1
|
Srebotnik Kirbiš I, Roque RR, Strojan Fležar M. Integrated On-Slide Positive Controls for Immunocytochemistry on Cytology Slides. Acta Cytol 2024:1-7. [PMID: 39033750 DOI: 10.1159/000540413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Integrated on-slide positive controls are a standard quality assurance and quality control measure for immunohistochemistry on formalin-fixed paraffin-embedded tissue sections. They ensure identical analytical conditions for the control and patient samples. Our aim was to develop a procedure for preparing integrated on-slide positive controls for immunocytochemistry (ICC) on methanol-fixed cytospins. METHODS Leftover diagnostic cytology samples with sufficient cells and confirmed expression of Calretinin, MOC31, TTF1, and hormone receptors were used as control samples. Cells from the control samples were deposited on the peripheral part of objective slides using standard cytocentrifuge equipment. Cytospins were immediately fixed in methanol for at least 30 min and then covered with polyethylene glycol (PEG). Completely dry and solid PEG was removed from the central part of the objective slides and stored at room temperature. Patient samples were subsequently added to the central part of a PEG-protected slide, with an appropriate positive control placed on the peripheral part, and then fixed in methanol. ICC was performed on the Ventana/Roche automated platform ULTRA, using optimized and validated protocols for TTF1, hormone receptors, and double immunostaining for Calretinin/MOC31. The quality of ICC reactions for both deposits on the same slide and potential cell carryover was evaluated retrospectively. RESULTS In the period from October 2021 to December 2023, the majority of integrated positive controls (364/368, 99%) consistently exhibited unequivocally positive reactions for TTF-1 (n = 93), hormone receptors (n = 84), and double staining for Calretinin/MOC31 (n = 191), with easily interpretable ICC reactions on corresponding patient samples. No obvious carryover of cells from the control sample to the patient sample was observed during this period. CONCLUSION A novel approach developed for preparing integrated on-slide positive controls for ICC on methanol-fixed cytospins using standard cytocentrifugation is low-cost and can be widely applied in diagnostic cytology laboratories. Simultaneous ICC procedures for the control and patient samples on the same slide ensure identical analytical conditions for both samples, providing the highest level of quality control while reducing costs. Interpreting both ICC reactions on the same slide is time-efficient and convenient.
Collapse
Affiliation(s)
- Irena Srebotnik Kirbiš
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ruben Rodrigues Roque
- Anatomic Pathology Department, Portuguese Oncology Institute Francisco Gentil, Lisbon, Portugal
- NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
2
|
Wang J, Xia YC, Tian BX, Li JT, Li HY, Dong H, Li XG, Yu H, Zhu YY, Ma J, Jiang YJ, Jin GZ. Novel quantitative immunohistochemistry method using histone H3, family 3B as the internal reference standard for measuring human epidermal growth factor receptor 2 expression in breast cancer. Cancer 2024; 130:1424-1434. [PMID: 38217532 DOI: 10.1002/cncr.35176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Immunohistochemistry (IHC) is an essential technique in surgical and clinical pathology for detecting diagnostic, prognostic, and predictive biomarkers for personalized cancer therapy. However, the lack of standardization and reference controls results in poor reproducibility, and a reliable tool for IHC quantification is urgently required. The objective of this study was to describe a novel approach in which H3F3B (histone H3, family 3B) can be used as an internal reference standard to quantify protein expression levels using IHC. METHODS The authors enrolled 89 patients who had human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). They used a novel IHC-based assay to measure protein expression using H3F3B as the internal reference standard. H3F3B was uniformly expressed at the protein level in all tumor regions in cancer tissues. HER2 expression levels were measured with the H-score using HALO software. RESULTS Kaplan-Meier analysis indicated that, among patients who had HER2-positive BC in The Cancer Genome Atlas data set and the authors' data set, the subgroup with low HER2 expression had a significantly better prognosis than the subgroup with high HER2 expression. Furthermore, the authors observed that HER2 expression levels were precisely evaluated using the proposed method, which can classify patients who are at higher risk of HER2-positive BC to receive trastuzumab-based adjuvant therapy. Dual-color IHC with H3F3B is an excellent tool for internal and external quality control of HER2 expression assays. CONCLUSIONS The proposed IHC-based quantification method accurately assesses HER2 expression levels and provides insights for predicting clinical prognosis in patients with HER2-positive BC who receive trastuzumab-based adjuvant therapy.
Collapse
Affiliation(s)
- Jie Wang
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye-Chen Xia
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bao-Xing Tian
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ju-Tang Li
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng-Yu Li
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Guang Li
- Department of General Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Hua Yu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yu-Yao Zhu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun Ma
- Department of General Practitioners, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Jie Jiang
- Department of Pathology, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Guang-Zhi Jin
- Department of Pathology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Canini V, Eccher A, d’Amati G, Fusco N, Maffini F, Lepanto D, Martini M, Cazzaniga G, Paliogiannis P, Lobrano R, L’Imperio V, Pagni F. Digital Pathology Applications for PD-L1 Scoring in Head and Neck Squamous Cell Carcinoma: A Challenging Series. J Clin Med 2024; 13:1240. [PMID: 38592086 PMCID: PMC10932078 DOI: 10.3390/jcm13051240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
The assessment of programmed death-ligand 1 (PD-L1) combined positive scoring (CPS) in head and neck squamous cell carcinoma (HNSCC) is challenged by pre-analytical and inter-observer variabilities. An educational program to compare the diagnostic performances between local pathologists and a board of pathologists on 11 challenging cases from different Italian pathology centers stained with PD-L1 immunohistochemistry on a digital pathology platform is reported. A laboratory-developed test (LDT) using both 22C3 (Dako) and SP263 (Ventana) clones on Dako or Ventana platforms was compared with the companion diagnostic (CDx) Dako 22C3 pharm Dx assay. A computational approach was performed to assess possible correlations between stain features and pathologists' visual assessments. Technical discordances were noted in five cases (LDT vs. CDx, 45%), due to an abnormal nuclear/cytoplasmic diaminobenzidine (DAB) stain in LDT (n = 2, 18%) and due to variation in terms of intensity, dirty background, and DAB droplets (n = 3, 27%). Interpretative discordances were noted in six cases (LDT vs. CDx, 54%). CPS remained unchanged, increased, or decreased from LDT to CDx in three (27%) cases, two (18%) cases, and one (9%) case, respectively, around relevant cutoffs (1 and 20, k = 0.63). Differences noted in DAB intensity/distribution using computational pathology partly explained the LDT vs. CDx differences in two cases (18%). Digital pathology may help in PD-L1 scoring, serving as a second opinion consultation platform in challenging cases. Computational and artificial intelligence tools will improve clinical decision-making and patient outcomes.
Collapse
Affiliation(s)
- Valentina Canini
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, 20126 Milan, Italy; (V.C.); (G.C.); (V.L.); (F.P.)
| | - Albino Eccher
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, 41124 Modena, Italy
| | - Giulia d’Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Roma, 00185 Rome, Italy;
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (N.F.); (F.M.); (D.L.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Fausto Maffini
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (N.F.); (F.M.); (D.L.)
| | - Daniela Lepanto
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (N.F.); (F.M.); (D.L.)
| | - Maurizio Martini
- Department of Pathology, University of Messina, 98122 Messina, Italy;
| | - Giorgio Cazzaniga
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, 20126 Milan, Italy; (V.C.); (G.C.); (V.L.); (F.P.)
| | - Panagiotis Paliogiannis
- Anatomic Pathology and Histology, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.P.); (R.L.)
| | - Renato Lobrano
- Anatomic Pathology and Histology, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.P.); (R.L.)
| | - Vincenzo L’Imperio
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, 20126 Milan, Italy; (V.C.); (G.C.); (V.L.); (F.P.)
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, 20126 Milan, Italy; (V.C.); (G.C.); (V.L.); (F.P.)
| |
Collapse
|
4
|
Xie T, Peng S, Liu S, Zheng M, Diao W, Ding M, Fu Y, Guo H, Zhao W, Zhuang J. Multi-cohort validation of Ascore: an anoikis-based prognostic signature for predicting disease progression and immunotherapy response in bladder cancer. Mol Cancer 2024; 23:30. [PMID: 38341586 PMCID: PMC10858533 DOI: 10.1186/s12943-024-01945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Bladder cancer ranks as the 10th most common cancer worldwide, with deteriorating prognosis as the disease advances. While immune checkpoint inhibitors (ICIs) have shown promise in clinical therapy in both operable and advanced bladder cancer, identifying patients who will respond is challenging. Anoikis, a specialized form of cell death that occurs when cells detach from the extracellular matrix, is closely linked to tumor progression. Here, we aimed to explore the anoikis-based biomarkers for bladder cancer prognosis and immunotherapeutic decisions. Through consensus clustering, we categorized patients from the TCGA-BLCA cohort into two clusters based on anoikis-related genes (ARGs). Significant differences in survival outcome, clinical features, tumor immune environment (TIME), and potential ICIs response were observed between clusters. We then formulated a four-gene signature, termed "Ascore", to encapsulate this gene expression pattern. The Ascore was found to be closely associated with survival outcome and served as an independent prognosticator in both the TCGA-BLCA cohort and the IMvigor210 cohort. It also demonstrated superior predictive capacity (AUC = 0.717) for bladder cancer immunotherapy response compared to biomarkers like TMB and PD-L1. Finally, we evaluated Ascore's independent prognostic performance as a non-invasive biomarker in our clinical cohort (Gulou-Cohort1) using circulating tumor cells detection, achieving an AUC of 0.803. Another clinical cohort (Gulou-Cohort2) consisted of 40 patients undergoing neoadjuvant anti-PD-1 treatment was also examined. Immunohistochemistry of Ascore in these patients revealed its correlation with the pathological response to bladder cancer immunotherapy (P = 0.004). Impressively, Ascore (AUC = 0.913) surpassed PD-L1 (AUC = 0.662) in forecasting immunotherapy response and indicated better net benefit. In conclusion, our study introduces Ascore as a novel, robust prognostic biomarker for bladder cancer, offering a new tool for enhancing immunotherapy decisions and contributing to the tailored treatment approaches in this field.
Collapse
Affiliation(s)
- Tianlei Xie
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Shan Peng
- Department of Pathology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shujun Liu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Minghao Zheng
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yao Fu
- Department of Pathology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Wei Zhao
- Department of Clinical Biochemistry School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, No. 783, Xindu Rd, Chengdu, 610500, China.
| | - Junlong Zhuang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Verbeke H, Van Hecke D, Bauraing C, Dierick AM, Colleye O, Dalle I, Dewachter K, Guiot Y, Lequeu R, Vanderheyden N, Zwaenepoel K, Croes R. Belgian Recommendations for Analytical Verification and Validation of Immunohistochemical Tests in Laboratories of Anatomic Pathology. Appl Immunohistochem Mol Morphol 2024; 32:1-16. [PMID: 38054253 PMCID: PMC10695338 DOI: 10.1097/pai.0000000000001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/10/2023] [Indexed: 12/07/2023]
Abstract
Analytical verification and validation of immunohistochemical (IHC) tests and their equipment are common practices for today's anatomic pathology laboratories. Few references or guidelines are available on how this should be performed. The study of Sciensano (the Belgian national competent authority regarding licensing of medical laboratories) performed in 2016, demonstrated a significant interlaboratory variation in validation procedures of IHC tests among Belgian laboratories. These results suggest the unavailability of practical information on the approach to the verification and validation of these tests. The existing Belgian Practice Guideline for the implementation of a quality management system in anatomic pathology laboratories has been reviewed to meet this demand and, in addition, to prepare the laboratories for the EU-IVD revised regulations (IVDR). This paper describes Belgian recommendations for the verification and validation of IHC tests before implementation, for ongoing validation, and for revalidation. For each type of test (according to the IVDR classification and the origin) and its intended use (purpose), it addresses how to perform analytical verification/validation by recommending: (1) the number of cases in the validation set, (2) the performance characteristics to be evaluated, (3) the objective acceptance criteria, (4) the evaluation method for the obtained results, and (5) how and when to revalidate. A literature study and a risk analysis taking into account the majority of variables regarding verification/validation of methods have been performed, resulting in an expert consensus recommendation that is a compromise among achievability, affordability, and patient safety. This new consensus recommendation has been incorporated in the aforementioned ISO 15189:2012-based Practice Guideline.
Collapse
Affiliation(s)
| | | | | | | | | | - Ignace Dalle
- Laboratory of Anatomic Pathology, AZ St. Lucas, Bruges
| | | | - Yves Guiot
- Laboratory of Anatomic Pathology, Université Catholique Louvain, Brussels
| | | | | | | | - Romaric Croes
- Laboratory of Anatomic Pathology, AZ St. Blasius, Dendermonde, Belgium
| |
Collapse
|
6
|
Xiong DD, He RQ, Huang ZG, Wu KJ, Mo YY, Liang Y, Yang DP, Wu YH, Tang ZQ, Liao ZT, Chen G. Global bibliometric mapping of the research trends in artificial intelligence-based digital pathology for lung cancer over the past two decades. Digit Health 2024; 10:20552076241277735. [PMID: 39233894 PMCID: PMC11372859 DOI: 10.1177/20552076241277735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Background and Objective The rapid development of computer technology has led to a revolutionary transformation in artificial intelligence (AI)-assisted healthcare. The integration of whole-slide imaging technology with AI algorithms has facilitated the development of digital pathology for lung cancer (LC). However, there is a lack of comprehensive scientometric analysis in this field. Methods A bibliometric analysis was conducted on 197 publications related to digital pathology in LC from 502 institutions across 39 countries, published in 97 academic journals in the Web of Science Core Collection between 2004 and 2023. Results Our analysis has identified the United States and China as the primary research nations in the field of digital pathology in LC. However, it is important to note that the current research primarily consists of independent studies among countries, emphasizing the necessity of strengthening academic collaboration and data sharing between nations. The current focus and challenge of research related to digital pathology in LC lie in enhancing the accuracy of classification and prediction through improved deep learning algorithms. The integration of multi-omics studies presents a promising future research direction. Additionally, researchers are increasingly exploring the application of digital pathology in immunotherapy for LC patients. Conclusions In conclusion, this study provides a comprehensive knowledge framework for digital pathology in LC, highlighting research trends, hotspots, and gaps in this field. It also provides a theoretical basis for the application of AI in clinical decision-making for LC patients.
Collapse
Affiliation(s)
- Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kun-Jun Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ying-Yu Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Liang
- Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Da-Ping Yang
- Department of Pathology, Guigang City People's Hospital, Guigang, Guangxi, China
| | - Ying-Hui Wu
- Department of Pathology, The First People's Hospital of Yulin, Yulin, Guangxi, China
| | - Zhong-Qing Tang
- Department of Pathology, Gongren Hospital of Wuzhou, Wuzhou, Guangxi, China
| | - Zu-Tuan Liao
- Department of Pathology, The First People's Hospital of Hechi, Hechi, Guangxi, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Siratavičiūtė V, Pangonytė D, Utkienė L, Jusienė L, Marcinkevičienė J, Stanionienė Z, Radikė R. Myocardial Angiotensin-Converting Enzyme 2 Protein Expression in Ischemic Heart Failure. Int J Mol Sci 2023; 24:17145. [PMID: 38138974 PMCID: PMC10743033 DOI: 10.3390/ijms242417145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2)-angiotensin-(1-7)-Mas receptor axis plays a significant role in regulating myocardial remodeling and the development of heart failure (HF), with ACE2 being the primary focus. However, contemporary understanding of the membrane-bound form of the human ACE2 protein remains insufficient. The purpose of this study was to determine the expression of ACE2 protein in different cells of the left ventricular myocardium in non-diseased hearts and at various stages of ischemic HF. A total of 103 myocardial tissue samples from the left ventricle underwent quantitative and semi-quantitative immunohistochemical analysis. Upon assessing ACE2 immunostaining in all myocardial cells through unselective digital image analysis, there was no change in the stage A HF group. Nevertheless, the expression of ACE2 membrane protein in cardiomyocytes showed a tendency to increase, while non-cardiomyocyte ACE2 expression decreased significantly (p < 0.001). In the stage B HF group, the intensity of ACE2 immunostaining continued to increase with rising cardiomyocyte ACE2 expression (p < 0.001). Non-cardiomyocyte expression, in contrast, remained similar to that observed in the stage A HF group. In the stages C/D HF group, ACE2 expression reached its highest level in cardiomyocytes (p < 0.001), while ACE2 expression in non-cardiomyocytes was the lowest (p < 0.001). These changes in ACE2 protein levels are associated with left ventricular remodeling in ischemic HF.
Collapse
Affiliation(s)
| | - Dalia Pangonytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.S.); (L.U.); (L.J.); (J.M.); (Z.S.); (R.R.)
| | | | | | | | | | | |
Collapse
|
8
|
Phipps WS, Kilgore MR, Kennedy JJ, Whiteaker JR, Hoofnagle AN, Paulovich AG. Clinical Proteomics for Solid Organ Tissues. Mol Cell Proteomics 2023; 22:100648. [PMID: 37730181 PMCID: PMC10692389 DOI: 10.1016/j.mcpro.2023.100648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.
Collapse
Affiliation(s)
- William S Phipps
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark R Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
9
|
Nielsen S, Bzorek M, Vyberg M, Røge R. Lessons Learned, Challenges Taken, and Actions Made for "Precision" Immunohistochemistry. Analysis and Perspectives From the NordiQC Proficiency Testing Program. Appl Immunohistochem Mol Morphol 2023; 31:452-458. [PMID: 36194495 PMCID: PMC10396077 DOI: 10.1097/pai.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
Immunohistochemistry (IHC) has for decades been an integrated method within pathology applied to gain diagnostic, prognostic, and predictive information. However, the multimodality of the analytical phase of IHC is a challenge to ensure the reproducibility of IHC, which has been documented by external quality assessment (EQA) programs for many biomarkers. More than 600 laboratories participate in the Nordic immunohistochemical Quality Control EQA program for IHC. In the period, 2017-2021, 65 different biomarkers were assessed and a total of 31,967 results were evaluated. An overall pass rate of 79% was obtained being an improvement compared with 71% for the period, 2003-2015. The pass rates for established predictive biomarkers (estrogen receptor, progesterone receptor, and HER2) for breast carcinoma were most successful showing mean pass rates of 89% to 92%. Diagnostic IHC biomarkers as PAX8, SOX10, and different cytokeratins showed a wide spectrum of pass rates ranging from 37% to 95%, mean level of 75%, and attributed to central parameters as access to sensitive and specific antibodies but also related to purpose of the IHC test and validation performed accordingly to this. Seven new diagnostic biomarkers were introduced, and all showed inferior pass rates compared with the average level for diagnostic biomarkers emphasizing the challenge to optimize, validate, and implement new IHC biomarkers. Nordic immunohistochemical Quality Control operates by "Fit-For-Purpose" EQA principles and for programmed death-ligand 1, 2 segments are offered aligned to the "3-dimensional" approach-bridging diagnostic tests, drugs to be offered, and diseases addressed. Mean pass rates of 65% and 79% was obtained in the 2 segments for programmed death-ligand 1.
Collapse
Affiliation(s)
- Søren Nielsen
- NordiQC, Department of Pathology, Aalborg University Hospital, Aalborg
| | - Michael Bzorek
- Department of Surgical Pathology, Zealand University Hospital, Roskilde
| | - Mogens Vyberg
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Rasmus Røge
- NordiQC, Department of Pathology, Aalborg University Hospital, Aalborg
| |
Collapse
|
10
|
Sompuram SR, Vani K, Ryan L, Johnson C, Szabolcs M, Peruyero L, Balaton A, Pierrot S, Joseph L, Pilichowska M, Naber S, Goldsmith J, Green S, Bogen SA. Validation of Linear Range HER2/Estrogen Receptor/Progesterone Receptor IHControls for Daily Quality Assurance. Am J Clin Pathol 2023; 159:274-282. [PMID: 36779320 PMCID: PMC10010069 DOI: 10.1093/ajcp/aqac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVES To evaluate a new US Food and Drug Administration (FDA)-cleared immunohistochemistry (IHC) control (IHControls [Boston Cell Standards]) comprising peptide epitopes for HER2, estrogen receptor (ER), and progesterone receptor (PR) attached to cell-sized microspheres and to compare its performance against conventional tissue controls. METHODS IHControls and tissue/cell line controls for HER2, ER, and PR were compared side by side daily at 5 clinical IHC laboratories for 1 to 2 months. Separately, the sensitivity of the 2 types of controls was evaluated in simulated IHC assay failure experiments by diluting the primary antibody. Additional evaluations included lot-to-lot manufacturing reproducibility of 3 independent lots and specificity against 26 antigenically irrelevant IHC stains. RESULTS Side-by-side testing revealed a 99.6% concordance between IHControls and tissue controls across 5 IHC laboratories and 766 individual evaluations. Three discordant quality control events were the result of operator error. Simulated assay failure data showed that both IHControls and tissue controls are similarly capable of detecting IHC staining errors. Manufacturing reproducibility of IHControls showed less than 10% variability (coefficient of variation). No cross-reactions were detected from 26 antigenically irrelevant IHC stains. CONCLUSIONS IHControls, the first FDA-cleared IHC controls, can sensitively and accurately detect IHC assay problems, similar to tissue controls.
Collapse
|
11
|
Locke D, Hoyt CC. Companion diagnostic requirements for spatial biology using multiplex immunofluorescence and multispectral imaging. Front Mol Biosci 2023; 10:1051491. [PMID: 36845550 PMCID: PMC9948403 DOI: 10.3389/fmolb.2023.1051491] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Immunohistochemistry has long been held as the gold standard for understanding the expression patterns of therapeutically relevant proteins to identify prognostic and predictive biomarkers. Patient selection for targeted therapy in oncology has successfully relied upon standard microscopy-based methodologies, such as single-marker brightfield chromogenic immunohistochemistry. As promising as these results are, the analysis of one protein, with few exceptions, no longer provides enough information to draw effective conclusions about the probability of treatment response. More multifaceted scientific queries have driven the development of high-throughput and high-order technologies to interrogate biomarker expression patterns and spatial interactions between cell phenotypes in the tumor microenvironment. Such multi-parameter data analysis has been historically reserved for technologies that lack the spatial context that is provided by immunohistochemistry. Over the past decade, technical developments in multiplex fluorescence immunohistochemistry and discoveries made with improving image data analysis platforms have highlighted the importance of spatial relationships between certain biomarkers in understanding a patient's likelihood to respond to, typically, immune checkpoint inhibitors. At the same time, personalized medicine has instigated changes in both clinical trial design and its conduct in a push to make drug development and cancer treatment more efficient, precise, and economical. Precision medicine in immuno-oncology is being steered by data-driven approaches to gain insight into the tumor and its dynamic interaction with the immune system. This is particularly necessary given the rapid growth in the number of trials involving more than one immune checkpoint drug, and/or using those in combination with conventional cancer treatments. As multiplex methods, like immunofluorescence, push the boundaries of immunohistochemistry, it becomes critical to understand the foundation of this technology and how it can be deployed for use as a regulated test to identify the prospect of response from mono- and combination therapies. To that end, this work will focus on: 1) the scientific, clinical, and economic requirements for developing clinical multiplex immunofluorescence assays; 2) the attributes of the Akoya Phenoptics workflow to support predictive tests, including design principles, verification, and validation needs; 3) regulatory, safety and quality considerations; 4) application of multiplex immunohistochemistry through lab-developed-tests and regulated in vitro diagnostic devices.
Collapse
Affiliation(s)
- Darren Locke
- Clinical Assay Development, Akoya Biosciences, Marlborough, MA, United States,*Correspondence: Darren Locke,
| | - Clifford C. Hoyt
- Translational and Scientific Affairs, Akoya Biosciences, Marlborough, MA, United States
| |
Collapse
|
12
|
Gru AA, Lim MS, Dogan A, Horwitz SM, Delabie J, Fu K, Peker D, Reddy VVB, Xu ML, Vij K, Slack GW, Miranda RN, Jagadeesh D, Lisano JM, Hsi ED, Torlakovic E. Best Practices in CD30 Immunohistochemistry Testing, Interpretation, and Reporting: An Expert Panel Consensus. Arch Pathol Lab Med 2023; 147:79-86. [PMID: 35472771 DOI: 10.5858/arpa.2021-0270-oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/31/2022]
Abstract
CONTEXT.— Although CD30 testing is an established tool in the diagnostic workup of lymphomas, it is also emerging as a predictive biomarker that informs treatment. The current definition of CD30 positivity by immunohistochemistry is descriptive and based on reactivity in lymphomas that are defined by their universal strong expression of CD30, rather than any established threshold. Challenges include inconsistencies with preanalytic variables, tissue processing, pathologist readout, and with the pathologist and oncologist interpretation of reported results. OBJECTIVE.— To develop and propose general best practice recommendations for reporting CD30 expression by immunohistochemistry in lymphoma biopsies to harmonize practices across institutions and facilitate assessment of its significance in clinical decision-making. DESIGN.— Following literature review and group discussion, the panel of 14 academic hematopathologists and 2 clinical/academic hematologists/oncologists divided into 3 working groups. Each working group was tasked with assessing CD30 testing by immunohistochemistry, CD30 expression readout, or CD30 expression interpretation. RESULTS.— Panel recommendations were reviewed and discussed. An online survey was conducted to confirm the consensus recommendations. CONCLUSIONS.— CD30 immunohistochemistry is required for all patients in whom classic Hodgkin lymphoma and any lymphoma within the spectrum of peripheral T-cell lymphoma are differential diagnostic considerations. The panel reinforced and summarized that immunohistochemistry is the preferred methodology and any degree of CD30 expression should be reported. For diagnostic purposes, the interpretation of CD30 expression should follow published guidelines. To inform therapeutic decisions, report estimated percent positive expression in tumor cells (or total cells where applicable) and record descriptively if nontumor cells are positive.
Collapse
Affiliation(s)
- Alejandro A Gru
- From the Department of Pathology, E. Couric Clinical Cancer Center, University of Virginia, Charlottesville (Gru)
| | - Megan S Lim
- The Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia (Lim)
| | - Ahmet Dogan
- The Department of Pathology and Laboratory Medicine (Dogan), Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven M Horwitz
- The Department of Medical Oncology (Horwitz), Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jan Delabie
- The Department of Laboratory Medicine & Pathobiology, University Health Network, Toronto, Ontario, Canada (Delabie)
| | - Kai Fu
- The Department of Pathology, Roswell Park Cancer Institution, Buffalo, New York (Fu)
| | - Deniz Peker
- The Department of Pathology & Laboratory Medicine, Emory University, Atlanta, Georgia (Peker)
| | - Vishnu V B Reddy
- The Department of Pathology, University of Alabama Medical Center, Birmingham (Reddy)
| | - Mina L Xu
- The Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut (Xu)
| | - Kiran Vij
- The Departments of Internal Medicine and Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri (Vij)
| | - Graham W Slack
- The Department of Pathology and Laboratory Medicine, British Columbia Cancer, Vancouver, British Columbia, Canada (Slack)
| | - Roberto N Miranda
- The Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston (Miranda)
| | - Deepa Jagadeesh
- The Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio (Jagadeesh)
| | - Julie M Lisano
- Medical Affairs, Seagen Inc, Bothell, Washington (Lisano)
| | - Eric D Hsi
- The Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Hsi)
| | - Emina Torlakovic
- The Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada (Torlakovic)
| |
Collapse
|
13
|
Lai HZ, Han JR, Fu X, Ren YF, Li ZH, You FM. Targeted Approaches to HER2-Low Breast Cancer: Current Practice and Future Directions. Cancers (Basel) 2022; 14:cancers14153774. [PMID: 35954438 PMCID: PMC9367369 DOI: 10.3390/cancers14153774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary HER2-low breast cancer (BC) accounts for more than half of breast cancer patients. Anti-HER2 therapy has been ineffective in HER2-low BC, for which palliative chemotherapy is the main treatment modality. The definitive efficacy of T-Dxd in HER2-low BC breaks previous treatment strategies, which will redefine HER2-low and thus reshape anti-HER2 therapy. This review summarizes detection technologies and novel agents for HER2-low BC, and explores their possible role in future clinics, to provide ideas for the diagnosis and treatment of HER2-low BC. Abstract HER2-low breast cancer (BC) has a poor prognosis, making the development of more suitable treatment an unmet clinical need. While chemotherapy is the main method of treatment for HER2-low BC, not all patients benefit from it. Antineoplastic therapy without chemotherapy has shown promise in clinical trials and is being explored further. As quantitative detection techniques become more advanced, they assist in better defining the expression level of HER2 and in guiding the development of targeted therapies, which include directly targeting HER2 receptors on the cell surface, targeting HER2-related intracellular signaling pathways and targeting the immune microenvironment. A new anti-HER2 antibody-drug conjugate called T-DM1 has been successfully tested and found to be highly effective in clinical trials. With this progress, it could eventually be transformed from a disease without a defined therapeutic target into a disease with a defined therapeutic molecular target. Furthermore, efforts are being made to compare the sequencing and combination of chemotherapy, endocrine therapy, and HER2-targeted therapy to improve prognosis to customize the subtype of HER2 low expression precision treatment regimens. In this review, we summarize the current and upcoming treatment strategies, to achieve accurate management of HER2-low BC.
Collapse
|
14
|
Conde E, Rojo F, Gómez J, Enguita AB, Abdulkader I, González A, Lozano D, Mancheño N, Salas C, Salido M, Salido-Ruiz E, de Álava E. Molecular diagnosis in non-small-cell lung cancer: expert opinion on ALK and ROS1 testing. J Clin Pathol 2022; 75:145-153. [PMID: 33875457 PMCID: PMC8862096 DOI: 10.1136/jclinpath-2021-207490] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/09/2023]
Abstract
The effectiveness of targeted therapies with tyrosine kinase inhibitors in non-small-cell lung cancer (NSCLC) depends on the accurate determination of the genomic status of the tumour. For this reason, molecular analyses to detect genetic rearrangements in some genes (ie, ALK, ROS1, RET and NTRK) have become standard in patients with advanced disease. Since immunohistochemistry is easier to implement and interpret, it is normally used as the screening procedure, while fluorescence in situ hybridisation (FISH) is used to confirm the rearrangement and decide on ambiguous immunostainings. Although FISH is considered the most sensitive method for the detection of ALK and ROS1 rearrangements, the interpretation of results requires detailed guidelines. In this review, we discuss the various technologies available to evaluate ALK and ROS1 genomic rearrangements using these techniques. Other techniques such as real-time PCR and next-generation sequencing have been developed recently to evaluate ALK and ROS1 gene rearrangements, but some limitations prevent their full implementation in the clinical setting. Similarly, liquid biopsies have the potential to change the treatment of patients with advanced lung cancer, but further research is required before this technology can be applied in routine clinical practice. We discuss the technical requirements of laboratories in the light of quality assurance programmes. Finally, we review the recent updates made to the guidelines for the determination of molecular biomarkers in patients with NSCLC.
Collapse
Affiliation(s)
- Esther Conde
- Department of Pathology and Laboratory of Therapeutic Targets & CIBERONC, HM Hospitales, Madrid, Spain
| | - Federico Rojo
- Department of Pathology, Hospital Universitario Fundacion Jiménez Díaz, Madrid, Spain
| | - Javier Gómez
- Department of Pathology, Hospital Universitario Marques de Valdecilla, Santander, Cantabria, Spain
- Instituto de Investigación Sanitaria Valdecilla IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Ana Belén Enguita
- Department of Pathology, Clínica Dermatológica Internacional, Madrid, Spain
| | - Ihab Abdulkader
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Ana González
- Department of Pathology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Dolores Lozano
- Department of Pathology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Nuria Mancheño
- Department of Pathology, La Fe University and Polytechnic Hospital, Valencia, Comunidad Valenciana, Spain
| | - Clara Salas
- Department of Pathology, Hospital Universitario Puerta del Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Marta Salido
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Eduardo Salido-Ruiz
- Department of Pathology, Hospital Universitario de Canarias, La Laguna, Canarias, Spain
| | - Enrique de Álava
- Department of Pathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
15
|
Chen Y, Yang H, Cheng Z, Chen L, Peng S, Wang J, Yang M, Lin C, Chen Y, Wang Y, Huang L, Chen Y, Li W, Ke Z. A whole-slide image (WSI)-based immunohistochemical feature prediction system improves the subtyping of lung cancer. Lung Cancer 2022; 165:18-27. [PMID: 35065344 DOI: 10.1016/j.lungcan.2022.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clinically, accurate pathological diagnosis is often challenged by insufficient tissue amounts and the unaffordability of additional immunohistochemical or genetic tests; thus, there is an urgent need for a universal approach to improve the subtyping of lung cancer without the above limitations. Here we aimed to develop a deep learning system to predict the immunohistochemistry (IHC) phenotype directly from whole-slide images (WSIs) to improve the subtyping of lung cancer from surgical resection and biopsy specimens. METHODS A total of 1914 patients with lung cancer from three independent hospitals in China were enrolled for WSI-based immunohistochemical feature prediction system (WIFPS) development and validation. RESULTS The WIFPS could directly predict the IHC status of nine subtype-specific biomarkers, including CK7, TTF-1, Napsin A, CK5/6, P63, P40, CD56, Synaptophysin, and Chromogranin A, achieving average areas under the curve (AUCs) of 0.912, 0.906, and 0.888 and overall diagnostic accuracies of 0.925, 0.941, and 0.887 in the validation datasets of total, external surgical resection specimens and biopsy specimens, respectively. The histological subtyping performance of the WIFPS remained comparable with that of general pathologists (GPs), with Cohen's kappa values ranging from 0.7646 to 0.8282. Furthermore, the WIFPS could be trained to not only predict the IHC status of anaplastic lymphoma kinase (ALK), programmed death-1 (PD-1), and programmed death ligand 1 (PD-L1), but also predict EGFR and KRAS mutation status, with AUCs from 0.525 to 0.917, as detected in separate populations. CONCLUSIONS In this study, the WIFPS showed its proficiency as a useful complement to traditional histologic subtyping for integrated immunohistochemical spectrum prediction as well as potential in the detection of gene mutations.
Collapse
Affiliation(s)
- Yanyang Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huan Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Medical Big Data Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiqiang Cheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathology, Shenzhen People's Hospital, Shenzhen, China
| | - Lili Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Molecular Diagnosis Center or Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minglei Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chenghao Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuefeng Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Leilei Huang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangshan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weizhong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Molecular Diagnosis Center or Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Zhang Y, Sheng K, Song F, Pan Z, Zou X, Liu Y, Huang P. Efficacy of Qingfei oral liquid for idiopathic pulmonary fibrosis in rats and related network pharmacology study. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:53-61. [PMID: 35576111 PMCID: PMC9109760 DOI: 10.3724/zdxbyxb-2021-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/20/2021] [Indexed: 06/15/2023]
Abstract
To investigate the therapeutic effect and mechanism of Qingfei oral liquid in idiopathic pulmonary fibrosis. Seventy-two male SD rats were divided into control group, model group, pirofenidone group and Qingfei group with 18 animals in each group. The idiopathic pulmonary fibrosis was induced in last three groups by intratracheal injection of bleomycin; pirofenidone group was given oral administration of pirofenidone b.i.d for 21 d, and Qingfei group was given Qingfei oral liquid 3.6 mL/kg q.d for Lung tissues were obtained for HE staining, Masson staining and transforming growth factor (TGF)-β immunohistochemical staining. Superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) were detected in tissue homogenates. The BATMAN-TCM database was used to retrieve the chemical components and their corresponding targets of Qingfei oral solution by network pharmacology method, and then the component-target-disease network diagram was constructed. Finally, the pathway enrichment analysis was carried out to explore the molecular mechanism of Qingfei oral liquid against idiopathic fibrosis. Histopathology results showed that Qingfei oral liquid had a similar relieving effect on pulmonary fibrosis as the positive drug pirfenidone; TGF-β secretion had a significant reduction in lung tissues of Qingfei group; and Qingfei oral liquid had better regulatory effect on SOD, MDA and GSH than pirfenidone. The results of component-target-disease network and pathway enrichment analysis showed that the related molecular pathways were concentrated in inflammation, extracellular matrix and cytokines. Qingfei oral liquid has a good therapeutic effect on idiopathic pulmonary fibrosis in rats via regulation of inflammation, extracellular matrix and cytokines.
Collapse
|
17
|
Vyberg M, Nielsen S, Bzorek M, Røge R. NordiQC Assessments of Synaptophysin Immunoassays. Appl Immunohistochem Mol Morphol 2021; 29:643-647. [PMID: 34545849 DOI: 10.1097/pai.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
This paper is number 8 in a series developed through a partnership between ISIMM and NordiQC with the purpose of reporting research assessing the performance characteristics of immunoassays in an external proficiency testing program.
Collapse
Affiliation(s)
- Mogens Vyberg
- Institute of Pathology
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg
| | | | - Michael Bzorek
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Rasmus Røge
- Institute of Pathology
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg
| |
Collapse
|
18
|
Cheung CC, Smith AC, Albadine R, Bigras G, Bojarski A, Couture C, Cutz JC, Huang WY, Ionescu D, Itani D, Izevbaye I, Karsan A, Kelly MM, Knoll J, Kwan K, Nasr MR, Qing G, Rashid-Kolvear F, Sekhon HS, Spatz A, Stockley T, Tran-Thanh D, Tucker T, Waghray R, Wang H, Xu Z, Yatabe Y, Torlakovic EE, Tsao MS. Canadian ROS proto-oncogene 1 study (CROS) for multi-institutional implementation of ROS1 testing in non-small cell lung cancer. Lung Cancer 2021; 160:127-135. [PMID: 34509095 DOI: 10.1016/j.lungcan.2021.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Patients with non-small cell lung cancer (NSCLC) harboring ROS proto-oncogene 1 (ROS1) gene rearrangements show dramatic response to the tyrosine kinase inhibitor (TKI) crizotinib. Current best practice guidelines recommend that all advanced stage non-squamous NSCLC patients be also tested for ROS1 gene rearrangements. Several studies have suggested that ROS1 immunohistochemistry (IHC) using the D4D6 antibody may be used to screen for ROS1 fusion positive lung cancers, with assays showing high sensitivity but moderate to high specificity. A break apart fluorescence in situ hybridization (FISH) test is then used to confirm the presence of ROS1 gene rearrangement. The goal of Canadian ROS1 (CROS) study was to harmonize ROS1 laboratory developed testing (LDT) by using IHC and FISH assays to detect ROS1 rearranged lung cancers across Canadian pathology laboratories. Cell lines expressing different levels of ROS1 (high, low, none) were used to calibrate IHC protocols after which participating laboratories ran the calibrated protocols on a reference set of 24 NSCLC cases (9 ROS1 rearranged tumors and 15 ROS1 non-rearranged tumors as determined by FISH). Results were compared using a centralized readout. The stained slides were evaluated for the cellular localization of staining, intensity of staining, the presence of staining in non-tumor cells, the presence of non-specific staining (e.g. necrosis, extracellular mater, other) and the percent positive cells. H-score was also determined for each tumor. Analytical sensitivity and specificity harmonization was achieved by using low limit of detection (LOD) as either any positivity in the U118 cell line or H-score of 200 with the HCC78 cell line. An overall diagnostic sensitivity and specificity of up to 100% and 99% respectively was achieved for ROS1 IHC testing (relative to FISH) using an adjusted H-score readout on the reference cases. This study confirms that LDT ROS1 IHC assays can be highly sensitive and specific for detection of ROS1 rearrangements in NSCLC. As NSCLC can demonstrate ROS1 IHC positivity in FISH-negative cases, the degree of the specificity of the IHC assay, especially in highly sensitive protocols, is mostly dependent on the readout cut-off threshold. As ROS1 IHC is a screening assay for a rare rearrangements in NSCLC, we recommend adjustment of the readout threshold in order to balance specificity, rather than decreasing the overall analytical and diagnostic sensitivity of the protocols.
Collapse
Affiliation(s)
- Carol C Cheung
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Adam C Smith
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Roula Albadine
- Department of Pathology, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Gilbert Bigras
- Laboratory Medicine Department, University of Alberta, Edmonton, AB, Canada
| | - Anna Bojarski
- Department of Pathology and Laboratory Medicine, Health Sciences North, Sudbury, ON, Canada
| | - Christian Couture
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Jean-Claude Cutz
- Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre and McMaster University, Hamilton, ON, Canada
| | - Weei-Yuan Huang
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Science Center, ON, Canada
| | - Diana Ionescu
- Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, BC, Canada
| | - Doha Itani
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Iyare Izevbaye
- Laboratory Medicine Department, University of Alberta, Edmonton, AB, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Margaret M Kelly
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joan Knoll
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Keith Kwan
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Michel R Nasr
- Department of Pathology, Shared Health Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pathology SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gefei Qing
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, AB, Canada, and Calgary Laboratory Services, Calgary, AB, Canada
| | - Fariboz Rashid-Kolvear
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, AB, Canada, and Calgary Laboratory Services, Calgary, AB, Canada; Department of Pathology and Laboratory Medicine, Johns Hopkins Medicine, Johns Hopkins All Children's Hospital, Baltimore, MD, USA
| | - Harmanjatinder S Sekhon
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital and ORLA, University of Ottawa, Ottawa, ON, Canada
| | - Alan Spatz
- Divisions of Pathology and Molecular Genetics, McGill University Health Center and McGill University, Montreal, QC, Canada
| | - Tracy Stockley
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Danh Tran-Thanh
- Department of Pathology, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Tracy Tucker
- Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, BC, Canada
| | - Ranjit Waghray
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hangjun Wang
- Divisions of Pathology and Molecular Genetics, McGill University Health Center and McGill University, Montreal, QC, Canada
| | - Zhaolin Xu
- Dept. of Pathology, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NS, Canada
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center, Tokyo, Japan
| | - Emina E Torlakovic
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan and Saskatchewan Health Authority, Saskatoon, SK, Canada.
| | - Ming-Sound Tsao
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Zou Y, Zhang J, Zhang L, Yan X. Interferon-induced protein 16 expression in colorectal cancer and its correlation with proliferation and immune signature markers. Oncol Lett 2021; 22:687. [PMID: 34434286 PMCID: PMC8335744 DOI: 10.3892/ol.2021.12948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon-induced protein 16 (IFI16) is important for innate immune recognition of foreign/damaged DNA. Abnormal IFI16 expression is closely related to the occurrence of multiple malignant tumours, but its expression pattern in colorectal cancer (CRC) remains unclear. The present study aimed to investigated IFI16 expression and association with cell proliferation in CRC tissues and adjacent normal tissues. A multiplex immunofluorescence panel of antibodies against IFI16, Ki-67 and phosphorylated (p)-ERK1/2 was applied to assess a tissue microarray (TMA). The TMA included 77 CRC samples and 74 normal adjacent tissue samples which were collected from The First People's Hospital of Yunnan Province (Kunming, China) (3 paracancerous tissues were lost because of repeated cutting). Immunohistochemistry was used to detect CD8+ tumour-infiltrating lymphocyte (TIL) abundance and programmed death-ligand 1 (PD-L1) expression in cancer tissues. The present study demonstrated that IFI16 localized to the nucleus of CRC cells. Although IFI16 was weakly expressed in normal mucosal epithelial cells, absent to strong expression was detectable in different patients with CRC. Typically, IFI16 was not co-localized with Ki-67 within CRC cells. The multiplex immunofluorescence data demonstrated that the proportion of IFI16-/Ki-67+ cells from CRC tissues was 57.13%; however, that of IFI16+/Ki-67+ cells was 1.50%. The IFI16-/Ki-67+ phenotype was significantly positively associated with the tumor-node-metastasis stage and was marginally significantly correlated with lymph node metastasis. p-ERK1/2 protein was primarily localized to the cytoplasm and cell membrane of CRC cells and sometimes to the nucleus. Although, IFI16 demonstrated a strong correlation with p-ERK1/2, IFI16 did not co-localize with p-ERK1/2 and the proportion of IFI16 and p-ERK1/2 double-negative CRC cells was 84.95%. IFI16 expression displayed no significant association with CD8+ TILs or PD-L1. However, a strong positive correlation between CD8+ TILs and PD-L1 was observed. High CD8+ TIL infiltration in CRC tissue was associated with lower lymph node metastasis and tumor-node-metastasis stage. In summary, the results of the present study provided a novel insight for the role of IFI16 in CRC occurrence via the regulation of cancer cell proliferation.
Collapse
Affiliation(s)
- Yunlian Zou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Jinping Zhang
- Institute of Medical Sciences, Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Lichen Zhang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xinmin Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
20
|
NordiQC Assessments of Keratin 5 Immunoassays. Appl Immunohistochem Mol Morphol 2021; 28:566-570. [PMID: 32243261 DOI: 10.1097/pai.0000000000000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This paper is number 7 in a series developed through a partnership between ISIMM and NordiQC with the purpose of reporting research assessing the performance characteristics of immunoassays in an external proficiency testing program.
Collapse
|
21
|
Immunohistochemistry Critical Assay Performance Controls (ICAPC) Reduce Interobserver Variability in the Interpretation of BRAFV600E Immunohistochemistry. Appl Immunohistochem Mol Morphol 2021; 28:422-427. [PMID: 31241559 DOI: 10.1097/pai.0000000000000784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The utility of prognostic and predictive immunohistochemistry biomarkers in the context of cancer is plagued by inconsistent interpretation of results which can lead to poor rates of adoption or inappropriate use of novel therapeutic strategies. To monitor immunohistochemistry assay performance, a new on-slide control motif, Immunohistochemistry Critical Assay Performance Controls (ICAPC) was developed. We hypothesized that the use of these controls by the diagnosing pathologist to interpret BRAFV600E would result in reduced interobserver and intraobserver interpretation errors. A cross-sectional, sequentially obtained sample of surgical pathology cases stained for BRAFV600E was assembled from a single hospital in Vancouver, British Columbia. Half of the cases had normal on-slide controls and the remainder with ICAPC. Results from 6 independent and blinded readers were compared with each other and to the gold-standard pathologic diagnosis with the goal of demonstrating superior interrater agreement with ICAPC relative to standard on-slide controls. Cohen's κ was used to compute pair-wise reader agreements, whereas Fleiss' κ was used to compare to the gold standard. The implementation of ICAPC resulted in statistically significant improvements in the interobserver agreement of BRAF mutation status ascertained by BRAFV600E immunohistochemistry. Half of the readers demonstrated significant improvements in agreement with the gold-standard diagnosis with the addition of ICAPC. Across all readers, the mean increase in κ was 0.14 with a 95% confidence interval of 0.01-0.28 (P=0.04). This study demonstrates that the addition of ICAPC serves to significantly reduce interobserver variability in the assessment of BRAFV600E immunohistochemistry. As such, we recommend that this approach should be used as part of a comprehensive quality management strategy in the setting of histopathology.
Collapse
|
22
|
Behairy A, Mohamed WAM, Ebraheim LLM, Soliman MM, Abd-Elhakim YM, El-Sharkawy NI, Saber TM, El Deib MM. Boldenone Undecylenate-Mediated Hepatorenal Impairment by Oxidative Damage and Dysregulation of Heat Shock Protein 90 and Androgen Receptors Expressions: Vitamin C Preventive Role. Front Pharmacol 2021; 12:651497. [PMID: 33986679 PMCID: PMC8111012 DOI: 10.3389/fphar.2021.651497] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Boldenone Undecylenate (BLD) is a synthetic derivative of testosterone and a widely used anabolic androgenic steroid. The health risk of BLD use as a pharmaceutical or dietary supplement is still underestimated and under-reported. Vitamin C (VC) has been recognized as an antioxidant with prominent hepatorenal protective effects. This study investigated the possible preventive activity of VC against BLD-induced hepatorenal damage. Forty adult male Wistar rats were classified into five groups: control, vehicle control, VC (orally given 120 mg/kg b. wt./day), BLD (intramuscularly injected 5 mg/kg b. wt./week), and BLD + VC-treated groups. The experiment continued for eight weeks. Serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured. Serum contents of total protein (TP), albumin (ALB), globulin, total cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), and very-low-density lipoprotein-cholesterol (VLDL-C) were also assayed. Urea, creatinine, and uric acid levels were determined together with sodium and potassium electrolytes measuring. Moreover, oxidative stress indicators including reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR) as well as malondialdehyde (MDA) levels were measured in both hepatic and renal tissues. Corresponding histological examination of renal and hepatic tissues was conducted. Besides, immunohistochemical evaluations for androgen receptors protein (AR) and heat shock protein 90 (Hsp 90) expressions were performed. BLD caused significant rises in serum ALT, AST, TP, ALB, TC, TG, LDL-C, VLDL-C, urea, creatinine, uric acid, potassium, and MDA levels. Further, BLD-injected rats showed significant declines in the serum levels of HDL-C, sodium, GSH, GPx, GST, and GSR. Besides, distinct histopathological perturbations were detected in renal and hepatic tissues of BLD-injected rats. AR and Hsp 90 immunoexpression were increased in hepatic and renal tissues. In contrast, VC significantly reversed the BLD-induced hepatorenal damage in co-treated rats but not ameliorated AR protein overexpression. VC could be an efficient preventive supplement for mitigating BLD-induced hepatorenal damage, possibly via controlling oxidative stress events.
Collapse
Affiliation(s)
- Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Wafaa A. M. Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lamiaa L. M. Ebraheim
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nabela I. El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Taghred M. Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha M. El Deib
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
23
|
Røge R, Nielsen S, Riber-Hansen R, Vyberg M. Image Analyses Assessed Cell Lines as Potential Performance Controls of Ki-67 Immunostained Slides. Appl Immunohistochem Mol Morphol 2021; 29:95-98. [PMID: 32168035 DOI: 10.1097/pai.0000000000000845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Rasmus Røge
- Department of Pathology
- Institute of Clinical Medicine, Aalborg University Hospital, Aalborg
| | | | | | - Mogens Vyberg
- Center for RNA Medicine, Aalborg University Copenhagen, Copenhagen SV, Denmark
| |
Collapse
|
24
|
Dao M, François H. Cannabinoid Receptor 1 Inhibition in Chronic Kidney Disease: A New Therapeutic Toolbox. Front Endocrinol (Lausanne) 2021; 12:720734. [PMID: 34305821 PMCID: PMC8293381 DOI: 10.3389/fendo.2021.720734] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) concerns millions of individuals worldwide, with few therapeutic strategies available to date. Recent evidence suggests that the endocannabinoid system (ECS) could be a new therapeutic target to prevent CKD. ECS combines receptors, cannabinoid receptor type 1 (CB1R) and type 2 (CB2R), and ligands. The most prominent receptor within the kidney is CB1R, its endogenous local ligands being anandamide and 2-arachidonoylglycerol. Therefore, the present review focuses on the therapeutic potential of CB1R and not CB2R. In the normal kidney, CB1R is expressed in many cell types, especially in the vasculature where it contributes to the regulation of renal hemodynamics. CB1R could also participate to water and sodium balance and to blood pressure regulation but its precise role remains to decipher. CB1R promotes renal fibrosis in both metabolic and non-metabolic nephropathies. In metabolic syndrome, obesity and diabetes, CB1R inhibition not only improves metabolic parameters, but also exerts a direct role in preventing renal fibrosis. In non-metabolic nephropathies, its inhibition reduces the development of renal fibrosis. There is a growing interest of the industry to develop new CB1R antagonists without central nervous side-effects. Experimental data on renal fibrosis are encouraging and some molecules are currently under early-stage clinical phases (phases I and IIa studies). In the present review, we will first describe the role of the endocannabinoid receptors, especially CB1R, in renal physiology. We will next explore the role of endocannabinoid receptors in both metabolic and non-metabolic CKD and renal fibrosis. Finally, we will discuss the therapeutic potential of CB1R inhibition using the new pharmacological approaches. Overall, the new pharmacological blockers of CB1R could provide an additional therapeutic toolbox in the management of CKD and renal fibrosis from both metabolic and non-metabolic origin.
Collapse
Affiliation(s)
- Myriam Dao
- INSERM UMR_S 1155, Hôpital Tenon, Sorbonne Université, Paris, France
- AP-HP, Néphrologie et Transplantation Rénale Adulte, Hôpital Necker Enfants Malades, Paris, France
| | - Helene François
- INSERM UMR_S 1155, Hôpital Tenon, Sorbonne Université, Paris, France
- AP-HP, Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Hôpital Tenon, Sorbonne Université, Paris, France
- *Correspondence: Helene François,
| |
Collapse
|
25
|
Paver EC, Cooper WA, Colebatch AJ, Ferguson PM, Hill SK, Lum T, Shin JS, O'Toole S, Anderson L, Scolyer RA, Gupta R. Programmed death ligand-1 (PD-L1) as a predictive marker for immunotherapy in solid tumours: a guide to immunohistochemistry implementation and interpretation. Pathology 2020; 53:141-156. [PMID: 33388161 DOI: 10.1016/j.pathol.2020.10.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Immunotherapy with checkpoint inhibitors is well established as an effective treatment for non-small cell lung cancer and melanoma. The list of approved indications for treatment with PD-1/PD-L1 checkpoint inhibitors is growing rapidly as clinical trials continue to show their efficacy in patients with a wide range of solid tumours. Clinical trials have used a variety of PD-L1 immunohistochemical assays to evaluate PD-L1 expression on tumour cells, immune cells or both as a potential biomarker to predict response to immunotherapy. Requests to pathologists for PD-L1 testing to guide choice of therapy are rapidly becoming commonplace. Thus, pathologists need to be aware of the different PD-L1 assays, methods of evaluation in different tumour types and the impact of the results on therapeutic decisions. This review discusses the key practical issues relating to the implementation of PD-L1 testing for solid tumours in a pathology laboratory, including evidence for PD-L1 testing, different assay types, the potential interchangeability of PD-L1 antibody clones and staining platforms, scoring criteria for PD-L1, validation, quality assurance, and pitfalls in PD-L1 assessment. This review also explores PD-L1 IHC in solid tumours including non-small cell lung carcinoma, head and neck carcinoma, triple negative breast carcinoma, melanoma, renal cell carcinoma, urothelial carcinoma, gastric and gastroesophageal carcinoma, colorectal carcinoma, hepatocellular carcinoma, and endometrial carcinoma. The review aims to provide pathologists with a practical guide to the implementation and interpretation of PD-L1 testing by immunohistochemistry.
Collapse
Affiliation(s)
- Elizabeth C Paver
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia; Western Sydney University, Campbelltown, NSW, Australia
| | - Andrew J Colebatch
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Peter M Ferguson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Sean K Hill
- Gold Coast University Hospital, Southport, Qld, Australia
| | - Trina Lum
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Joo-Shik Shin
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Sandra O'Toole
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Lyndal Anderson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia; Western Sydney University, Campbelltown, NSW, Australia
| | - Richard A Scolyer
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Keppens C, Dequeker EM, Pauwels P, Ryska A, 't Hart N, von der Thüsen JH. PD-L1 immunohistochemistry in non-small-cell lung cancer: unraveling differences in staining concordance and interpretation. Virchows Arch 2020; 478:827-839. [PMID: 33275169 PMCID: PMC8099807 DOI: 10.1007/s00428-020-02976-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/30/2022]
Abstract
Programmed death ligand 1 (PD-L1) immunohistochemistry (IHC) is accepted as a predictive biomarker for the selection of immune checkpoint inhibitors. We evaluated the staining quality and estimation of the tumor proportion score (TPS) in non-small-cell lung cancer during two external quality assessment (EQA) schemes by the European Society of Pathology. Participants received two tissue micro-arrays with three (2017) and four (2018) cases for PD-L1 IHC and a positive tonsil control, for staining by their routine protocol. After the participants returned stained slides to the EQA coordination center, three pathologists assessed each slide and awarded an expert staining score from 1 to 5 points based on the staining concordance. Expert scores significantly (p < 0.01) improved between EQA schemes from 3.8 (n = 67) to 4.3 (n = 74) on 5 points. Participants used 32 different protocols: the majority applied the 22C3 (56.7%) (Dako), SP263 (19.1%) (Ventana), and E1L3N (Cell Signaling) (7.1%) clones. Staining artifacts consisted mainly of very weak or weak antigen demonstration (63.0%) or excessive background staining (19.8%). Participants using CE-IVD kits reached a higher score compared with those using laboratory-developed tests (LDTs) (p < 0.05), mainly attributed to a better concordance of SP263. The TPS was under- and over-estimated in 20/423 (4.7%) and 24/423 (5.7%) cases, respectively, correlating to a lower expert score. Additional research is needed on the concordance of less common protocols, and on reasons for lower LDT concordance. Laboratories should carefully validate all test methods and regularly verify their performance. EQA participation should focus on both staining concordance and interpretation of PD-L1 IHC.
Collapse
Affiliation(s)
- Cleo Keppens
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, University of Leuven, Leuven, Belgium
| | - Elisabeth Mc Dequeker
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, University of Leuven, Leuven, Belgium
| | - Patrick Pauwels
- Center for Oncologic Research (CORE), University of Antwerp, Antwerp, Belgium.,Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| | - Ales Ryska
- Department of Pathology, Charles University Medical Faculty and University Hospital, Hradec Kralove, Czech Republic
| | - Nils 't Hart
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pathology, Isala Klinieken, Zwolle, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Srebotnik Kirbis I, Praça MJ, Roque RR, Košuta T, Saudade A, Strojan Flezar M. Preservation of biomarkers immunoreactivity on cytospins protected with polyethylene glycol. Cytopathology 2020; 32:84-91. [PMID: 32910835 DOI: 10.1111/cyt.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The aim of this retrospective study was to evaluate the preservation of biomarkers immunoreactivity on cytospins protected with polyethylene glycol (PEG). METHODS In two independent cytopathology laboratories, immunocytochemical reactions were retrospectively evaluated on methanol-fixed and PEG-protected cytospins stored at room temperature (RT) for different time periods and compared with immunocytochemical reactions on corresponding baseline methanol-fixed cytospins. Semi-quantitatively assessed immunoreactivity, using scores from 0 to 3, was considered reduced if two sequential scores were lowered by at least one point. RESULTS Immunocytochemical reactions for 40 biomarkers with membrane (10), cytoplasmic (22) and nuclear (8) localisation were performed on 921 slides prepared from 183 cytological samples. For the majority of biomarkers (29/37, 78%), immunoreactivity on PEG-protected cytospins stored at RT remained unchanged in the first 12 months. Immunoreactivity for GFAP, p40 and hepatocyte antigen was monitored and remained unchanged for 1, 8 and 7 months, respectively. Partial or complete loss of immunoreactivity on PEG-protected cytospins stored for less than 12 months was found on a single sample out of the total evaluated for CD3 (1/7), CD30 (1/4), CD45 (1/10), CK5/6 (1/7), MelanA (1/7) and vimentin (1/7), while more frequent changes of immunoreactivity were found for Ki67 (4/7) and p63 (2/7). CONCLUSION Immunoreactivity on cytospins protected with PEG and stored at RT is well-preserved for at least 12 months for the majority of biomarkers.
Collapse
Affiliation(s)
- Irena Srebotnik Kirbis
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maria José Praça
- Anatomic Pathology Service, Portuguese Institute of Oncology Francisco Gentil, Lisbon EPE, Lisbon, Portugal
| | - Ruben Rodrigues Roque
- Anatomic Pathology Service, Portuguese Institute of Oncology Francisco Gentil, Lisbon EPE, Lisbon, Portugal
| | - Tina Košuta
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - André Saudade
- Anatomic Pathology Service, Portuguese Institute of Oncology Francisco Gentil, Lisbon EPE, Lisbon, Portugal
| | | |
Collapse
|
28
|
Dufraing K, Fenizia F, Torlakovic E, Wolstenholme N, Deans ZC, Rouleau E, Vyberg M, Parry S, Schuuring E, Dequeker EMC. Biomarker testing in oncology - Requirements for organizing external quality assessment programs to improve the performance of laboratory testing: revision of an expert opinion paper on behalf of IQNPath ABSL. Virchows Arch 2020; 478:553-565. [PMID: 33047156 PMCID: PMC7550230 DOI: 10.1007/s00428-020-02928-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
In personalized medicine, predictive biomarker testing is the basis for an appropriate choice of therapy for patients with cancer. An important tool for laboratories to ensure accurate results is participation in external quality assurance (EQA) programs. Several providers offer predictive EQA programs for different cancer types, test methods, and sample types. In 2013, a guideline was published on the requirements for organizing high-quality EQA programs in molecular pathology. Now, after six years, steps were taken to further harmonize these EQA programs as an initiative by IQNPath ABSL, an umbrella organization founded by various EQA providers. This revision is based on current knowledge, adds recommendations for programs developed for predictive biomarkers by in situ methodologies (immunohistochemistry and in situ hybridization), and emphasized transparency and an evidence-based approach. In addition, this updated version also has the aim to give an overview of current practices from various EQA providers.
Collapse
Affiliation(s)
- K Dufraing
- Biomedical Quality Assurance Research Unit, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35 blok d, 3000, Leuven, Belgium
| | - F Fenizia
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - E Torlakovic
- Department of Pathology and Laboratory Medicine, Royal University Hospital, College of Medicine, University of Saskatchewan and Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada
| | - N Wolstenholme
- European Molecular Quality Network (EMQN), Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, M13 9WL, UK
| | - Z C Deans
- UK NEQAS for Molecular Genetics, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh, EH16 4SA, UK
| | - E Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, Villejuif, France
| | - M Vyberg
- NordiQC, Institute of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - S Parry
- UK NEQAS ICC & ISH, University College London Cancer Institute, London, UK
| | - E Schuuring
- Department of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30001, 9700, RB, Groningen, The Netherlands
| | - Elisabeth M C Dequeker
- Biomedical Quality Assurance Research Unit, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35 blok d, 3000, Leuven, Belgium.
| |
Collapse
|
29
|
Ptacek J, Locke D, Finck R, Cvijic ME, Li Z, Tarolli JG, Aksoy M, Sigal Y, Zhang Y, Newgren M, Finn J. Multiplexed ion beam imaging (MIBI) for characterization of the tumor microenvironment across tumor types. J Transl Med 2020; 100:1111-1123. [PMID: 32203152 DOI: 10.1038/s41374-020-0417-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
An ability to characterize the cellular composition and spatial organization of the tumor microenvironment (TME) using multiplexed IHC has been limited by the techniques available. Here we show the applicability of multiplexed ion beam imaging (MIBI) for cell phenotype identification and analysis of spatial relationships across numerous tumor types. Formalin-fixed paraffin-embedded (FFPE) samples from tumor biopsies were simultaneously stained with a panel of 15 antibodies, each labeled with a specific metal isotope. Multi-step processing produced images of the TME that were further segmented into single cells. Frequencies of different cell subsets and the distributions of nearest neighbor distances between them were calculated using this data. A total of 50 tumor specimens from 15 tumor types were characterized for their immune profile and spatial organization. Most samples showed infiltrating cytotoxic T cells and macrophages present amongst tumor cells. Spatial analysis of the TME in two ovarian serous carcinoma images highlighted differences in the degree of mixing between tumor and immune cells across samples. Identification of admixed PD-L1+ macrophages and PD-1+ T cells in an urothelial carcinoma sample allowed for the detailed observations of immune cell subset spatial arrangement. These results illustrate the high-parameter capability of MIBI at a sensitivity and resolution uniquely suited to understanding the complex tumor immune landscape including the spatial relationships of immune and tumor cells and expression of immunoregulatory proteins.
Collapse
Affiliation(s)
| | | | | | | | - Zhuyin Li
- Bristol-Myers Squibb, Princeton, NJ, USA
| | | | | | | | - Yi Zhang
- Ionpath Inc, Menlo Park, CA, USA
| | | | | |
Collapse
|
30
|
Cheung CC, Barnes P, Bigras G, Boerner S, Butany J, Calabrese F, Couture C, Deschenes J, El-Zimaity H, Fischer G, Fiset PO, Garratt J, Geldenhuys L, Gilks CB, Ilie M, Ionescu D, Lim HJ, Manning L, Mansoor A, Riddell R, Ross C, Roy-Chowdhuri S, Spatz A, Swanson PE, Tron VA, Tsao MS, Wang H, Xu Z, Torlakovic EE. Fit-For-Purpose PD-L1 Biomarker Testing For Patient Selection in Immuno-Oncology: Guidelines For Clinical Laboratories From the Canadian Association of Pathologists-Association Canadienne Des Pathologistes (CAP-ACP). Appl Immunohistochem Mol Morphol 2020; 27:699-714. [PMID: 31584451 PMCID: PMC6887625 DOI: 10.1097/pai.0000000000000800] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022]
Abstract
Since 2014, programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) checkpoint inhibitors have been approved by various regulatory agencies for the treatment of multiple cancers including melanoma, lung cancer, urothelial carcinoma, renal cell carcinoma, head and neck cancer, classical Hodgkin lymphoma, colorectal cancer, gastroesophageal cancer, hepatocellular cancer, and other solid tumors. Of these approved drug/disease combinations, a subset also has regulatory agency-approved, commercially available companion/complementary diagnostic assays that were clinically validated using data from their corresponding clinical trials. The objective of this document is to provide evidence-based guidance to assist clinical laboratories in establishing fit-for-purpose PD-L1 biomarker assays that can accurately identify patients with specific tumor types who may respond to specific approved immuno-oncology therapies targeting the PD-1/PD-L1 checkpoint. These recommendations are issued as 38 Guideline Statements that address (i) assay development for surgical pathology and cytopathology specimens, (ii) reporting elements, and (iii) quality assurance (including validation/verification, internal quality assurance, and external quality assurance). The intent of this work is to provide recommendations that are relevant to any tumor type, are universally applicable and can be implemented by any clinical immunohistochemistry laboratory performing predictive PD-L1 immunohistochemistry testing.
Collapse
Affiliation(s)
- Carol C. Cheung
- Laboratory Medicine Program, Division of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
| | - Penny Barnes
- Department of Pathology, Dalhousie University, Halifax, NS
| | | | - Scott Boerner
- Laboratory Medicine Program, Division of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
| | - Jagdish Butany
- Laboratory Medicine Program, Division of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health
- University of Padova Medical School, Padova, Italy
| | | | - Jean Deschenes
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton
| | | | - Gabor Fischer
- Department of Pathology, University of Manitoba, Winnipeg, MB
| | | | | | | | - C. Blake Gilks
- Canadian Immunohistochemistry Quality Control
- Department of Pathology and Laboratory Medicine, University of British Columbia
| | - Marius Ilie
- Laboratory of Clinical and Experimental Pathology
- Hospital-Related Biobank (BB-0033-00025), Université Côte d'Azur, University Hospital Federation OncoAge, Hôpital Pasteur, Nice, France
| | | | - Hyun J. Lim
- Department of Community Health and Epidemiology
| | - Lisa Manning
- Department of Pathology, University of Manitoba, Winnipeg, MB
| | - Adnan Mansoor
- Department of Pathology and Laboratory Medicine, University of Calgary
| | - Robert Riddell
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital
| | | | | | - Alan Spatz
- Department of Pathology, McGill University
- Division of Pathology and Molecular Genetics, McGill University Health Center
- Lady Davis Institute, Jewish General Hospital, Montreal, QC
| | - Paul E. Swanson
- Calgary Laboratory Services, Calgary, AB
- Department of Pathology, University of Washington, School of Medicine, Seattle, WA
| | - Victor A. Tron
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto
| | - Ming-Sound Tsao
- Laboratory Medicine Program, Division of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
| | - Hangjun Wang
- Department of Pathology, McGill University
- Division of Pathology and Molecular Genetics, McGill University Health Center
- Lady Davis Institute, Jewish General Hospital, Montreal, QC
| | - Zhaolin Xu
- Department of Pathology, Dalhousie University, Halifax, NS
| | - Emina E. Torlakovic
- Canadian Immunohistochemistry Quality Control
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan
- Department of Pathology and Laboratory Medicine, Royal University Hospital, Saskatchewan Health Authority, Saskatoon, SK, Canada
| |
Collapse
|
31
|
Allison KH, Hammond MEH, Dowsett M, McKernin SE, Carey LA, Fitzgibbons PL, Hayes DF, Lakhani SR, Chavez-MacGregor M, Perlmutter J, Perou CM, Regan MM, Rimm DL, Symmans WF, Torlakovic EE, Varella L, Viale G, Weisberg TF, McShane LM, Wolff AC. Estrogen and Progesterone Receptor Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Guideline Update. Arch Pathol Lab Med 2020; 144:545-563. [PMID: 31928354 DOI: 10.5858/arpa.2019-0904-sa] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE.— To update key recommendations of the American Society of Clinical Oncology/College of American Pathologists estrogen receptor (ER) and progesterone receptor (PgR) testing in breast cancer guideline. METHODS.— A multidisciplinary international Expert Panel was convened to update the clinical practice guideline recommendations informed by a systematic review of the medical literature. RECOMMENDATIONS.— The Expert Panel continues to recommend ER testing of invasive breast cancers by validated immunohistochemistry as the standard for predicting which patients may benefit from endocrine therapy, and no other assays are recommended for this purpose. Breast cancer samples with 1% to 100% of tumor nuclei positive should be interpreted as ER positive. However, the Expert Panel acknowledges that there are limited data on endocrine therapy benefit for cancers with 1% to 10% of cells staining ER positive. Samples with these results should be reported using a new reporting category, ER Low Positive, with a recommended comment. A sample is considered ER negative if < 1% or 0% of tumor cell nuclei are immunoreactive. Additional strategies recommended to promote optimal performance, interpretation, and reporting of cases with an initial low to no ER staining result include establishing a laboratory-specific standard operating procedure describing additional steps used by the laboratory to confirm/adjudicate results. The status of controls should be reported for cases with 0% to 10% staining. Similar principles apply to PgR testing, which is used primarily for prognostic purposes in the setting of an ER-positive cancer. Testing of ductal carcinoma in situ (DCIS) for ER is recommended to determine potential benefit of endocrine therapies to reduce risk of future breast cancer, while testing DCIS for PgR is considered optional. Additional information can be found at www.asco.org/breast-cancer-guidelines .
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sunil R Lakhani
- University of Queensland, Brisbane, Queensland, Australia
- Pathology Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Meredith M Regan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Emina E Torlakovic
- Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Giuseppe Viale
- IEO, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
32
|
Allison KH, Hammond MEH, Dowsett M, McKernin SE, Carey LA, Fitzgibbons PL, Hayes DF, Lakhani SR, Chavez-MacGregor M, Perlmutter J, Perou CM, Regan MM, Rimm DL, Symmans WF, Torlakovic EE, Varella L, Viale G, Weisberg TF, McShane LM, Wolff AC. Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. J Clin Oncol 2020; 38:1346-1366. [PMID: 31928404 DOI: 10.1200/jco.19.02309] [Citation(s) in RCA: 694] [Impact Index Per Article: 173.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To update key recommendations of the American Society of Clinical Oncology/College of American Pathologists estrogen (ER) and progesterone receptor (PgR) testing in breast cancer guideline. METHODS A multidisciplinary international Expert Panel was convened to update the clinical practice guideline recommendations informed by a systematic review of the medical literature. RECOMMENDATIONS The Expert Panel continues to recommend ER testing of invasive breast cancers by validated immunohistochemistry as the standard for predicting which patients may benefit from endocrine therapy, and no other assays are recommended for this purpose. Breast cancer samples with 1% to 100% of tumor nuclei positive should be interpreted as ER positive. However, the Expert Panel acknowledges that there are limited data on endocrine therapy benefit for cancers with 1% to 10% of cells staining ER positive. Samples with these results should be reported using a new reporting category, ER Low Positive, with a recommended comment. A sample is considered ER negative if < 1% or 0% of tumor cell nuclei are immunoreactive. Additional strategies recommended to promote optimal performance, interpretation, and reporting of cases with an initial low to no ER staining result include establishing a laboratory-specific standard operating procedure describing additional steps used by the laboratory to confirm/adjudicate results. The status of controls should be reported for cases with 0% to 10% staining. Similar principles apply to PgR testing, which is used primarily for prognostic purposes in the setting of an ER-positive cancer. Testing of ductal carcinoma in situ (DCIS) for ER is recommended to determine potential benefit of endocrine therapies to reduce risk of future breast cancer, while testing DCIS for PgR is considered optional. Additional information can be found at www.asco.org/breast-cancer-guidelines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sunil R Lakhani
- University of Queensland, Brisbane, Queensland, Australia
- Pathology Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Meredith M Regan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Emina E Torlakovic
- Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Giuseppe Viale
- IEO, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
33
|
Torlakovic E, Albadine R, Bigras G, Boag A, Bojarski A, Cabanero M, Camilleri-Broët S, Cheung C, Couture C, Craddock KJ, Cutz JC, Dhamanaskar P, Fiset PO, Hossain M, Hwang DM, Ionescu D, Itani D, Kelly MM, Kwan K, Lim HJ, Nielsen S, Qing G, Sekhon H, Spatz A, Waghray R, Wang H, Xu Z, Tsao MS. Canadian Multicenter Project on Standardization of Programmed Death-Ligand 1 Immunohistochemistry 22C3 Laboratory-Developed Tests for Pembrolizumab Therapy in NSCLC. J Thorac Oncol 2020; 15:1328-1337. [PMID: 32304736 DOI: 10.1016/j.jtho.2020.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) assay is used to select patients for first or second-line pembrolizumab monotherapy in NSCLC. The PD-L1 IHC 22C3 pharmDx assay requires an Autostainer Link 48 instrument. Laboratories without this stainer have the option to develop a highly accurate 22C3 IHC laboratory-developed test (LDT) on other instruments. The Canadian 22C3 IHC LDT validation project was initiated to harmonize the quality of PD-L1 22C3 IHC LDT protocols across 20 Canadian pathology laboratories. METHODS Centrally optimized 22C3 LDT protocols were distributed to participating laboratories. The LDT results were assessed against results using reference PD-L1 IHC 22C3 pharmDx. Analytical sensitivity and specificity were assessed using cell lines with varying PD-L1 expression levels (phase 1) and IHC critical assay performance controls (phase 2B). Diagnostic sensitivity and specificity were assessed using whole sections of 50 NSCLC cases (phase 2A) and tissue microarrays with an additional 50 NSCLC cases (phase 2C). RESULTS In phase 1, 80% of participants reached acceptance criteria for analytical performance in the first attempt with disseminated protocols. However, in phase 2A, only 40% of participants reached the desired diagnostic accuracy for both 1% and 50% tumor proportion score cutoff. In phase 2B, further protocol modifications were conducted, which increased the number of successful laboratories to 75% in phase 2C. CONCLUSIONS It is possible to harmonize highly accurate 22C3 LDTs for both 1% and 50% tumor proportion score in NSCLC across many laboratories with different platforms. However, despite a centralized approach, diagnostic validation of predictive IHC LDTs can be challenging and not always successful.
Collapse
Affiliation(s)
- Emina Torlakovic
- Department of Pathology and Laboratory Medicine, Royal University Hospital, Saskatchewan Health Authority, Saskatoon, Canada; College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Roula Albadine
- Montreal University Hospital Center (Centre hospitalier de l'Université de Montréal), Montreal, Quebec, Canada
| | - Gilbert Bigras
- Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Boag
- Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Anna Bojarski
- Department of Pathology, Health Sciences North, Sudbury, Ontario, Canada
| | - Michael Cabanero
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Carol Cheung
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Christian Couture
- University institute of Cardiology and Respirology of Quebec-Laval University (Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval), Quebec City, Quebec, Canada
| | | | - Jean-Claude Cutz
- St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Ontario, Canada
| | - Prashant Dhamanaskar
- Department of Pathology, Trillium Health Partners and Credit Valley Hospital, Mississauga, Ontario, Canada
| | - Pierre O Fiset
- McGill University Health Science Centre, McGill University, Montreal, Quebec, Canada
| | | | - David M Hwang
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Diana Ionescu
- British Columbia Cancer, University of British Columbia, Vancouver, British Columbia, Canada
| | - Doha Itani
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Margaret M Kelly
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith Kwan
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Hyun J Lim
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Søren Nielsen
- Nordic immunohistochemical Quality Control, Aalborg, Denmark
| | - Gefei Qing
- Shared Health Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harman Sekhon
- The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Alan Spatz
- McGill University Health Science Centre, McGill University, Montreal, Quebec, Canada; Department of Pathology, Lady Davis Institute and McGill University, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ranjit Waghray
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hangjun Wang
- McGill University Health Science Centre, McGill University, Montreal, Quebec, Canada; Department of Pathology, Lady Davis Institute and McGill University, Jewish General Hospital, Montreal, Quebec, Canada
| | - Zhaolin Xu
- QEII Health Sciences Centre, Nova Scotia Health Authority, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ming Sound Tsao
- University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Affiliation(s)
- Erik Thunnissen
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Torlakovic EE. How to Validate Predictive Immunohistochemistry Testing in Pathology? Arch Pathol Lab Med 2020; 143:907. [PMID: 31339752 DOI: 10.5858/arpa.2019-0056-le] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Emina Emilia Torlakovic
- Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority and University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
36
|
3D Tissue Microarray Controls: A Potential Standardization Solution. Appl Immunohistochem Mol Morphol 2019; 26:676-681. [PMID: 28248725 DOI: 10.1097/pai.0000000000000495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The use of controls is a hallmark for quality control in anatomic pathology. However, standardization of controls between laboratories has been a significant issue. Differential processing techniques between institutions and a multitude of preanalytical difficulties can result in different immunostain intensities. So called histoid controls, xenografts or culture cell lines, have been discussed in the past but with no recent followup. Herein is presented a histoid termed a 3D tissue microarray control (3D TMAC) control to help alleviate the burgeoning need for control standardization. A breast and cervix 3D TMAC control were tested for staining quality for 11 different antibodies commonly tested in either breast or cervical cancer work ups. We additionally looked at a small run of 5 days of CK5 and HER2 for reproducibility of the 3DRSTMA. Staining quality of 9 of the antibodies stained appropriately and 2 stained inappropriately, mammoglobin and GCDFP. Two of the antibodies were not reported to have any staining properties in the 3D TMAC, p16 and mammoglobin. Of these, p16 had appropriate staining and mammoglobin did not. In the 5 runs of CK5 and HER2, there was good reproducibility between stains assessed by both visual and computer-assisted methods, with membrane intensity coefficients of variation of 3.58% and 3.18%, respectively. The 3D TMAC has the potential to markedly improve intralaboratory and interlaboratory standardization practices.
Collapse
|
37
|
Miller RT. Avoiding pitfalls in diagnostic immunohistochemistry–important technical aspects that every pathologist should know. Semin Diagn Pathol 2019; 36:312-335. [DOI: 10.1053/j.semdp.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Bebb DG, Agulnik J, Albadine R, Banerji S, Bigras G, Butts C, Couture C, Cutz JC, Desmeules P, Ionescu DN, Leighl NB, Melosky B, Morzycki W, Rashid-Kolvear F, Lab C, Sekhon HS, Smith AC, Stockley TL, Torlakovic E, Xu Z, Tsao MS. Crizotinib inhibition of ROS1-positive tumours in advanced non-small-cell lung cancer: a Canadian perspective. Curr Oncol 2019; 26:e551-e557. [PMID: 31548824 PMCID: PMC6726257 DOI: 10.3747/co.26.5137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ros1 kinase is an oncogenic driver in non-small-cell lung cancer (nsclc). Fusion events involving the ROS1 gene are found in 1%-2% of nsclc patients and lead to deregulation of a tyrosine kinase-mediated multi-use intracellular signalling pathway, which then promotes the growth, proliferation, and progression of tumour cells. ROS1 fusion is a distinct molecular subtype of nsclc, found independently of other recognized driver mutations, and it is predominantly identified in younger patients (<50 years of age), women, never-smokers, and patients with adenocarcinoma histology. Targeted inhibition of the aberrant ros1 kinase with crizotinib is associated with increased progression-free survival (pfs) and improved quality-of-life measures. As the sole approved treatment for ROS1-rearranged nsclc, crizotinib has been demonstrated, through a variety of clinical trials and retrospective analyses, to be a safe, effective, well-tolerated, and appropriate treatment for patients having the ROS1 rearrangement. Canadian physicians endorse current guidelines which recommend that all patients with nonsquamous advanced nsclc, regardless of clinical characteristics, be tested for ROS1 rearrangement. Future integration of multigene testing panels into the standard of care could allow for efficient and cost-effective comprehensive testing of all patients with advanced nsclc. If a ROS1 rearrangement is found, treatment with crizotinib, preferably in the first-line setting, constitutes the standard of care, with other treatment options being investigated, as appropriate, should resistance to crizotinib develop.
Collapse
Affiliation(s)
- D G Bebb
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - J Agulnik
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - R Albadine
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - S Banerji
- Manitoba: Department of Medical Oncology, University of Manitoba, Winnipeg (Banerji)
| | - G Bigras
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - C Butts
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - C Couture
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - J C Cutz
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - P Desmeules
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - D N Ionescu
- British Columbia: Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver (Ionescu); BC Cancer-Vancouver Centre, Vancouver (Melosky)
| | - N B Leighl
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - B Melosky
- British Columbia: Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver (Ionescu); BC Cancer-Vancouver Centre, Vancouver (Melosky)
| | - W Morzycki
- Nova Scotia: Queen Elizabeth iiHealth Sciences Centre and Dalhousie University, Halifax (Morzycki, Xu)
| | - F Rashid-Kolvear
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
- Manitoba: Department of Medical Oncology, University of Manitoba, Winnipeg (Banerji)
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
- British Columbia: Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver (Ionescu); BC Cancer-Vancouver Centre, Vancouver (Melosky)
- Nova Scotia: Queen Elizabeth iiHealth Sciences Centre and Dalhousie University, Halifax (Morzycki, Xu)
- Saskatchewan: Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority and University of Saskatchewan, Saskatoon (Torlakovic)
| | - Clin Lab
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - H S Sekhon
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - A C Smith
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - T L Stockley
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - E Torlakovic
- Saskatchewan: Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority and University of Saskatchewan, Saskatoon (Torlakovic)
| | - Z Xu
- Nova Scotia: Queen Elizabeth iiHealth Sciences Centre and Dalhousie University, Halifax (Morzycki, Xu)
| | - M S Tsao
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| |
Collapse
|
39
|
Leblond AL, Rechsteiner M, Jones A, Brajkovic S, Dupouy D, Soltermann A. Microfluidic-Based Immunohistochemistry Combined With Next-Generation Sequencing on Diagnostic Tissue Sections for Detection of Tumoral BRAF V600E Mutation. Am J Clin Pathol 2019; 152:59-73. [PMID: 31065676 DOI: 10.1093/ajcp/aqz028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Tailored diagnostics requires immunohistochemistry (IHC) and next generation sequencing (NGS). Here we combined on a single paraffin-embedded slide microfluidic-based IHC (micro-IHC) and NGS for BRAF V600E mutation detection in BRAFomas. METHODS For micro-IHC, we performed the primary antibody incubation step of conventional chromogenic IHC in a LabSat device (Lunaphore Technologies SA). Tumor areas immunoreactive for pan-cytokeratin, pan-melanoma, and BRAF V600E mutation-specific antibody were H-scored, microdissected, and analyzed by NGS. RESULTS After 2 minutes, pan-cytokeratin and BRAF micro-IHC increased exponentially (half-time values: 1.7 and 3.2 minutes). Pan-melanoma displayed a higher half-time value of 15 minutes. There was no significant difference in H-score and staining quality, respectively, between conventional and micro-IHC. BRAF V600E mutation was detected in all pan-cytokeratin and pan-melanoma stained samples without amplification but in only 40% of BRAF V600E stained samples with amplification. CONCLUSIONS Micro-IHC enables short antibody incubation times and subsequent NGS. Preprocessing is critical for preservation of DNA quality.
Collapse
Affiliation(s)
- Anne-Laure Leblond
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Markus Rechsteiner
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Amy Jones
- Lunaphore Technologies SA, Lausanne, Switzerland
| | | | - Diego Dupouy
- Lunaphore Technologies SA, Lausanne, Switzerland
| | - Alex Soltermann
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
|
41
|
Targeting Tumor Markers with Antisense Peptides: An Example of Human Prostate Specific Antigen. Int J Mol Sci 2019; 20:ijms20092090. [PMID: 31035335 PMCID: PMC6540241 DOI: 10.3390/ijms20092090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/05/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
The purpose of this paper was to outline the development of short peptide targeting of the human prostate specific antigen (hPSA), and to evaluate its effectiveness in staining PSA in human prostate cancer tissue. The targeting of the hPSA antigen by means of antisense peptide AVRDKVG was designed according to a three-step method involving: 1. The selection of the molecular target (hPSA epitope), 2. the modeling of an antisense peptide (paratope) based on the epitope sequence, and 3. the spectroscopic evaluation of sense–antisense peptide binding. We then modified standard hPSA immunohistochemical staining practice by using a biotinylated antisense peptide instead of the standard monoclonal antibody and compared the results of both procedures. Immunochemical testing on human tissue showed the applicability of the antisense peptide technology to human molecular targets. This methodology represents a new approach to deriving peptide ligands and potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines.
Collapse
|
42
|
Precise definition of PTEN C-terminal epitopes and its implications in clinical oncology. NPJ Precis Oncol 2019; 3:11. [PMID: 30993208 PMCID: PMC6465295 DOI: 10.1038/s41698-019-0083-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Anti-PTEN monoclonal antibodies (mAb) are arising as important tools for immunohistochemistry (IHC) and protein quantification routine analysis in clinical oncology. Although an effort has been made to document the reliability of tumor tissue section immunostaining by anti-PTEN mAb, and to standardize their IHC use in research and in the clinical practice, the precise topological and biochemical definition of the epitope recognized by each mAb has been conventionally overlooked. In this study, six commercial anti-PTEN mAb have been validated and characterized for sensitivity and specificity by IHC and FISH, using a set of prostate and urothelial bladder tumor specimens, and by immunoblot, using PTEN positive and PTEN negative human cell lines. Immunoblot precise epitope mapping, performed using recombinant PTEN variants and mutations, revealed that all mAb recognized linear epitopes of 6–11 amino acid length at the PTEN C-terminus. Tumor-associated or disease-associated mutations at the PTEN C-terminus did not affect subcellular localization or PIP3 phosphatase activity of PTEN in cells, although resulted in specific loss of reactivity for some mAb. Furthermore, specific mimicking-phosphorylation mutations at the PTEN C-terminal region also abolished binding of specific mAb. Our study adds new evidence on the relevance of a precise epitope mapping in the validation of anti-PTEN mAb for their use in the clinics. This will be substantial to provide a more accurate diagnosis in clinical oncology based on PTEN protein expression in tumors and biological fluids.
Collapse
|
43
|
|
44
|
Validation and Proficiency Testing of Biomarker Immunohistochemistry: Diagnostic Accuracy "Fit for Purpose" in a 3D World. Appl Immunohistochem Mol Morphol 2019; 27:247-250. [PMID: 30720467 DOI: 10.1097/pai.0000000000000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Hötzel KJ, Havnar CA, Ngu HV, Rost S, Liu SD, Rangell LK, Peale FV. Synthetic Antigen Gels as Practical Controls for Standardized and Quantitative Immunohistochemistry. J Histochem Cytochem 2019; 67:309-334. [PMID: 30879407 DOI: 10.1369/0022155419832002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Optimization and standardization of immunohistochemistry (IHC) protocols within and between laboratories requires reproducible positive and negative control samples. In many situations, suitable tissue or cell line controls are not available. We demonstrate here a method to incorporate target antigens into synthetic protein gels that can serve as IHC controls. The method can use peptides, protein domains, or whole proteins as antigens, and is compatible with a variety of fixation protocols. The resulting gels can be used to create tissue microarrays (TMAs) with a range of antigen concentrations that can be used to objectively quantify and calibrate chromogenic, fluorescent, or mass spectrometry-based IHC protocols. The method offers an opportunity to objectively quantify IHC staining results, and to optimize and standardize IHC protocols within and between laboratories. (J Histochem Cytochem 58:XXX-XXX, 2019).
Collapse
Affiliation(s)
- Kathy J Hötzel
- Department of Research Pathology, Genentech, Inc., South San Francisco, California
| | - Charles A Havnar
- Department of Research Pathology, Genentech, Inc., South San Francisco, California
| | - Hai V Ngu
- Department of Research Pathology, Genentech, Inc., South San Francisco, California
| | - Sandra Rost
- Department of Research Pathology, Genentech, Inc., South San Francisco, California
| | - Scot D Liu
- Department of Research Pathology, Genentech, Inc., South San Francisco, California
| | - Linda K Rangell
- Department of Research Pathology, Genentech, Inc., South San Francisco, California
| | - Franklin V Peale
- Department of Research Pathology, Genentech, Inc., South San Francisco, California
| |
Collapse
|
46
|
Bogen SA. A Root Cause Analysis Into the High Error Rate in Clinical Immunohistochemistry. Appl Immunohistochem Mol Morphol 2019; 27:329-338. [PMID: 30807309 PMCID: PMC6706333 DOI: 10.1097/pai.0000000000000750] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The field of Clinical Immunohistochemistry (IHC) is beset with a high error rate, an order of magnitude higher than in other types of clinical laboratory testing. Despite the many improvements in the field, these errors have persisted over the last 2 decades. The improvements over the years include an extensive literature describing the potential causes of errors and how to avoid them. More stringent regulatory guidelines have also been implemented. These measures reflect the standard view is that fixing the broad confluence of causes of error will address the problem. This review takes a different tack. To understand the high error rates, this review compares Clinical IHC laboratory practice to practices of other clinical laboratory disciplines. What aspects of laboratory testing that minimize errors in other clinical laboratory disciplines are not found in Clinical IHC? In this review, we seek to identify causal factors and underlying root causes that are unique to the field of Clinical IHC in comparison to other laboratory testing disciplines. The most important underlying root cause is the absence of traceable units of measure, international standards, calibrators that are traceable to standards, and quantitative monitoring of controls. These tools and practices (in other clinical laboratory disciplines) provide regular accurate feedback to laboratory personnel on analytic test performance.
Collapse
Affiliation(s)
- Steven A Bogen
- Department of Pathology & Laboratory Medicine, Tufts Medical Center and MDP LLC, Boston, MA
| |
Collapse
|
47
|
Arar NM, Pati P, Kashyap A, Khartchenko AF, Goksel O, Kaigala GV, Gabrani M. High-Quality Immunohistochemical Stains Through Computational Assay Parameter Optimization. IEEE Trans Biomed Eng 2019; 66:2952-2963. [PMID: 30762525 DOI: 10.1109/tbme.2019.2899156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Accurate profiling of tumors using immunohistochemistry (IHC) is essential in cancer diagnosis. The inferences drawn from IHC-stained images depend to a great extent on the quality of immunostaining, which is in turn affected strongly by assay parameters. To optimize assay parameters, the available tissue sample is often limited. Moreover, with current practices in pathology, exploring the entire assay parameter space is not feasible. Thus, the evaluation of IHC stained slides is conventionally a subjective task, in which diagnoses are commonly drawn on images that are suboptimal. In this work, we introduce a framework to analyze IHC staining quality and its sensitivity to process parameters. To that extent, first histopathological sections are segmented automatically. Then, machine learning techniques are employed to extract disease-specific staining quality metrics (SQMs) targeting a quantitative assessment of staining quality. Finally, an approach to efficiently analyze the parameter space is introduced to infer sensitivity to process parameters. We present results on microscale IHC tissue samples of five breast tumor classes, based on disease state and protein expression. A disease-type classification F1-score of 0.82 and a contrast-level classification F1-score of 0.95 were achieved. With the proposed SQMs, an area under the curve of 0.85 was achieved on average over different disease types. Our methodology provides a promising step in automatically evaluating and quantifying staining quality of IHC stained tissue sections, and it can potentially standardize immunostaining across diagnostic laboratories.
Collapse
|
48
|
Abstract
This paper is number 6 in a series developed through a partnership between ISIMM and Nordic IHC Quality Control with the purpose of reporting research assessing the performance characteristics of immunoassays in an external proficiency testing program.
Collapse
|
49
|
NordiQC Assessments of CD117 Immunoassays. Appl Immunohistochem Mol Morphol 2018; 27:87-91. [PMID: 30499819 DOI: 10.1097/pai.0000000000000714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This paper is the number 5 in a series developed through a partnership between ISIMM and NordiQC for the purpose of reporting research assessing the performance characteristics of immunoassays in an external proficiency-testing program.
Collapse
|
50
|
Abstract
Definable, reproducible, and meaningful are elemental features of grading/scoring systems, while thoroughness, accuracy, and consistency are quality indicators of pathology reports. The expertise of pathologists is significantly underutilized when it is limited to rendering diagnoses. The opportunity to provide guidance on animal model development, experimental design, optimal sample collection, and data interpretation not only contributes to job satisfaction but also, more importantly, promotes validation of the pathology data. Keys to validation include standard operating procedures, experimental controls, and standardized nomenclature applied throughout the experimental design and execution, tissue sampling, and slide preparation, as well as the creation or adaptation and application of semiquantitative grading/scoring systems. Diagnostic drift, thresholds, mental noise, and various diurnal fluctuations strongly influence the repeatability of grading/scoring systems used by the same or different pathologists. Quantitative image analyses are not plagued by the visual and cognitive traps that affect manual semiquantitative grading schemes but may still be affected by technical variables associated with necropsy, tissue sampling, and slide preparation. The validity of a grading scheme is ultimately assessed by its repeatability and biologic relevance, so it is important to correlate scores with comprehensive pathobiology data such as results of antemortem imaging, clinical pathology data, body and organ weights, and histopathologic evaluation of full tissue sets.
Collapse
Affiliation(s)
- Krista M. D. La Perle
- Department of Veterinary Biosciences, Comparative Pathology & Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, OH, USA
| |
Collapse
|