1
|
Zhang W, Li J, Xie F, Zeng L, Hong L, Li P, Yan X, Xu J, Du M, Hong J, Yi D, Xie J, Gu J. Mechanical Microvibration Device Enhancing Immunohistochemistry Efficiency. Eng Life Sci 2024; 24:e202400062. [PMID: 39502857 PMCID: PMC11532639 DOI: 10.1002/elsc.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 11/08/2024] Open
Abstract
Immunohistochemistry (IHC) is a widely used technique in diagnostic pathology and biomedical research, but there is still a need to shorten the operation process and reduce the cost of antibodies. This study aims to assess a novel IHC technique that incorporates mechanical microvibration (MMV) to expedite the process, reduce antibody consumption, and enhance staining quality. MMV was generated using coin vibration motors attached to glass slides mounted with consecutive tissue sections. Multiple antibodies targeting various antigens were used to stain cancerous and normal tissues, with and without microvibration. Various parameters were tested, including incubation durations, temperatures, and antibody dilutions. The novel method showed the potential to achieve comparable or superior outcomes in significantly less time, utilizing over 10 times less antibody than controls. MMV improved specific staining quality, yielding stronger, and better-defined positive reactions. This was validated through a multicenter double-blind assessment and quantitative image analysis. The possible mechanisms were also investigated. MMV shortens immunohistochemical staining duration, reduces antibody usage, and enhances staining specificity, likely by accelerating antibody movement and diffusion. These improvements translate to time and cost savings, offering clinical and financial value for diagnostic pathology and biomedical research.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Jirui Li
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Fengshan Xie
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Liting Zeng
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Liangli Hong
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Penghao Li
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Xiaomiao Yan
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Jingliang Xu
- Jinxin Research Institute for Reproductive Medicine and GeneticsXinan Hospital for Maternal and Child Health CareChengduChina
| | - Meina Du
- Xiamen Motic Clinical LaboratoryXiamenChina
| | | | - Dingrong Yi
- College of Mechanical Engineering and AutomationHuaqiao UniversityXiamenChina
| | - Jiahao Xie
- College of Mechanical Engineering and AutomationHuaqiao UniversityXiamenChina
| | - Jiang Gu
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
- Jinxin Research Institute for Reproductive Medicine and GeneticsXinan Hospital for Maternal and Child Health CareChengduChina
| |
Collapse
|
2
|
Meier Bürgisser G, Heuberger DM, Rieber J, Miescher I, Giovanoli P, Calcagni M, Buschmann J. Delineation of the healthy rabbit tongue by immunohistochemistry - A technical note. Acta Histochem 2024; 126:152127. [PMID: 38039795 DOI: 10.1016/j.acthis.2023.152127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
In the oral cavity the tongue is an important muscular organ that supports the swallowing of food and liquids. It is responsible for the sense of taste, based on the many different taste buds it contains. Research in the field of tongue diseases demands for suitable preclinical models. The healthy rabbit tongue may therefore serve as baseline and reference for the pathological situation. With this consideration, we covered the fixation and histological stainings as well as the immunohistochemical labelling of the healthy rabbit tongue. In this technical note, initial choice of the fixative is discussed, with a comparison of formalin fixation and subsequent paraffin embedding versus cryopreservation. Moreover, we delineate the effect of an antigen retrieval step for formalin fixation by several examples. Finally, we provide ECM markers collagen I, collagen III, fibronectin, α-SMA and elastin staining as well as ki67 for proliferative status and PAR-2 protein expression as a marker for inflammatory status and nociception in tongue sections, mainly from the tongue body. Technically, we found superiority of paraffin sections for collagen I, collagen III, fibronectin, ki67 and α-SMA labelling, for selected detections systems. As for ECM components, the lamina propria was very rich in collagen and fibronectin, while the muscular body of the tongue showed only collagen and fibronectin positive areas between the muscle fibers. Moreover, α-SMA was clearly expressed in the walls of arteries and veins. The inflammatory marker PAR-2 on the other hand was prominently expressed in the salivary glands and to some extent in the walls of the vessels. Particular PAR-2 expression was found in the excretory ducts of the tongue. This technical note has the aim to provide baseline images that can be used to compare the pathological state of the diseased rabbit tongue as well as for inter-species comparison, such as mouse or rat tongue. Finally, it can be used for the comparison with the human situation.
Collapse
Affiliation(s)
- Gabriella Meier Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Julia Rieber
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| |
Collapse
|
3
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. A High-Throughput PIXUL-Matrix-Based Toolbox to Profile Frozen and Formalin-Fixed Paraffin-Embedded Tissues Multiomes. J Transl Med 2024; 104:100282. [PMID: 37924947 PMCID: PMC10872585 DOI: 10.1016/j.labinv.2023.100282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Large-scale high-dimensional multiomics studies are essential to unravel molecular complexity in health and disease. We developed an integrated system for tissue sampling (CryoGrid), analytes preparation (PIXUL), and downstream multiomic analysis in a 96-well plate format (Matrix), MultiomicsTracks96, which we used to interrogate matched frozen and formalin-fixed paraffin-embedded (FFPE) mouse organs. Using this system, we generated 8-dimensional omics data sets encompassing 4 molecular layers of intracellular organization: epigenome (H3K27Ac, H3K4m3, RNA polymerase II, and 5mC levels), transcriptome (messenger RNA levels), epitranscriptome (m6A levels), and proteome (protein levels) in brain, heart, kidney, and liver. There was a high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles confirmed known organ-specific superenhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic profiles, known to be poorly correlated with transcriptomic data, can be more accurately predicted by the full suite of multiomics data, compared with using epigenomic, transcriptomic, or epitranscriptomic measurements individually.
Collapse
Affiliation(s)
- Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Ilona M Babenko
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Ran Zhang
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, Washington
| | - Tomas Vaisar
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Matchstick Technologies, Inc, Kirkland, Washington.
| |
Collapse
|
4
|
Shi Y, Yee-Chang M, Shi SR. Application of Immunohistochemistry in Cytology. Appl Immunohistochem Mol Morphol 2023; 31:459-466. [PMID: 36730366 DOI: 10.1097/pai.0000000000001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/19/2022] [Indexed: 02/04/2023]
Abstract
Immunohistochemistry (IHC), also referred to as immunocytochemistry in cytology literature, has revolutionized the practice of cytopathology. Because of the complexity of cytology preparation and limited diagnostic material, performing IHC remains a challenge. Formalin-fixed paraffin-embedded (FFPE) cell block (CB) is the optimal choice for IHC. In this review, the approaches for improving CB preparation will be discussed. When CB material is not available, various cytology specimens can also be used for IHC. With the utilization of Antigen Retrieval (AR) technique, these nonformalin-fixed cytology specimens can achieve successful IHC staining, comparable with the results from FFPE tissue sections. In the last part of this review, we will discuss the use of positive controls and the important role of AR in standardization of IHC in cytology.
Collapse
Affiliation(s)
- Yan Shi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Melissa Yee-Chang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Shan-Rong Shi
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| |
Collapse
|
5
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. MultiomicsTracks96: A high throughput PIXUL-Matrix-based toolbox to profile frozen and FFPE tissues multiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533031. [PMID: 36993219 PMCID: PMC10055122 DOI: 10.1101/2023.03.16.533031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The multiome is an integrated assembly of distinct classes of molecules and molecular properties, or "omes," measured in the same biospecimen. Freezing and formalin-fixed paraffin-embedding (FFPE) are two common ways to store tissues, and these practices have generated vast biospecimen repositories. However, these biospecimens have been underutilized for multi-omic analysis due to the low throughput of current analytical technologies that impede large-scale studies. Methods Tissue sampling, preparation, and downstream analysis were integrated into a 96-well format multi-omics workflow, MultiomicsTracks96. Frozen mouse organs were sampled using the CryoGrid system, and matched FFPE samples were processed using a microtome. The 96-well format sonicator, PIXUL, was adapted to extract DNA, RNA, chromatin, and protein from tissues. The 96-well format analytical platform, Matrix, was used for chromatin immunoprecipitation (ChIP), methylated DNA immunoprecipitation (MeDIP), methylated RNA immunoprecipitation (MeRIP), and RNA reverse transcription (RT) assays followed by qPCR and sequencing. LC-MS/MS was used for protein analysis. The Segway genome segmentation algorithm was used to identify functional genomic regions, and linear regressors based on the multi-omics data were trained to predict protein expression. Results MultiomicsTracks96 was used to generate 8-dimensional datasets including RNA-seq measurements of mRNA expression; MeRIP-seq measurements of m6A and m5C; ChIP-seq measurements of H3K27Ac, H3K4m3, and Pol II; MeDIP-seq measurements of 5mC; and LC-MS/MS measurements of proteins. We observed high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles (ChIP-seq: H3K27Ac, H3K4m3, Pol II; MeDIP-seq: 5mC) was able to recapitulate and predict organ-specific super-enhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic expression profiles can be more accurately predicted by the full suite of multi-omics data, compared to using epigenomic, transcriptomic, or epitranscriptomic measurements individually. Conclusions The MultiomicsTracks96 workflow is well suited for high dimensional multi-omics studies - for instance, multiorgan animal models of disease, drug toxicities, environmental exposure, and aging as well as large-scale clinical investigations involving the use of biospecimens from existing tissue repositories.
Collapse
|
6
|
Bürgisser GM, Heuberger DM, Schaffner N, Giovanoli P, Calcagni M, Buschmann J. Delineation of the healthy rabbit heart by immunohistochemistry - A technical note. Acta Histochem 2023; 125:151993. [PMID: 36584538 DOI: 10.1016/j.acthis.2022.151993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Heart failure poses a big health problem and may result from obesity, smoking, alcohol and/or growing age. Studying pathological heart tissue demands accurate histological and immunohistochemical stainings in animal models, including chromogenic and fluorescent approaches. Moreover, a reliable set of healthy heart stainings and labeling are required, in order to provide a reference for the pathological situation. Heart and brain tissue of a healthy rabbit were collected, and different histological key steps were compared, such as paraffin embedding after formalin fixation versus cryopreservation; an antigen retrieval (AR) step in processing paraffin sections versus the same procedure without AR; or a chromogenic with a fluorescent detection system, respectively. Using serial sections, we stained the same morphological structure with classic approaches (HE, Masson Goldner Trichrome (GT) and Elastica van Gieson (EL)) and with different markers, including collagen I, collagen III, fibronectin, α-SMA, protease-activated receptor-2 (PAR-2) which is an inflammation-related marker, and ki67 for proliferating cells. Differences between conditions were quantitatively assessed by measuring the color intensity. Generally, cryosections exhibited a more prominent signal intensity in immunohistochemically labeled sections than in paraffin sections, but the strong staining was slurry, which sometimes impeded proper identification of morphological structures, particularly at higher magnifications. In addition, the advantage of an AR step was observed when compared to the condition without AR, where signal intensities were significantly lower. Different stainings of the heart arteries and the myocardium revealed a clear distribution of extracellular matrix components, with prominent collagen III in the artery wall, but an absence of collagen III in the myocardium. Moreover, paraffin-embedded sections provided more distinct structures compared to cryosections after collagen III, ki67, fibronectin, and α-SMA labeling. As for the Purkinje cells that were depicted in the heart and the cerebellum (Purkinje neurons), we found GT staining most suitable to depict them in the heart, while HE as well as EL staining was ideal to depict Purkinje neurons in the cerebellum. In sum, we provide useful reference images with different stainings for researchers using the rabbit heart or brain model. Such images can help to decide which of the immunohistochemical protocols are valuable to reach a specific aim. Recommendations are given for the best visualization of the target structures and specific (immunohistochemical) staining.
Collapse
Affiliation(s)
- Gabriella Meier Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Nicola Schaffner
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| |
Collapse
|
7
|
Chiriboga L, Callis GM, Wang Y, Chlipala E. Guide for collecting and reporting metadata on protocol variables and parameters from slide-based histotechnology assays to enhance reproducibility. J Histotechnol 2022; 45:132-147. [DOI: 10.1080/01478885.2022.2134022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Luis Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- NYULH Center for Biospecimen Research and Development, New York, NY, USA
| | | | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas, MO, USA
| | | |
Collapse
|
8
|
Taylor CR, Shi SR. Commentary on "Antigen Retrieval Immunohistochemistry: Past, Present, and Future". J Histochem Cytochem 2022; 70:769-770. [PMID: 36582141 PMCID: PMC9903211 DOI: 10.1369/00221554221147086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022] Open
Affiliation(s)
- Clive R. Taylor
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Shan-Rong Shi
- University of Southern California, Los Angeles, California
| |
Collapse
|
9
|
Yu Q, Zhang C, Huang W, Li L. Heat-induced antigen retrieval in fluorescence in situ hybridization: An effective approach enhancing signal intensity in poor-quality FFPE sections. Exp Ther Med 2021; 22:1480. [PMID: 34765021 PMCID: PMC8576618 DOI: 10.3892/etm.2021.10915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 11/06/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) serves as an ancillary tool for assessing chromosomal abnormalities and is important in differential diagnoses and treatment decisions. In clinical practice, pathologists encounter unsatisfactory formalin-fixed paraffin-embedded (FFPE) sections exhibiting weak fluorescence signals, mostly due to inappropriate tissue processing or preservation, leading to interpretation difficulties. For the present study, FFPE samples for which conventional FISH failed were collected. Instead of a pretreatment step using a commercial kit, heat-induced antigen retrieval (HIAR) was introduced using either citrate buffer or Tris-EDTA buffer, while the subsequent experimental workflow remained unchanged. After HIAR-assisted FISH, the hybridization efficiency and signal intensity were markedly enhanced and no difference in signal adequacy was observed when comparing the effect of the two AR solutions. The present study demonstrated that HIAR is a reliable tool for FISH, particularly for poor-quality FFPE sections yielding weak or no fluorescence signals in the conventional analysis.
Collapse
Affiliation(s)
- Qiuxiao Yu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Chi Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Wenting Huang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Li Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| |
Collapse
|
10
|
Yang D, Li S, Wu J. A Simple and Quick Method for Decalcification Using Mouse Tail as a Model for Preparation of Lymphedema Study. Appl Immunohistochem Mol Morphol 2021; 29:551-556. [PMID: 33710121 DOI: 10.1097/pai.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/27/2021] [Indexed: 11/26/2022]
Abstract
The disadvantage of 10% EDTA decalcification is a long time-consuming. It needs to identify a quick and straightforward decalcification method when the preparation of lymphedema models using mouse tail which was a sample of bone wrapped in other tissues. In the present study, mouse tail samples were decalcified in 10% EDTA at 25, 37, and 42°C, respectively, with continuous shaking (150 rpm/min). The histologic integrity of samples was evaluated by hematoxylin and eosin staining, and the preservation of antigenicity was tested by either immunohistochemistry or immunofluorescence. The decalcification was distinctly accelerated by temperature. Results of hematoxylin and eosin staining were similar among different temperature groups. Immunohistochemistry and immunofluorescence staining revealed almost no signals in samples decalcified at 42°C for 1 week. Clear signals were detected when samples were decalcified at 37 and 25°C.
Collapse
Affiliation(s)
- Duo Yang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
11
|
|