1
|
Le MK, Oishi N, Mochizuki K, Kondo T. Immunohistochemical detection of cancer genetic abnormalities. Pathol Res Pract 2024; 255:155109. [PMID: 38340581 DOI: 10.1016/j.prp.2024.155109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
New applications of immunohistochemistry (IHC) expand rapidly due to the development of molecular analyses and an increased understanding of molecular biology. IHC becomes much more important as a screening or even a confirmatory test for molecular changes in cancer. The past decades have witnessed the release of many immunohistochemical markers of the new generation. The novel markers have extensively high specificity and sensitivity for the detection of genetic abnormalities. In addition to diagnostic utility, IHC has been validated to be a practical tool in terms of treatments, especially molecular targeted therapy. In this review, we first describe the common alterations of protein IHC staining in human cancer: overexpression, underexpression, or loss of expression and altered staining pattern. Next, we examine the relationship between staining patterns and genetic aberrations regarding both conventional and novel IHC markers. We also mention current mutant-specific and fusion-specific antibodies and their concordance with molecular techniques. We then describe the basic molecular mechanisms from genetic events to corresponding protein expression patterns (membranous, cytoplasmic, or nuclear patterns). Finally, we shortly discuss the applications of immunohistochemistry in molecular targeted therapy. IHC markers can serve as a complementary or companion diagnostic test to provide valuable information for targeted therapy. Moreover, immunohistochemistry is also crucial as a companion diagnostic test in immunotherapy. The increased number of IHC novel antibodies is broadening its application in anti-cancer therapies.
Collapse
Affiliation(s)
- Minh-Khang Le
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Naoki Oishi
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kunio Mochizuki
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan.
| |
Collapse
|
2
|
Casillas AC, Muhlbauer A, Barragan VA, Jefferson I, Speiser JJ. A Comparison of Preferentially Expressed Antigen in Melanoma Immunohistochemistry and Diagnostic Gene Expression-Profiling Assay in Challenging Melanocytic Proliferations. Am J Dermatopathol 2024; 46:137-146. [PMID: 38354382 DOI: 10.1097/dad.0000000000002501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
ABSTRACT Most melanocytic tumors are classified as benign or malignant based on clinical morphology, histology, and immunohistochemical (IHC) analysis. A subset of more challenging cases with ambiguous features may require further evaluation with established ancillary diagnostic molecular studies, including fluorescence in situ hybridization and/or single nucleotide polymorphism array, to increase diagnostic certainty. More recently, a diagnostic gene expression-profiling (GEP) assay and an IHC stain for the detection of PRAME (PReferentially expressed Antigen in MElanoma) have been developed. The use of PRAME IHC has been validated in cases of unequivocal and ambiguous melanocytic proliferations via comparing results with fluorescence in situ hybridization and/or single nucleotide polymorphism array. A study comparing performance metrics of PRAME IHC and diagnostic GEP has not been previously published. Herein, we evaluated the use of PRAME IHC in 55 melanocytic tumors with challenging histomorphology by comparing the results with diagnostic GEP and final histomorphologic diagnosis. Intertest agreement occurred in 88% of cases. PRAME IHC supported the final diagnosis in 89% of cases with a sensitivity of 79%, specificity of 95%, and positive predictive value of 88.2%. GEP agreed with the final diagnosis in 88% of cases with a sensitivity of 65%, 97% specificity, and positively predicted melanoma in 91.7% of cases. Because the results of this study align with past publications evaluating the performance metrics of PRAME IHC, showing it to be as sensitive as and more cost effective than all other ancillary molecular tests, we propose the use of PRAME IHC as the optimal first-line diagnostic tool for ambiguous melanocytic proliferations.
Collapse
Affiliation(s)
| | | | - Victor A Barragan
- Student, Chicago Medical School at Rosalind Franklin University, North Chicago, IL
| | | | - Jodi J Speiser
- Pathologist, Department of Pathology, Loyola University Medical Center, Maywood, IL
| |
Collapse
|
3
|
Dénes A, Bontell TO, Barchéus H, Vega SF, Carén H, Lindskog C, Jakola AS, Smits A. The clinical value of proneural, classical and mesenchymal protein signatures in WHO 2021 adult-type diffuse lower-grade gliomas. PLoS One 2023; 18:e0285732. [PMID: 37192181 DOI: 10.1371/journal.pone.0285732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
OBJECTIVES Accumulating evidence shows that mesenchymal transition of glioblastomas is associated with a more aggressive course of disease and therapy resistance. In WHO2021-defined adult-type diffuse gliomas of lower grade (dLGG), the transition of the tumor phenotype over time, has not been studied. Most efforts to correlate proneural, classical or mesenchymal phenotype with outcome in dLGG were made prior to the WHO 2021 classification. Here, we set out to investigate if phenotype predicted survival and tumor recurrence in a clinical cohort of dLGGs, re-classified according to the 2021 WHO criteria. METHODS Using a TMA-based approach with five immunohistochemical markers (EGFR, p53, MERTK, CD44 and OLIG2), we investigated 183 primary and 49 recurrent tumors derived from patients with previously diagnosed dLGG. Of the 49 relapses, nine tumors recurred a second time, and one a third time. RESULTS In total, 71.0% of all tumors could be subtyped. Proneural was most dominant in IDH-mut tumors (78.5%), mesenchymal more common among IDH-wt tumors (63.6%). There was a significant difference in survival between classical, proneural and mesenchymal phenotypes in the total cohort (p<0.001), but not after molecular stratification (IDH-mut: p = 0.220, IDH-wt: p = 0.623). Upon recurrence, proneural was retained in 66.7% of the proneural IDH-mut dLGGs (n = 21), whereas IDH-wt tumors (n = 10) mainly retained or gained mesenchymal phenotype. No significant difference in survival was found between IDH-mut gliomas remaining proneural and those shifting to mesenchymal phenotype (p = 0.347). CONCLUSION Subtyping into classical, proneural and mesenchymal phenotypes by five immunohistochemical markers, was possible for the majority of tumors, but protein signatures did not correlate with patient survival in our WHO2021-stratified cohort. At recurrence, IDH-mut tumors mainly retained proneural, while IDH-wt tumors mostly retained or gained mesenchymal signatures. This phenotypic shift, associated with increased aggressiveness in glioblastoma, did not affect survival. Group sizes were, however, too small to draw any firm conclusions.
Collapse
Affiliation(s)
- Anna Dénes
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Hanna Barchéus
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Ferreyra Vega
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Carén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anja Smits
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
da Cunha IW, de Almeida Coudry R, de Macedo MP, de Assis EACP, Stefani S, Soares FA. A call to action: molecular pathology in Brazil. SURGICAL AND EXPERIMENTAL PATHOLOGY 2021. [DOI: 10.1186/s42047-021-00096-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Adoption of molecular pathology in Brazil is currently very limited. Of note, there are no programs for training new molecular pathologists in the country; thus, documents compiling nationally applicable information on molecular pathology are few.
Methods
A selected panel of Brazilian experts in fields related to molecular pathology were provided with a series of relevant questions to address prior to the multi-day conference. Within this conference, each narrative was discussed and edited by the entire group, through numerous drafts and rounds of discussion until a consensus was achieved.
Results
The panel proposes specific and realistic recommendations for implementing molecular pathology in cancer care in Brazil. In creating these recommendations, the authors strived to address all barriers to the widespread use and impediments to access mentioned previously within this manuscript.
Conclusion
This manuscript provides a review of molecular pathology principles as well as the current state of molecular pathology in Brazil. Additionally, the panel proposes practical and actionable recommendations for the implementation of molecular pathology throughout the country in order to increase awareness of the importance molecular pathology in Brazil.
Collapse
|
5
|
Ray T, Ryusaki T, Ray PS. Therapeutically Targeting Cancers That Overexpress FOXC1: A Transcriptional Driver of Cell Plasticity, Partial EMT, and Cancer Metastasis. Front Oncol 2021; 11:721959. [PMID: 34540690 PMCID: PMC8446626 DOI: 10.3389/fonc.2021.721959] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 12/28/2022] Open
Abstract
Metastasis accounts for more than 90% of cancer related mortality, thus the most pressing need in the field of oncology today is the ability to accurately predict future onset of metastatic disease, ideally at the time of initial diagnosis. As opposed to current practice, what would be desirable is that prognostic, biomarker-based detection of metastatic propensity and heightened risk of cancer recurrence be performed long before overt metastasis has set in. Without such timely information it will be impossible to formulate a rational therapeutic treatment plan to favorably alter the trajectory of disease progression. In order to help inform rational selection of targeted therapeutics, any recurrence/metastasis risk prediction strategy must occur with the paired identification of novel prognostic biomarkers and their underlying molecular regulatory mechanisms that help drive cancer recurrence/metastasis (i.e. recurrence biomarkers). Traditional clinical factors alone (such as TNM staging criteria) are no longer adequately prognostic for this purpose in the current molecular era. FOXC1 is a pivotal transcription factor that has been functionally implicated to drive cancer metastasis and has been demonstrated to be an independent predictor of heightened metastatic risk, at the time of initial diagnosis. In this review, we present our viewpoints on the master regulatory role that FOXC1 plays in mediating cancer stem cell traits that include cellular plasticity, partial EMT, treatment resistance, cancer invasion and cancer migration during cancer progression and metastasis. We also highlight potential therapeutic strategies to target cancers that are, or have evolved to become, “transcriptionally addicted” to FOXC1. The potential role of FOXC1 expression status in predicting the efficacy of these identified therapeutic approaches merits evaluation in clinical trials.
Collapse
Affiliation(s)
- Tania Ray
- R&D Division, Onconostic Technologies (OT), Inc., Champaign, IL, United States
| | | | - Partha S Ray
- R&D Division, Onconostic Technologies (OT), Inc., Champaign, IL, United States
| |
Collapse
|
6
|
Gestrich CK, Couce ME, Cohen ML. Adult Diffuse Astrocytic and Oligodendroglial Tumors. Neurosurgery 2021; 89:737-749. [PMID: 33611566 DOI: 10.1093/neuros/nyab042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/25/2020] [Indexed: 11/12/2022] Open
Abstract
Infiltrating gliomas comprise the most common group of primary intraparenchymal brain tumors and present a level of complexity which requires careful integration of histopathology and molecular diagnostics for optimal therapy. To this end, the fourth edition of the World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS) has been followed by a series of publications by cIMPACT-NOW (the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy) incorporating molecular signatures to propose updated diagnostic categories in anticipation of the upcoming fifth edition of CNS tumor classification. Integration of histopathology, immunophenotyping, and molecular findings is profoundly changing the practice of diagnostic surgical neuropathology and enabling a more personalized approach to treating patients with gliomas.
Collapse
Affiliation(s)
- Catherine K Gestrich
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Marta E Couce
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark L Cohen
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
8
|
Abstract
Tumor cells reprogram their metabolism to support cell growth, proliferation, and differentiation, thus driving cancer progression. Profiling of the metabolic signatures in heterogeneous tumors facilitates the understanding of tumor metabolism and introduces potential metabolic vulnerabilities that might be targeted therapeutically. We proposed a spatially resolved metabolomics method for high-throughput discovery of tumor-associated metabolite and enzyme alterations using ambient mass spectrometry imaging. Metabolic pathway-related metabolites and metabolic enzymes that are associated with tumor metabolism were efficiently discovered and visualized in heterogeneous esophageal cancer tissues. Spatially resolved metabolic alterations hold the key to defining the dependencies of metabolism that are most limiting for cancer growth and exploring metabolic targeted strategies for better cancer treatment. Characterization of tumor metabolism with spatial information contributes to our understanding of complex cancer metabolic reprogramming, facilitating the discovery of potential metabolic vulnerabilities that might be targeted for tumor therapy. However, given the metabolic variability and flexibility of tumors, it is still challenging to characterize global metabolic alterations in heterogeneous cancer. Here, we propose a spatially resolved metabolomics approach to discover tumor-associated metabolites and metabolic enzymes directly in their native state. A variety of metabolites localized in different metabolic pathways were mapped by airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) in tissues from 256 esophageal cancer patients. In combination with in situ metabolomics analysis, this method provided clues into tumor-associated metabolic pathways, including proline biosynthesis, glutamine metabolism, uridine metabolism, histidine metabolism, fatty acid biosynthesis, and polyamine biosynthesis. Six abnormally expressed metabolic enzymes that are closely associated with the altered metabolic pathways were further discovered in esophageal squamous cell carcinoma (ESCC). Notably, pyrroline-5-carboxylate reductase 2 (PYCR2) and uridine phosphorylase 1 (UPase1) were found to be altered in ESCC. The spatially resolved metabolomics reveal what occurs in cancer at the molecular level, from metabolites to enzymes, and thus provide insights into the understanding of cancer metabolic reprogramming.
Collapse
|
9
|
IHC Optical Density Score: A New Practical Method for Quantitative Immunohistochemistry Image Analysis. Appl Immunohistochem Mol Morphol 2018; 25:e12-e13. [PMID: 27093452 DOI: 10.1097/pai.0000000000000370] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Shishkanova TV, Broncová G, Fitl P, Král V, Barek J. Voltammetric Detection of Catecholamine Metabolites Using Tröger's Base Modified Electrode. ELECTROANAL 2018. [DOI: 10.1002/elan.201700635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tatiana V. Shishkanova
- Department of Analytical Chemistry; University of Chemistry and Technology Prague; 166 28 Prague 6 Technická 5 Czech Republic
- Charles University, First Faculty of Medicine; 121 08 Prague 2 Kateřinská 32 Czech Republic
| | - Gabriela Broncová
- Department of Analytical Chemistry; University of Chemistry and Technology Prague; 166 28 Prague 6 Technická 5 Czech Republic
| | - Přemysl Fitl
- Department of Physics and Measurements; University of Chemistry and Technology Prague; 166 28 Prague 6 Technická 5 Czech Republic
| | - Vladimír Král
- Department of Analytical Chemistry; University of Chemistry and Technology Prague; 166 28 Prague 6 Technická 5 Czech Republic
- Charles University, First Faculty of Medicine; 121 08 Prague 2 Kateřinská 32 Czech Republic
| | - Jiří Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of environmental electrochemistry; 128 43 Prague 2 Hlavova 2030 Czech Republic
| |
Collapse
|
11
|
Dušková J, Sobek O. Assisting the neurologist in diagnosis of CNS malignancies - Current Possibilities and Limits of Cerebrospinal Fluid Cytology and Immunocytochemistry. Brain Behav 2017; 7:e00805. [PMID: 29075565 PMCID: PMC5651389 DOI: 10.1002/brb3.805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/01/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES In tumorous impairment of CNS, cytological identification of the neoplastic cells in CSF frequently requires the use of ancillary techniques. Our methods are focused on identifying algorithms that increase the probability of identifying CSF malignant cells. MATERIALS AND METHODS A total of 1.272 CSF samples from patients with tumorous infiltration of CNS of nonhematologic origin along with 721 samples from patients with hematologic malignancies were analyzed in a complex setting including cytological and immunocytochemical investigations. RESULTS AND DISCUSSION In CSF diagnostics we are aware of the limited amount of sample combined frequently with neoplastic oligocytosis. Provided atypical, potentially malignant cells in CSF are found, further investigation(s) should maximize the probability of their identification-an appropriate cytological staining and immunocytochemical panel is to be applied. (i) In cases of known recent malignancy: immunoprofile of the recent neoplasm has been considered in immunocytochemical panel. (ii) In patients with a history of malignancy: The propensity to develop a new different malignancy must be taken into account. (iii) Atypical cells found in the CSF of a patient with a negative history of malignancy: Considering the most frequent clinically silent malignancies, stepwise immunocytochemistry is employed. Three milliliter of initial CSF sample represents the absolute minimum to start with. CONCLUSIONS The steps of the laboratory activity targeted on malignancy in the CSF detection can be expected as follows: (i) The sample will be divided for both nonmorphology and cytopathology investigations. (ii) Basic stainings will triage the samples into those with no suspicion of malignancy and the remaining ones. (iii) Special stainings and stepwise immunocytochemistry will be performed in parallel with the nonmorphology investigations.
Collapse
Affiliation(s)
- Jaroslava Dušková
- Institute of Pathology 1st Faculty of Medicine Charles University and Faculty General Hospital Prague Czech Republic.,Laboratory for CSF, Neuroimmunology, Pathology and Special Diagnostics Topelex Ltd Prague Czech Republic
| | - Ondřej Sobek
- Laboratory for CSF, Neuroimmunology, Pathology and Special Diagnostics Topelex Ltd Prague Czech Republic
| |
Collapse
|
12
|
Feng YZ, Zhang QY, Fu MT, Zhang ZF, Wei M, Zhou JY, Shi R. Low expression of PinX1 is associated with malignant behavior in basal-like breast cancer. Oncol Rep 2017; 38:109-119. [PMID: 28586040 PMCID: PMC5492774 DOI: 10.3892/or.2017.5696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Human Pinx1 protein, associated with shelterin proteins, is widely revealed as a haploinsufficient tumor suppressor. Growing evidence has manifested the deregulation of PinX1 in distinct cancers. Nonetheless, the loss status of PinX1 and its diagnostic, prognostic and clinicopathological significance in Basal-like breast cancer are still unclear. In the present study, the PinX1 expression levels of breast cancer tissues were investigated by qRT-PCR and immunoblotting assays. Then immunohistochemistry (IHC) was performed to detect PinX1 expression on a tissue microarray. The optimal threshold for PinX1 positivity was determined by receiver operating characteristic (ROC) curve analysis. To clarify the probable role of PinX1 in BLBC, the PinX1 knockout and stably over-expressed MDA-MB-231 cell lines were constructed by the CRISPR-Cas9 system and gene transfection. The association of PinX1 expression with cell proliferation, migration and apoptosis of MDA-MB-231 cells were observed by CCK-8 assay, wound healing assay, Transwell assay, flow cytometric analysis and immunoblotting of the cleaved caspase-3 protein level. Our results showed that both PinX1 mRNA and protein expression were downregulated in breast cancer tissues (P<0.05). In IHC analysis, the optimal cut-off parameter for PinX1 positive expression was 62.5% (the AUC was 0.749, P<0.01). PinX1 positivity was 76.9% (10/14) in luminal subtypes, 50% (5/10) in Her2-enriched breast cancer and 27.3% (9/33) in basal-like subtypes. Besides, in 59 invasive ductal breast carcinomas, PinX1 expression was inversely related to histology grade (P<0.05) while it was positively associated with PR status (P<0.05) and ER status (P<0.05). These results indicated that low expression of PinX1 correlated with aggressive clinicopathological significance of breast cancer, especially in the basal-like subtype. Besides, we identified that overexpression of PinX1 inhibited the proliferation rates and migration ability and increased the apoptosis rates of BLBC. Our findings demonstrated that low expression of PinX1 was associated with malignant behaviors in basal-like subtype of breast cancer. PinX1 is likely a feasible biomarker and molecular target of BLBC.
Collapse
Affiliation(s)
- Yu-Zhen Feng
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qing-Yan Zhang
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Mei-Ting Fu
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhen-Fei Zhang
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Min Wei
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jue-Yu Zhou
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Rong Shi
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
13
|
Du Y, Chen B. Detection approaches for multidrug resistance genes of leukemia. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1255-1261. [PMID: 28458519 PMCID: PMC5402920 DOI: 10.2147/dddt.s134529] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leukemia is a clonal malignant hematopoietic stem cell disease. It is the sixth most lethal cancer and accounts for 4% of all cancers. The main form of treatment for leukemia is chemotherapy. While some cancer types with a higher incidence than leukemia, such as lung and gastric cancer, have shown a sharp decline in mortality rates in recent years, leukemia has not followed this trend. Drug resistance is often regarded as the main clinical obstacle to effective chemotherapy in patients diagnosed with leukemia. Many resistance mechanisms have now been identified, and multidrug resistance (MDR) is considered the most important and prevalent mechanism involved in the failure of chemotherapy in leukemia. In order to reverse MDR and improve leukemia prognosis, effective detection methods are needed to identify drug resistance genes at initial diagnosis. This article provides a comprehensive overview of published approaches for the detection of MDR in leukemia. Identification of relevant MDR genes and methods for early detection of these genes will be needed in order to treat leukemia more effectively.
Collapse
Affiliation(s)
- Ying Du
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
14
|
Nuciforo P. The search for simplicity: is this compatible with precision medicine? Ann Oncol 2017; 28:10-12. [DOI: 10.1093/annonc/mdw566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Affiliation(s)
- Frederic G Barr
- a Laboratory of Pathology, Center for Cancer Research , National Cancer Institute , Bethesda , MD , USA
| |
Collapse
|
16
|
Shishkanova TV, Havlík M, Dendisová M, Matějka P, Král V. Synthesis and deposition of a Tröger’s base polymer on the electrode surface for potentiometric detection of a neuroblastoma tumor marker metabolite. Chem Commun (Camb) 2016; 52:11991-11994. [DOI: 10.1039/c6cc06203b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We propose an innovative approach to detect a low molecular weight metabolite of neuroblastoma.
Collapse
Affiliation(s)
- T. V. Shishkanova
- Department of Analytical Chemistry
- University of Chemistry and Technology in Prague
- Technická 5
- Czech Republic
| | - M. Havlík
- Department of Analytical Chemistry
- University of Chemistry and Technology in Prague
- Technická 5
- Czech Republic
| | - M. Dendisová
- Department of Physical Chemistry
- University of Chemistry and Technology in Prague
- Technická 5
- Czech Republic
| | - P. Matějka
- Department of Physical Chemistry
- University of Chemistry and Technology in Prague
- Technická 5
- Czech Republic
| | - V. Král
- Department of Analytical Chemistry
- University of Chemistry and Technology in Prague
- Technická 5
- Czech Republic
| |
Collapse
|