1
|
Kondo T, Gleason A, Okawa H, Hokugo A, Nishimura I. Mouse gingival single-cell transcriptomic atlas identified a novel fibroblast subpopulation activated to guide oral barrier immunity in periodontitis. eLife 2023; 12:RP88183. [PMID: 38015204 PMCID: PMC10684155 DOI: 10.7554/elife.88183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Periodontitis, one of the most common non-communicable diseases, is characterized by chronic oral inflammation and uncontrolled tooth supporting alveolar bone resorption. Its underlying mechanism to initiate aberrant oral barrier immunity has yet to be delineated. Here, we report a unique fibroblast subpopulation activated to guide oral inflammation (AG fibroblasts) identified in a single-cell RNA sequencing gingival cell atlas constructed from the mouse periodontitis models. AG fibroblasts localized beneath the gingival epithelium and in the cervical periodontal ligament responded to the ligature placement and to the discrete topical application of Toll-like receptor stimulants to mouse maxillary tissue. The upregulated chemokines and ligands of AG fibroblasts linked to the putative receptors of neutrophils in the early stages of periodontitis. In the established chronic inflammation, neutrophils, together with AG fibroblasts, appeared to induce type 3 innate lymphoid cells (ILC3s) that were the primary source of interleukin-17 cytokines. The comparative analysis of Rag2-/- and Rag2-/-Il2rg-/- mice suggested that ILC3 contributed to the cervical alveolar bone resorption interfacing the gingival inflammation. We propose the AG fibroblast-neutrophil-ILC3 axis as a previously unrecognized mechanism which could be involved in the complex interplay between oral barrier immune cells contributing to pathological inflammation in periodontitis.
Collapse
Affiliation(s)
- Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of DentistrySendaiJapan
| | - Annie Gleason
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- UCLA Bruin in Genomics Summer ProgramLos AngelesUnited States
| | - Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of DentistrySendaiJapan
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
| |
Collapse
|
2
|
Kondo T, Gleason A, Okawa H, Hokugo A, Nishimura I. Mouse gingival single-cell transcriptomic atlas: An activated fibroblast subpopulation guides oral barrier immunity in periodontitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536751. [PMID: 37546811 PMCID: PMC10401928 DOI: 10.1101/2023.04.13.536751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Periodontitis, one of the most common non-communicable diseases, is characterized by chronic oral inflammation and uncontrolled tooth supporting alveolar bone resorption. Its underlying mechanism to initiate aberrant oral barrier immunity has yet to be delineated. Here, we report a unique fibroblast subpopulation activated to guide oral inflammation (AG fibroblasts) identified in a single-cell RNA sequencing gingival cell atlas constructed from the mouse periodontitis models. AG fibroblasts localized beneath the gingival epithelium and in the cervical periodontal ligament responded to the ligature placement and to the discrete application of Toll-like receptor stimulants to mouse maxillary tissue. The upregulated chemokines and ligands of AG fibroblasts linked to the putative receptors of neutrophils in the early stages of periodontitis. In the established chronic inflammation, neutrophils together with AG fibroblasts appeared to induce type 3 innate lymphoid cells (ILC3s) that were the primary source of interleukin-17 cytokines. The comparative analysis of Rag2-/- and Rag2γc-/- mice suggested that ILC3 contributed to the cervical alveolar bone resorption interfacing the gingival inflammation. We propose that AG fibroblasts function as a previously unrecognized surveillant to initiate gingival inflammation leading to periodontitis through the AG fibroblast-neutrophil-ILC3 axis.
Collapse
Affiliation(s)
- Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Annie Gleason
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Bruin in Genomics Summer Program
| | - Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int 2023; 23:101. [PMID: 37221555 DOI: 10.1186/s12935-023-02943-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Zhang J, Ma C, Qin H, Wang Z, Zhu C, Liu X, Hao X, Liu J, Li L, Cai Z. Construction and validation of a metabolic-related genes prognostic model for oral squamous cell carcinoma based on bioinformatics. BMC Med Genomics 2022; 15:269. [PMID: 36566175 PMCID: PMC9789624 DOI: 10.1186/s12920-022-01417-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) accounts for a frequently-occurring head and neck cancer, which is characterized by high rates of morbidity and mortality. Metabolism-related genes (MRGs) show close association with OSCC development, metastasis and progression, so we constructed an MRGs-based OSCC prognosis model for evaluating OSCC prognostic outcome. METHODS This work obtained gene expression profile as well as the relevant clinical information from the The Cancer Genome Atlas (TCGA) database, determined the MRGs related to OSCC by difference analysis, screened the prognosis-related MRGs by performing univariate Cox analysis, and used such identified MRGs for constructing the OSCC prognosis prediction model through Lasso-Cox regression. Besides, we validated the model with the GSE41613 dataset based on Gene Expression Omnibus (GEO) database. RESULTS The present work screened 317 differentially expressed MRGs from the database, identified 12 OSCC prognostic MRGs through univariate Cox regression, and then established a clinical prognostic model composed of 11 MRGs by Lasso-Cox analysis. Based on the optimal risk score threshold, cases were classified as low- or high-risk group. As suggested by Kaplan-Meier (KM) analysis, survival rate was obviously different between the two groups in the TCGA training set (P < 0.001). According to subsequent univariate and multivariate Cox regression, risk score served as the factor to predict prognosis relative to additional clinical features (P < 0.001). Besides, area under ROC curve (AUC) values for patient survival at 1, 3 and 5 years were determined as 0.63, 0.70, and 0.76, separately, indicating that the prognostic model has good predictive accuracy. Then, we validated this clinical prognostic model using GSE41613. To enhance our model prediction accuracy, age, gender, risk score together with TNM stage were incorporated in a nomogram. As indicated by results of ROC curve and calibration curve analyses, the as-constructed nomogram had enhanced prediction accuracy compared with clinicopathological features alone, besides, combining clinicopathological characteristics with risk score contributed to predicting patient prognosis and guiding clinical decision-making. CONCLUSION In this study, 11 MRGs prognostic models based on TCGA database showed superior predictive performance and had a certain clinical application prospect in guiding individualized.
Collapse
Affiliation(s)
- Jingfei Zhang
- grid.440653.00000 0000 9588 091XDepartment of Stomatology, Binzhou Medical University, Yantai, 264000 Shandong China
| | - Chenxi Ma
- grid.27255.370000 0004 1761 1174Department of Human Microbiome, School and Hospital of Stomatology, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, 250000 Shandong China
| | - Han Qin
- grid.440653.00000 0000 9588 091XDepartment of Stomatology, Binzhou Medical University, Yantai, 264000 Shandong China
| | - Zhi Wang
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Chao Zhu
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Xiujuan Liu
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Xiuyan Hao
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Jinghua Liu
- grid.415946.b0000 0004 7434 8069Department of Hepatobiliary Surgery and Minimally Invasive Institute of Digestive Surgery and Prof. Cai’s Laboratory, Linyi People’s Hospital, Shandong University, Linyi, 264000 Shandong China
| | - Ling Li
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Zhen Cai
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| |
Collapse
|
5
|
The prognostic role of tumor associated macrophages in squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. Oral Oncol 2022; 135:106227. [DOI: 10.1016/j.oraloncology.2022.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
6
|
Cerro PA, Mascaraque M, Gallego-Rentero M, Almenara-Blasco M, Nicolás-Morala J, Santiago JL, González S, Gracia-Cazaña T, Juarranz Á, Gilaberte Y. Tumor microenvironment in non-melanoma skin cancer resistance to photodynamic therapy. Front Oncol 2022; 12:970279. [PMID: 36338755 PMCID: PMC9634550 DOI: 10.3389/fonc.2022.970279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Non-melanoma skin cancer has recently seen an increase in prevalence, and it is estimated that this grow will continue in the coming years. In this sense, the importance of therapy effectiveness has increased, especially photodynamic therapy. Photodynamic therapy has attracted much attention as a minimally invasive, selective and repeatable approach for skin cancer treatment and prevention. Although its high efficiency, this strategy has also faced problems related to tumor resistance, where the tumor microenvironment has gained a well-deserved role in recent years. Tumor microenvironment denotes a wide variety of elements, such as cancer-associated fibroblasts, immune cells, endothelial cells or the extracellular matrix, where their interaction and the secretion of a wide diversity of cytokines. Therefore, the need of designing new strategies targeting elements of the tumor microenvironment to overcome the observed resistance has become evident. To this end, in this review we focus on the role of cancer-associated fibroblasts and tumor-associated macrophages in the resistance to photodynamic therapy. We are also exploring new approaches consisting in the combination of new and old drugs targeting these cells with photodynamic therapy to enhance treatment outcomes of non-melanoma skin cancer.
Collapse
Affiliation(s)
- Paulina A. Cerro
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Marta Mascaraque
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - María Gallego-Rentero
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Manuel Almenara-Blasco
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Jimena Nicolás-Morala
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Juan Luis Santiago
- Servicio de Dermatología, Hospital General de Ciudad Real, Ciudad Real, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Madrid, Spain
| | - Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Ángeles Juarranz
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| |
Collapse
|
7
|
Lyras EM, Zimmermann K, Wagner LK, Dörr D, Klose CSN, Fischer C, Jung S, Yona S, Hovav AH, Stenzel W, Dommerich S, Conrad T, Leutz A, Mildner A. Tongue immune compartment analysis reveals spatial macrophage heterogeneity. eLife 2022; 11:77490. [PMID: 35749158 PMCID: PMC9232218 DOI: 10.7554/elife.77490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/29/2022] [Indexed: 12/29/2022] Open
Abstract
The tongue is a unique muscular organ situated in the oral cavity where it is involved in taste sensation, mastication, and articulation. As a barrier organ, which is constantly exposed to environmental pathogens, the tongue is expected to host an immune cell network ensuring local immune defence. However, the composition and the transcriptional landscape of the tongue immune system are currently not completely defined. Here, we characterised the tissue-resident immune compartment of the murine tongue during development, health and disease, combining single-cell RNA-sequencing with in situ immunophenotyping. We identified distinct local immune cell populations and described two specific subsets of tongue-resident macrophages occupying discrete anatomical niches. Cx3cr1+ macrophages were located specifically in the highly innervated lamina propria beneath the tongue epidermis and at times in close proximity to fungiform papillae. Folr2+ macrophages were detected in deeper muscular tissue. In silico analysis indicated that the two macrophage subsets originate from a common proliferative precursor during early postnatal development and responded differently to systemic LPS in vivo. Our description of the under-investigated tongue immune system sets a starting point to facilitate research on tongue immune-physiology and pathology including cancer and taste disorders.
Collapse
Affiliation(s)
| | - Karin Zimmermann
- Max-Delbrück-Center for Molecular Medicine Berlin, Berlin, Germany
| | | | - Dorothea Dörr
- Max-Delbrück-Center for Molecular Medicine Berlin, Berlin, Germany.,Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Christoph S N Klose
- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Charité Berlin, Berlin, Germany
| | | | | | - Simon Yona
- Institute of Dental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi-Hai Hovav
- Institute of Dental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Werner Stenzel
- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charité Berlin, Berlin, Germany
| | - Steffen Dommerich
- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Otorhinolaryngology, Charité Berlin, Berlin, Germany
| | - Thomas Conrad
- Max-Delbrück-Center for Molecular Medicine Berlin, Berlin, Germany
| | - Achim Leutz
- Max-Delbrück-Center for Molecular Medicine Berlin, Berlin, Germany.,Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Alexander Mildner
- Max-Delbrück-Center for Molecular Medicine Berlin, Berlin, Germany.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland.,Institute of Biomedicine, Medicity, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Kai K, Moriyama M, Haque ASMR, Hattori T, Chinju A, Hu C, Kubota K, Miyahara Y, Kakizoe-Ishiguro N, Kawano S, Nakamura S. Oral Squamous Cell Carcinoma Contributes to Differentiation of Monocyte-Derived Tumor-Associated Macrophages via PAI-1 and IL-8 Production. Int J Mol Sci 2021; 22:9475. [PMID: 34502382 PMCID: PMC8430735 DOI: 10.3390/ijms22179475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/13/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote cancer cell proliferation and metastasis, as well as anti-tumor immune suppression. Recent studies have shown that tumors enhance the recruitment and differentiation of TAMs, but the detailed mechanisms have not been clarified. We thus examined the influence of cancer cells on the differentiation of monocytes to TAM subsets, including CD163+, CD204+, and CD206+ cells, in oral squamous cell carcinoma (OSCC) using immunohistochemistry, flow cytometry, and a cytokine array. Furthermore, we investigated the effect of OSCC cells (HSC-2, SQUU-A, and SQUU-B cells) on the differentiation of purified CD14+ cells to TAM subsets. The localization patterns of CD163+, CD204+, and CD206+ in OSCC sections were quite different. The expression of CD206 on CD14+ cells was significantly increased after the co-culture with OSCC cell lines, while the expressions of CD163 and CD204 on CD14+ cells showed no change. High concentrations of plasminogen activator inhibitor-1 (PAI-1) and interleukin-8 (IL-8) were detected in the conditioned medium of OSCC cell lines. PAI-1 and IL-8 stimulated CD14+ cells to express CD206. Moreover, there were positive correlations among the numbers of CD206+, PAI-1+, and IL-8+ cells in OSCC sections. These results suggest that PAI-1 and IL-8 produced by OSCC contribute to the differentiation of monocytes to CD206+ TAMs.
Collapse
Affiliation(s)
- Kazuki Kai
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - A. S. M. Rafiul Haque
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
- Department of Dental Anatomy, Udayan Dental College, House No: 1, Ward No: 7, Chondipur, GPO, Rajpara, Rajshahi 6000, Bangladesh
| | - Taichi Hattori
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Akira Chinju
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Chen Hu
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Keigo Kubota
- Department of Oral-Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Yuka Miyahara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Noriko Kakizoe-Ishiguro
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (A.S.M.R.H.); (T.H.); (A.C.); (C.H.); (Y.M.); (N.K.-I.); (S.K.); (S.N.)
| |
Collapse
|
9
|
Fu Y, Sun S, Bi J, Kong C, Yin L. Construction and analysis of a ceRNA network and patterns of immune infiltration in bladder cancer. Transl Androl Urol 2021; 10:1939-1955. [PMID: 34159075 PMCID: PMC8185653 DOI: 10.21037/tau-20-1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Bladder cancer (BC) is the ninth most common malignant tumor, accounting for an estimate of 549,000 new BC cases and 200,000 BC-related deaths worldwide in 2018. The prognosis of BC has not substantially improved despite significant advances in the diagnosis and treatment of the disease. Methods The RNA sequencing (RNA-seq) data and clinical information of BC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm was used to assess immune infiltration. The survival analyses were performed using the selected components of a ceRNA network and selected immune cell types by least absolute shrinkage and selection operator (LASSO) Cox regression to calculate the risk score. The accuracy of prognosis prediction was determined by receiver operating characteristic (ROC) curves, survival curves, and nomograms. Finally, the correlation analysis was performed to investigate the relationships between the signature components of the ceRNA network and the immune cell signature. Results Two completed survival analyses included selected components of the ceRNA network (ELN, SREBF1, DSC2, TTLL7, DIP2C, SATB1, hsa-miR-20a-5p, and hsa-miR-29c-3p) and selected immune cell types (M0 macrophages, M2 macrophages, resting mast cells, and neutrophils). ROC curves, survival curves (all P values <0.05), nomograms, and calibration curves indicated that the accuracy of the two survival analyses was acceptable. Moreover, the correlations between TTLL7 and resting mast cells (R=0.24, P<0.001), DSC2 and resting mast cells (R=−0.23, P<0.001), ELN and resting mast cells (R=0.44, P<0.001), and hsa-miR-29c-3p and M0 macrophages (R=−0.29, P<0.001) were significant, indicating that interactions of these factors may play significant roles in the prognosis of BC. Conclusions TTLL7, DSC2, ELN, hsa-miR-29c-3p, resting mast cells, and M0 macrophages may play an important role in the development of BC. However, additional studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Yang Fu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Sun
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Yin
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|