog
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Rigshospitalet and Hvidovre Hospital, Blegdamsvej 9, 2100 Copenhagen and Kettegård Alle 30, 2650, Hvidovre, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Kilian Vomstein
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Rigshospitalet and Hvidovre Hospital, Blegdamsvej 9, 2100 Copenhagen and Kettegård Alle 30, 2650, Hvidovre, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre Hospital, Kettegård Alle 30, 2650, Hvidovre, Denmark
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Nobels Väg 6, 17177, Stockholm, Sweden
| | - Zahra Bashir
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Rigshospitalet and Hvidovre Hospital, Blegdamsvej 9, 2100 Copenhagen and Kettegård Alle 30, 2650, Hvidovre, Denmark
- Department of Obstetrics and Gynecology, Region Zealand, Slagelse Hospital, Fælledvej 13, 4200, Slagelse, Denmark
| | - Vilde Kaldhusdal
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Emma Fransson
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Nobels Väg 6, 17177, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Dag Hammarskjölds Vägäg 20, 75185, Uppsala, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Nobels Väg 6, 17177, Stockholm, Sweden
| | - Henriette Svarre Nielsen
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Rigshospitalet and Hvidovre Hospital, Blegdamsvej 9, 2100 Copenhagen and Kettegård Alle 30, 2650, Hvidovre, Denmark.
- Department of Clinical Medicine, Copenhagen University, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre Hospital, Kettegård Alle 30, 2650, Hvidovre, Denmark.
| | - Ina Schuppe-Koistinen
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Nobels Väg 6, 17177, Stockholm, Sweden
| |
Collapse
|
6
|
Oyenihi AB, Haines R, Trama J, Faro S, Mordechai E, Adelson ME, Osei Sekyere J. Molecular characterization of vaginal microbiota using a new 22-species qRT-PCR test to achieve a relative-abundance and species-based diagnosis of bacterial vaginosis. Front Cell Infect Microbiol 2024; 14:1409774. [PMID: 39006741 PMCID: PMC11239351 DOI: 10.3389/fcimb.2024.1409774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Background Numerous bacteria are involved in the etiology of bacterial vaginosis (BV). Yet, current tests only focus on a select few. We therefore designed a new test targeting 22 BV-relevant species. Methods Using 946 stored vaginal samples, a new qPCR test that quantitatively identifies 22 bacterial species was designed. The distribution and relative abundance of each species, α- and β-diversities, correlation, and species co-existence were determined per sample. A diagnostic index was modeled from the data, trained, and tested to classify samples into BV-positive, BV-negative, or transitional BV. Results The qPCR test identified all 22 targeted species with 95 - 100% sensitivity and specificity within 8 hours (from sample reception). Across most samples, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensenii, Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae, Prevotella bivia, and Megasphaera sp. type 1 were relatively abundant. BVAB-1 was more abundant and distributed than BVAB-2 and BVAB-3. No Mycoplasma genitalium was found. The inter-sample similarity was very low, and correlations existed between key species, which were used to model, train, and test a diagnostic index: MDL-BV index. The MDL-BV index, using both species and relative abundance markers, classified samples into three vaginal microbiome states. Testing this index on our samples, 491 were BV-positive, 318 were BV-negative, and 137 were transitional BV. Although important differences in BV status were observed between different age groups, races, and pregnancy status, they were statistically insignificant. Conclusion Using a diverse and large number of vaginal samples from different races and age groups, including pregnant women, the new qRT-PCR test and MDL-BV index efficiently diagnosed BV within 8 hours (from sample reception), using 22 BV-associated species.
Collapse
Affiliation(s)
- Ayodeji B Oyenihi
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Ronald Haines
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Jason Trama
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Sebastian Faro
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
- Memorial Women's Care, Houston, TX, United States
| | - Eli Mordechai
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - Martin E Adelson
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| | - John Osei Sekyere
- Institute for Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton, NJ, United States
| |
Collapse
|
7
|
Morselli S, Ceccarani C, Djusse ME, Laghi L, Camboni T, Consolandi C, Foschi C, Severgnini M, Marangoni A. Anti-chlamydial activity of vaginal fluids: new evidence from an in vitro model. Front Cell Infect Microbiol 2024; 14:1403782. [PMID: 38912205 PMCID: PMC11193362 DOI: 10.3389/fcimb.2024.1403782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction We assessed the in vitro anti-chlamydial activity of fresh vaginal secretions, deciphering the microbial and metabolic components able to counteract Chlamydia trachomatis viability. Methods Forty vaginal samples were collected from a group of reproductive-aged women and their anti-chlamydial activity was evaluated by inhibition experiments. Each sample underwent 16S rRNA metabarcoding sequencing to determine the bacterial composition, as well as 1H-NMR spectroscopy to detect and quantify the presence of vaginal metabolites. Results Samples characterized by a high anti-chlamydial activity were enriched in Lactobacillus, especially Lactobacillus crispatus and Lactobacillus iners, while not-active samples exhibited a significant reduction of lactobacilli, along with higher relative abundances of Streptococcus and Olegusella. Lactobacillus gasseri showed an opposite behavior compared to L. crispatus, being more prevalent in not-active vaginal samples. Higher concentrations of several amino acids (i.e., isoleucine, leucine, and aspartate; positively correlated to the abundance of L. crispatus and L. jensenii) lactate, and 4-aminobutyrate were the most significant metabolic fingerprints of highly active samples. Acetate and formate concentrations, on the other hand, were related to the abundances of a group of anaerobic opportunistic bacteria (including Prevotella, Dialister, Olegusella, Peptostreptococcus, Peptoniphilus, Finegoldia and Anaerococcus). Finally, glucose, correlated to Streptococcus, Lachnospira and Alloscardovia genera, emerged as a key molecule of the vaginal environment: indeed, the anti-chlamydial effect of vaginal fluids decreased as glucose concentrations increased. Discussion These findings could pave the way for novel strategies in the prevention and treatment of chlamydial urogenital infections, such as lactobacilli probiotic formulations or lactobacilli-derived postbiotics.
Collapse
Affiliation(s)
- Sara Morselli
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
- National Biodiversity Future Center S.c.a.r.l., Palermo, Italy
| | - Marielle Ezekielle Djusse
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
- National Biodiversity Future Center S.c.a.r.l., Palermo, Italy
| | - Claudio Foschi
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
- National Biodiversity Future Center S.c.a.r.l., Palermo, Italy
| | - Antonella Marangoni
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Lu S, Li Z, Chen X, Chen F, Yao H, Sun X, Cheng Y, Wang L, Dai P. Vaginal microbiota molecular profiling and diagnostic performance of artificial intelligence-assisted multiplex PCR testing in women with bacterial vaginosis: a single-center experience. Front Cell Infect Microbiol 2024; 14:1377225. [PMID: 38644962 PMCID: PMC11026559 DOI: 10.3389/fcimb.2024.1377225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Background Bacterial vaginosis (BV) is a most common microbiological syndrome. The use of molecular methods, such as multiplex real-time PCR (mPCR) and next-generation sequencing, has revolutionized our understanding of microbial communities. Here, we aimed to use a novel multiplex PCR test to evaluate the microbial composition and dominant lactobacilli in non-pregnant women with BV, and combined with machine learning algorithms to determine its diagnostic significance. Methods Residual material of 288 samples of vaginal secretions derived from the vagina from healthy women and BV patients that were sent for routine diagnostics was collected and subjected to the mPCR test. Subsequently, Decision tree (DT), random forest (RF), and support vector machine (SVM) hybrid diagnostic models were constructed and validated in a cohort of 99 women that included 74 BV patients and 25 healthy controls, and a separate cohort of 189 women comprising 75 BV patients, 30 intermediate vaginal microbiota subjects and 84 healthy controls, respectively. Results The rate or abundance of Lactobacillus crispatus and Lactobacillus jensenii were significantly reduced in BV-affected patients when compared with healthy women, while Lactobacillus iners, Gardnerella vaginalis, Atopobium vaginae, BVAB2, Megasphaera type 2, Prevotella bivia, and Mycoplasma hominis were significantly increased. Then the hybrid diagnostic models were constructed and validated by an independent cohort. The model constructed with support vector machine algorithm achieved excellent prediction performance (Area under curve: 0.969, sensitivity: 90.4%, specificity: 96.1%). Moreover, for subjects with a Nugent score of 4 to 6, the SVM-BV model might be more robust and sensitive than the Nugent scoring method. Conclusion The application of this mPCR test can be effectively used in key vaginal microbiota evaluation in women with BV, intermediate vaginal microbiota, and healthy women. In addition, this test may be used as an alternative to the clinical examination and Nugent scoring method in diagnosing BV.
Collapse
Affiliation(s)
- Sihai Lu
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, China
- Department of Research and Development, Shaanxi Lifegen Co., Ltd., Xi’an, China
| | - Zhuo Li
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, China
- Clinical Laboratory, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Xinyue Chen
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, China
- Department of Research and Development, Shaanxi Lifegen Co., Ltd., Xi’an, China
| | - Fengshuangze Chen
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, China
- Academic Center, Henry M Gunn High School, Palo Alto, CA, United States
| | - Hao Yao
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, China
| | - Xuena Sun
- Department of Research and Development, Shaanxi Lifegen Co., Ltd., Xi’an, China
| | - Yimin Cheng
- Department of Obstetrics and Gynecology, The Hospital of Xi’ an Shiyou University, Xi’an, China
| | - Liehong Wang
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Qinghai, Xining, China
| | - Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, China
- Department of Research and Development, Shaanxi Lifegen Co., Ltd., Xi’an, China
| |
Collapse
|
9
|
Carter KA, France MT, Rutt L, Bilski L, Martinez-Greiwe S, Regan M, Brotman RM, Ravel J. Sexual transmission of urogenital bacteria: whole metagenome sequencing evidence from a sexual network study. mSphere 2024; 9:e0003024. [PMID: 38358269 PMCID: PMC10964427 DOI: 10.1128/msphere.00030-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
Sexual transmission of the urogenital microbiota may contribute to adverse sexual and reproductive health outcomes. The extent of sexual transmission of the urogenital microbiota is unclear as prior studies largely investigated specific pathogens. We used epidemiologic data and whole metagenome sequencing to characterize urogenital microbiota strain concordance between participants of a sexual network study. Individuals who screened positive for genital Chlamydia trachomatis were enrolled and referred their sexual contacts from the prior 60-180 days. Snowball recruitment of sexual contacts continued for up to four waves. Vaginal swabs and penile urethral swabs were collected for whole metagenome sequencing. We evaluated bacterial strain concordance using inStrain and network analysis. We defined concordance as ≥99.99% average nucleotide identity over ≥50% shared coverage; we defined putative sexual transmission as concordance between sexual contacts with <5 single-nucleotide polymorphisms per megabase. Of 138 participants, 74 (54%) were female; 120 (87%) had genital chlamydia; and 43 (31%) were recruited contacts. We identified 115 strain-concordance events among 54 participants representing 25 bacterial species. Seven events (6%) were between sexual contacts including putative heterosexual transmission of Fannyhessea vaginae, Gardnerella leopoldii, Prevotella amnii, Sneathia sanguinegens, and Sneathia vaginalis (one strain each), and putative sexual transmission of Lactobacillus iners between female contacts. Most concordance events (108, 94%) were between non-contacts, including eight female participants connected through 18 Lactobacillus crispatus and 3 Lactobacillus jensenii concordant strains, and 14 female and 2 male participants densely interconnected through 52 Gardnerella swidsinskii concordance events.IMPORTANCEEpidemiologic evidence consistently indicates bacterial vaginosis (BV) is sexually associated and may be sexually transmitted, though sexual transmission remains subject to debate. This study is not capable of demonstrating BV sexual transmission; however, we do provide strain-level metagenomic evidence that strongly supports heterosexual transmission of BV-associated species. These findings strengthen the evidence base that supports ongoing investigations of concurrent male partner treatment for reducing BV recurrence. Our data suggest that measuring the impact of male partner treatment on F. vaginae, G. leopoldii, P. amnii, S. sanguinegens, and S. vaginalis may provide insight into why a regimen does or does not perform well. We also observed a high degree of strain concordance between non-sexual-contact female participants. We posit that this may reflect limited dispersal capacity of vaginal bacteria coupled with individuals' comembership in regional transmission networks where transmission may occur between parent and child at birth, cohabiting individuals, or sexual contacts.
Collapse
Affiliation(s)
- Kayla A. Carter
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lindsay Rutt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Bilski
- School of Nursing, University of Maryland, Baltimore, Maryland, USA
| | | | - Mary Regan
- School of Nursing, University of Maryland, Baltimore, Maryland, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Song J, Dong X, Lan Y, Lu Y, Liu X, Kang X, Huang Z, Yue B, Liu Y, Ma W, Zhang L, Yan H, He M, Fan Z, Guo T. Interpretation of vaginal metagenomic characteristics in different types of vaginitis. mSystems 2024; 9:e0137723. [PMID: 38364107 PMCID: PMC10949516 DOI: 10.1128/msystems.01377-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
Although vaginitis is closely related to vaginal microecology in females, the precise composition and functional potential of different types of vaginitis remain unclear. Here, metagenomic sequencing was applied to analyze the vaginal flora in patients with various forms of vaginitis, including cases with a clue cell proportion ranging from 1% to 20% (Clue1_20), bacterial vaginitis (BV), vulvovaginal candidiasis (VVC), and BV combined with VVC (VVC_BV). Our results identified Prevotella as an important biomarker between BV and Clue1_20. Moreover, a gradual decrease was observed in the relative abundance of shikimic acid metabolism associated with bacteria producing indole as well as a decline in the abundance of Gardnerella vaginalis in patients with BV, Clue1_20, and healthy women. Interestingly, the vaginal flora of patients in the VVC_BV group exhibited structural similarities to that of the VVC group, and its potentially functional characteristics resembled those of the BV and VVC groups. Finally, Lactobacillus crispatus was found in high abundance in healthy samples, greatly contributing to the stability of the vaginal environment. For the further study of L. crispatus, we isolated five strains of L. crispatus from healthy samples and evaluated their capacity to inhibit G. vaginalis biofilms and produce lactic acid in vitro to select the potential probiotic candidate for improving vaginitis in future clinical studies. Overall, we successfully identified bacterial biomarkers of different vaginitis and characterized the dynamic shifts in vaginal flora between patients with BV and healthy females. This research advances our understanding and holds great promise in enhancing clinical approaches for the treatment of vaginitis. IMPORTANCE Vaginitis is one of the most common gynecological diseases, mostly caused by infections of pathogens such as Candida albicans and Gardnerella vaginalis. In recent years, it has been found that the stability of the vaginal flora plays an important role in vaginitis. Furthermore, the abundant Lactobacillus-producing rich lactic acid in the vagina provides a healthy acidic environment such as Lactobacillus crispatus. The metabolites of Lactobacillus can inhibit the colonization of pathogens. Here, we collected the vaginal samples of patients with bacterial vaginitis (BV), vulvovaginal candidiasis (VVC), and BV combined with VVC to discover the differences and relationships among the different kinds of vaginitis by metagenomic sequencing. Furthermore, because of the importance of L. crispatus in promoting vaginal health, we isolated multiple strains from vaginal samples of healthy females and chose the most promising strain with potential probiotic benefits to provide clinical implications for treatment strategies.
Collapse
Affiliation(s)
- Jiarong Song
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xue Dong
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yunwei Lu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuena Kang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhonglu Huang
- Meishan Women and Children’s Hospital, Meishan, Sichuan, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Wenjin Ma
- Chenghua District Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Libo Zhang
- Renshou County People’s Hospital, Renshou, Sichuan, China
| | - Haijun Yan
- Meishan Traditional Chinese Medicine Hospital, Meishan, Sichuan, China
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Ardizzone CM, Taylor CM, Toh E, Lillis RA, Elnaggar JH, Lammons JW, Mott PD, Duffy EL, Shen L, Quayle AJ. Association of Chlamydia trachomatis burden with the vaginal microbiota, bacterial vaginosis, and metronidazole treatment. Front Cell Infect Microbiol 2023; 13:1289449. [PMID: 38149008 PMCID: PMC10750252 DOI: 10.3389/fcimb.2023.1289449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is a common coinfection with Chlamydia trachomatis (Ct), and BV-associated bacteria (BVAB) and their products have been implicated in aiding Ct evade natural immunity. Here, we determined if a non-optimal vaginal microbiota was associated with a higher genital Ct burden and if metronidazole, a standard treatment for BV, would reduce Ct burden or aid in natural clearance of Ct infection. Cervicovaginal samples were collected from women at enrollment and, if testing positive for Ct infection, at a follow-up visit approximately one week later. Cervical Ct burden was assessed by inclusion forming units (IFU) and Ct genome copy number (GCN), and 16S rRNA gene sequencing was used to determine the composition of the vaginal microbiota. We observed a six-log spectrum of IFU and an eight-log spectrum of GCN in our study participants at their enrollment visit, but BV, as indicated by Amsel's criteria, Nugent scoring, or VALENCIA community state typing, did not predict infectious and total Ct burden, although IFU : GCN increased with Amsel and Nugent scores and in BV-like community state types. Ct burden was, however, associated with the abundance of bacterial species in the vaginal microbiota, negatively with Lactobacillus crispatus and positively with Prevotella bivia. Women diagnosed with BV were treated with metronidazole, and Ct burden was significantly reduced in those who resolved BV with treatment. A subset of women naturally cleared Ct infection in the interim, typified by low Ct burden at enrollment and resolution of BV. Abundance of many BVAB decreased, and Lactobacillus increased, in response to metronidazole treatment, but no changes in abundances of specific vaginal bacteria were unique to women who spontaneously cleared Ct infection.
Collapse
Affiliation(s)
- Caleb M. Ardizzone
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rebecca A. Lillis
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob H. Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - John W. Lammons
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Patricia Dehon Mott
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Emily L. Duffy
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
12
|
Holm JB, France MT, Gajer P, Ma B, Brotman RM, Shardell M, Forney L, Ravel J. Integrating compositional and functional content to describe vaginal microbiomes in health and disease. MICROBIOME 2023; 11:259. [PMID: 38031142 PMCID: PMC10688475 DOI: 10.1186/s40168-023-01692-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/07/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND A Lactobacillus-dominated vaginal microbiome provides the first line of defense against adverse genital tract health outcomes. However, there is limited understanding of the mechanisms by which the vaginal microbiome modulates protection, as prior work mostly described its composition through morphologic assessment and marker gene sequencing methods that do not capture functional information. To address this gap, we developed metagenomic community state types (mgCSTs) which use metagenomic sequences to describe and define vaginal microbiomes based on both composition and functional potential. RESULTS MgCSTs are categories of microbiomes classified using taxonomy and the functional potential encoded in their metagenomes. MgCSTs reflect unique combinations of metagenomic subspecies (mgSs), which are assemblages of bacterial strains of the same species, within a microbiome. We demonstrate that mgCSTs are associated with demographics such as age and race, as well as vaginal pH and Gram stain assessment of vaginal smears. Importantly, these associations varied between mgCSTs predominated by the same bacterial species. A subset of mgCSTs, including three of the six predominated by Gardnerella vaginalis mgSs, as well as mgSs of L. iners, were associated with a greater likelihood of bacterial vaginosis diagnosed by Amsel clinical criteria. This L. iners mgSs, among other functional features, encoded enhanced genetic capabilities for epithelial cell attachment that could facilitate cytotoxin-mediated cell lysis. Finally, we report a mgSs and mgCST classifier for which source code is provided and may be adapted for use by the microbiome research community. CONCLUSIONS MgCSTs are a novel and easily implemented approach to reduce the dimension of complex metagenomic datasets while maintaining their functional uniqueness. MgCSTs enable the investigation of multiple strains of the same species and the functional diversity in that species. Future investigations of functional diversity may be key to unraveling the pathways by which the vaginal microbiome modulates the protection of the genital tract. Importantly, our findings support the hypothesis that functional differences between vaginal microbiomes, including those that may look compositionally similar, are critical considerations in vaginal health. Ultimately, mgCSTs may lead to novel hypotheses concerning the role of the vaginal microbiome in promoting health and disease, and identify targets for novel prognostic, diagnostic, and therapeutic strategies to improve women's genital health. Video Abstract.
Collapse
Affiliation(s)
- Johanna B Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael T France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle Shardell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Jordan SJ, Wilson L, Ren J, Gupta K, Barnes S, Geisler WM. Natural Clearance of Chlamydia trachomatis Infection Is Associated With Distinct Differences in Cervicovaginal Metabolites. J Infect Dis 2023; 228:1119-1126. [PMID: 37163744 PMCID: PMC10582912 DOI: 10.1093/infdis/jiad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Natural clearance of Chlamydia trachomatis in women occurs in the interval between screening and treatment. In vitro, interferon-γ (IFN-γ)-mediated tryptophan depletion results in C. trachomatis clearance, but whether this mechanism occurs in vivo remains unclear. We previously found that women who naturally cleared C. trachomatis had lower cervicovaginal levels of tryptophan and IFN-γ compared to women with persisting infection, suggesting IFN-γ-independent pathways may promote C. trachomatis clearance. METHODS Cervicovaginal lavages from 34 women who did (n = 17) or did not (n = 17) naturally clear C. trachomatis were subjected to untargeted high-performance liquid chromatography mass-spectrometry to identify metabolites and metabolic pathways associated with natural clearance. RESULTS In total, 375 positively charged metabolites and 149 negatively charged metabolites were annotated. Compared to women with persisting infection, C. trachomatis natural clearance was associated with increased levels of oligosaccharides trehalose, sucrose, melezitose, and maltotriose, and lower levels of indoline and various amino acids. Metabolites were associated with valine, leucine, and isoleucine biosynthesis pathways. CONCLUSIONS The cervicovaginal metabolome in women who did or did not naturally clear C. trachomatis is distinct. In women who cleared C. trachomatis, depletion of various amino acids, especially valine, leucine, and isoleucine, suggests that amino acids other than tryptophan impact C. trachomatis survival in vivo.
Collapse
Affiliation(s)
- Stephen J Jordan
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jie Ren
- Department of Biostatics and Health Data Science, Indiana University, Indianapolis, Indiana, USA
| | - Kanupriya Gupta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William M Geisler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Carter KA, Fodor AA, Balkus JE, Zhang A, Serrano MG, Buck GA, Engel SM, Wu MC, Sun S. Vaginal Microbiome Metagenome Inference Accuracy: Differential Measurement Error according to Community Composition. mSystems 2023; 8:e0100322. [PMID: 36975801 PMCID: PMC10134888 DOI: 10.1128/msystems.01003-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Several studies have compared metagenome inference performance in different human body sites; however, none specifically reported on the vaginal microbiome. Findings from other body sites cannot easily be generalized to the vaginal microbiome due to unique features of vaginal microbial ecology, and investigators seeking to use metagenome inference in vaginal microbiome research are "flying blind" with respect to potential bias these methods may introduce into analyses. We compared the performance of PICRUSt2 and Tax4Fun2 using paired 16S rRNA gene amplicon sequencing and whole-metagenome sequencing data from vaginal samples from 72 pregnant individuals enrolled in the Pregnancy, Infection, and Nutrition (PIN) cohort. Participants were selected from those with known birth outcomes and adequate 16S rRNA gene amplicon sequencing data in a case-control design. Cases experienced early preterm birth (<32 weeks of gestation), and controls experienced term birth (37 to 41 weeks of gestation). PICRUSt2 and Tax4Fun2 performed modestly overall (median Spearman correlation coefficients between observed and predicted KEGG ortholog [KO] relative abundances of 0.20 and 0.22, respectively). Both methods performed best among Lactobacillus crispatus-dominated vaginal microbiotas (median Spearman correlation coefficients of 0.24 and 0.25, respectively) and worst among Lactobacillus iners-dominated microbiotas (median Spearman correlation coefficients of 0.06 and 0.11, respectively). The same pattern was observed when evaluating correlations between univariable hypothesis test P values generated with observed and predicted metagenome data. Differential metagenome inference performance across vaginal microbiota community types can be considered differential measurement error, which often causes differential misclassification. As such, metagenome inference will introduce hard-to-predict bias (toward or away from the null) in vaginal microbiome research. IMPORTANCE Compared to taxonomic composition, the functional potential within a bacterial community is more relevant to establishing mechanistic understandings and causal relationships between the microbiome and health outcomes. Metagenome inference attempts to bridge the gap between 16S rRNA gene amplicon sequencing and whole-metagenome sequencing by predicting a microbiome's gene content based on its taxonomic composition and annotated genome sequences of its members. Metagenome inference methods have been evaluated primarily among gut samples, where they appear to perform fairly well. Here, we show that metagenome inference performance is markedly worse for the vaginal microbiome and that performance varies across common vaginal microbiome community types. Because these community types are associated with sexual and reproductive outcomes, differential metagenome inference performance will bias vaginal microbiome studies, obscuring relationships of interest. Results from such studies should be interpreted with substantial caution and the understanding that they may over- or underestimate associations with metagenome content.
Collapse
Affiliation(s)
- Kayla A. Carter
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Jennifer E. Balkus
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Angela Zhang
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Myrna G. Serrano
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gregory A. Buck
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Stephanie M. Engel
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael C. Wu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
15
|
Holm JB, Carter KA, Ravel J, Brotman RM. Lactobacillus iners and genital health: molecular clues to an enigmatic vaginal species. Curr Infect Dis Rep 2023; 25:67-75. [PMID: 37234911 PMCID: PMC10209668 DOI: 10.1007/s11908-023-00798-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 03/09/2023]
Abstract
Purpose of review Vaginal lactobacilli are recognized as important drivers of genital health including protection against bacterial vaginosis and sexually transmitted infections. Lactobacillus iners is distinct from L. crispatus, L. gasseri, and L. jensenii by its high global prevalence in vaginal microbiomes, relatively small genome, production of only L-lactic acid, and inconsistent associations with genital health outcomes. In this review, we summarize our current understanding of the role of L. iners in the vaginal microbiome, highlight the importance of strain-level consideration for this species, and explain that while marker gene-based characterization of the composition of the vaginal microbiota does not capture strain-level resolution, whole metagenome sequencing can aid in expanding our understanding of this species in genital health. Recent findings L. iners exists in the vaginal microbiome as a unique combination of strains. The functional repertoires of these strain combinations are likely wide and contribute to the survival of this species in a variety of vaginal microenvironments. In published studies to date, strain-specific effects are aggregated and may yield imprecise estimates of risk associated with this species. Summary The worldwide high prevalence of Lactobacillus iners warrants more research into its functional roles in the vaginal microbiome and how it may directly impact susceptibility to infections. By incorporating strain-level resolution into future research endeavors, we may begin to appreciate L. iners more thoroughly and identify novel therapeutic targets for a variety of genital health challenges.
Collapse
Affiliation(s)
- Johanna B. Holm
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Kayla A. Carter
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of
Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|