1
|
Zhu B, Dai L, Wang H, Zhang K, Zhang C, Wang Y, Yin F, Li J, Ning E, Wang Q, Yang L, Yang H, Li R, Li J, Hu C, Wu H, Jiang H, Bai Y. Machine learning discrimination of Gleason scores below GG3 and above GG4 for HSPC patients diagnosis. Sci Rep 2024; 14:25641. [PMID: 39465343 PMCID: PMC11514210 DOI: 10.1038/s41598-024-77033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
This study aims to develop machine learning (ML)-assisted models for analyzing datasets related to Gleason scores in prostate cancer, conducting statistical analyses on the datasets, and identifying meaningful features. We retrospectively collected data from 717 hormone-sensitive prostate cancer (HSPC) patients at Yunnan Cancer Hospital. Of these, data from 526 patients were used for modeling. Seven auxiliary models were established using Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), Extreme gradient boosting tree (XGBoost), Adaptive Boosting (Adaboost), and artificial neural network (ANN) based on 21 clinical biochemical indicators and features. Evaluation metrics included accuracy (ACC), precision (PRE), specificity (SPE), sensitivity (SEN) or regression rate(Recall), and f1 score. Evaluation metrics for the models primarily included ACC, PRE, SPE, SEN or Recall, f1 score, and area under the curve(AUC). Evaluation metrics were visualized using confusion matrices and ROC curves. Among the ensemble learning methods, RF, XGBoost, and Adaboost performed the best. RF achieved a training dataset score of 0.769 (95% CI: 0.759-0.835) and a testing dataset score of 0.755 (95% CI: 0.660-0.760) (AUC: 0.786, 95%CI: 0.722-0.803), while XGBoost achieved a training dataset score of 0.755 (95% CI: 95%CI: 0.711-0.809) and a testing dataset score of 0.745 (95% CI: 0.660-0.764) (AUC: 0.777, 95% CI: 0.726-0.798). Adaboost scored 0.789 on the training dataset (95% CI: 0.782-0.857) and 0.774 on the testing dataset (95% CI: 0.651-0.774) (AUC: 0.799, 95% CI: 0.703-0.802). In terms of feature importance (FI) in ensemble learning, Bone metastases at first visit, prostatic volume, age, and T1-T2 have significant proportions in RF's FI. fPSA, TPSA, and tumor burden have significant proportions in Adaboost's FI, while f/TPSA, LDH, and testosterone have the highest proportions in XGBoost. Our findings indicate that ensemble learning methods demonstrate good performance in classifying HSPC patient data, with TNM staging and fPSA being important classification indicators. These discoveries provide valuable references for distinguishing different Gleason scores, facilitating more accurate patient assessments and personalized treatment plans.
Collapse
Affiliation(s)
- Bingyu Zhu
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Longguo Dai
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Huijian Wang
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Kun Zhang
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Chongjian Zhang
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Yang Wang
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Feiyu Yin
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Ji Li
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Enfa Ning
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Qilin Wang
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Libo Yang
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Hong Yang
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Ruiqian Li
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Jun Li
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Chen Hu
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Hongyi Wu
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China
| | - Haiyang Jiang
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China.
| | - Yu Bai
- Department of Urology I, The Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province), 519 Kunzhou Road, Kunming, 650199, Yunnan, China.
| |
Collapse
|
2
|
Nguyen JK, Harik LR, Klein EA, Li J, Corrigan D, Liu S, Chan E, Hawley S, Auman H, Newcomb LF, Carroll PR, Cooperberg MR, Filson CP, Simko JP, Nelson PS, Tretiakova MS, Troyer D, True LD, Vakar-Lopez F, Weight CJ, Lin DW, Brooks JD, McKenney JK. Proposal for an optimised definition of adverse pathology (unfavourable histology) that predicts metastatic risk in prostatic adenocarcinoma independent of grade group and pathological stage. Histopathology 2024; 85:598-613. [PMID: 38828674 PMCID: PMC11365761 DOI: 10.1111/his.15231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
AIMS Histological grading of prostate cancer is a powerful prognostic tool, but current criteria for grade assignment are not fully optimised. Our goal was to develop and test a simplified histological grading model, based heavily on large cribriform/intraductal carcinoma, with optimised sensitivity for predicting metastatic potential. METHODS AND RESULTS Two separate non-overlapping cohorts were identified: a 419-patient post-radical prostatectomy cohort with long term clinical follow-up and a 209-patient post-radical prostatectomy cohort in which all patients had pathologically confirmed metastatic disease. All prostatectomies were re-reviewed for high-risk histological patterns of carcinoma termed 'unfavourable histology'. Unfavourable histology is defined by any classic Gleason pattern 5 component, any large cribriform morphology (> 0.25 mm) or intraductal carcinoma, complex intraluminal papillary architecture, grade 3 stromogenic carcinoma and complex anastomosing cord-like growth. For the outcome cohort, Kaplan-Meier analysis compared biochemical recurrence, metastasis and death between subjects with favourable and unfavourable histology, stratified by pathological stage and grade group. Multivariable Cox proportional hazards models evaluated adding unfavourable histology to the Memorial Sloan Kettering Cancer Center (MSKCC) post-prostatectomy nomogram and stratification by percentage of unfavourable histology. At 15 years unfavourable histology predicted biochemical recurrence, with sensitivity of 93% and specificity of 88%, metastatic disease at 100 and 48% and death at 100 and 46%. Grade group 2 prostate cancers with unfavourable histology were associated with metastasis independent of pathological stage, while those without had no risk. Histological models for prediction of metastasis based on only large cribriform/intraductal carcinoma or increasing diameter of cribriform size improved specificity, but with lower sensitivity. Multivariable Cox proportional hazards models demonstrated that unfavourable histology significantly improved discriminatory power of the MSKCC post-prostatectomy nomogram for biochemical failure (likelihood ratio test P < 0.001). In the retrospective review of a separate RP cohort in which all patients had confirmed metastatic disease, none had unequivocal favourable histology. CONCLUSIONS Unfavourable histology at radical prostatectomy is associated with metastatic risk, predicted adverse outcomes better than current grading and staging systems and improved the MSKCC post-prostatectomy nomogram. Most importantly, unfavourable histology stratified grade group 2 prostate cancers into those with and without metastatic potential, independent of stage. While unfavourable histology is driven predominantly by large cribriform/intraductal carcinoma, the recognition and inclusion of other specific architectural patterns add to the sensitivity for predicting metastatic disease. Moreover, a simplified dichotomous model improves communication and could increase implementation.
Collapse
Affiliation(s)
- Jane K. Nguyen
- Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH
| | - Lara R. Harik
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Eric A. Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | - Jianbo Li
- Lerner Research Institute, Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Dillon Corrigan
- Lerner Research Institute, Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Shiguang Liu
- Department of Pathology, University of Florida Health, Jacksonville, FL
| | - Emily Chan
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Sarah Hawley
- Canary Foundation, Palo Alto, CA
- Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Lisa F. Newcomb
- Fred Hutchinson Cancer Center, Seattle, WA
- Department of Urology, University of Washington Medical Center, Seattle, WA
| | - Peter R. Carroll
- Department of Urology, University of California San Francisco, San Francisco, CA
| | | | | | - Jeff P. Simko
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Peter S. Nelson
- Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington Medical Center, Seattle, WA
| | - Maria S. Tretiakova
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA
| | - Dean Troyer
- Department of Pathology, Eastern Virginia Medical School, Norfolk, VA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA
| | - Funda Vakar-Lopez
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA
| | | | - Daniel W Lin
- Fred Hutchinson Cancer Center, Seattle, WA
- Department of Urology, University of Washington Medical Center, Seattle, WA
| | - James D. Brooks
- Department of Urology, Stanford University Medical Center, Stanford, CA
| | - Jesse K. McKenney
- Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
3
|
Tekin E, Şeker NS, Özen A, Açıkalın MF, Can C, Çolak E. Prognostic significance of invasive cribriform gland size and percentage in Gleason score 7 prostate adenocarcinoma. Am J Clin Pathol 2024:aqae082. [PMID: 39121022 DOI: 10.1093/ajcp/aqae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/08/2024] [Indexed: 08/11/2024] Open
Abstract
OBJECTIVES Cribriform glands are linked to poorer outcomes in prostate adenocarcinoma. We aimed to assess the prognostic role of the percentage of cribriform glands and the size of the largest invasive cribriform gland in Gleason score 7 prostate adenocarcinomas. METHODS The presence, percentage, and size of the invasive cribriform glands were investigated and their association with prognostic factors were assessed in 177 Grade Groups 2 and 3 prostate adenocarcinomas. RESULTS Biochemical recurrence-free survival was statistically significantly lower in cases with a cribriform gland percentage greater than 10% (P < .001) and in cases where the largest invasive cribriform gland size was greater than 0.5 mm (P < .001). Mean largest cribriform gland size and percentage were statistically significant associated with more advanced pT status, lymph node metastasis, biochemical recurrence, and higher preoperative prostate-specific antigen values. CONCLUSIONS Our findings suggest that the presence of a cribriform pattern, increases in the percentage of such patterns, and increases in the size of the largest cribriform gland within a given tumor are associated with poor prognosis. We suggest that a more aggressive clinical approach may be needed in Grade Group 2 and 3 cases with invasive cribriform glands larger than 0.5 mm and a cribriform gland percentage greater than 10%, especially in prostate needle biopsy specimens.
Collapse
Affiliation(s)
- Emel Tekin
- Department of Pathology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Türkiye
| | - Nazlı Sena Şeker
- Department of Pathology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Türkiye
| | - Ata Özen
- Department of Urology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Türkiye
| | - Mustafa Fuat Açıkalın
- Department of Pathology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Türkiye
| | - Cavit Can
- Department of Urology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Türkiye
| | - Ertuğrul Çolak
- Department of Bioistatistics, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Türkiye
| |
Collapse
|
4
|
Jiang S, Lu F, Chen J, Jiao Y, Qiu Q, Nian X, Qu M, Wang Y, Li M, Liu F, Gao X. UPCARE: Urinary Extracellular Vesicles-Derived Prostate Cancer Assessment for Risk Evaluation. J Extracell Vesicles 2024; 13:e12491. [PMID: 39175282 PMCID: PMC11341834 DOI: 10.1002/jev2.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
In the quest for efficient tumor diagnosis via liquid biopsy, extracellular vesicles (EVs) have shown promise as a source of potential biomarkers. This study addresses the gap in biomarker efficacy for predicting clinically significant prostate cancer (csPCa) between the Western and Chinese populations. We developed a urinary extracellular vesicles-based prostate score (EPS) model, utilizing the EXODUS technique for EV isolation from 598 patients and incorporating gene expressions of FOXA1, PCA3, and KLK3. Our findings reveal that the EPS model surpasses prostate-specific antigen (PSA) testing in diagnostic accuracy within a training cohort of 234 patients, achieving an area under the curve (AUC) of 0.730 compared to 0.659 for PSA (p = 0.018). Similarly, in a validation cohort of 101 men, the EPS model achieved an AUC of 0.749, which was significantly better than PSA's 0.577 (p < 0.001). Our model has demonstrated a potential reduction in unnecessary prostate biopsies by 26%, with only a 3% miss rate for csPCa cases, indicating its effectiveness in the Chinese population.
Collapse
Affiliation(s)
- Shaoqin Jiang
- Department of UrologyFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Feiting Lu
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Jiadi Chen
- Department of Clinical LaboratoryFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Yingzhen Jiao
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Qingqing Qiu
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Xinwen Nian
- Department of UrologyChanghai HospitalShanghaiChina
| | - Min Qu
- Department of UrologyChanghai HospitalShanghaiChina
| | - Yan Wang
- Department of UrologyChanghai HospitalShanghaiChina
| | - Mengqiang Li
- Department of UrologyFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Fei Liu
- Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Xu Gao
- Department of UrologyChanghai HospitalShanghaiChina
| |
Collapse
|
5
|
Takahashi T. Prostate cancer screening; empirical clinical practice conducted for 70 years. World J Urol 2024; 42:458. [PMID: 39073656 DOI: 10.1007/s00345-024-05160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
- Takeshi Takahashi
- Health and Welfare Bureau, Kitakyushu City Office Jyonai 1-1, Kitakyushu, 803-8501, Japan.
| |
Collapse
|
6
|
Sheng Y, Chang H, Xue K, Chen J, Jiao T, Cui D, Wang H, Zhang G, Yang Y, Zeng Q. Characterization of prostatic cancer lesion and gleason grade using a continuous-time random-walk diffusion model at high b-values. Front Oncol 2024; 14:1389250. [PMID: 38854720 PMCID: PMC11157027 DOI: 10.3389/fonc.2024.1389250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Background Distinguishing between prostatic cancer (PCa) and chronic prostatitis (CP) is sometimes challenging, and Gleason grading is strongly associated with prognosis in PCa. The continuous-time random-walk diffusion (CTRW) model has shown potential in distinguishing between PCa and CP as well as predicting Gleason grading. Purpose This study aimed to quantify the CTRW parameters (α, β & Dm) and apparent diffusion coefficient (ADC) of PCa and CP tissues; and then assess the diagnostic value of CTRW and ADC parameters in differentiating CP from PCa and low-grade PCa from high-grade PCa lesions. Study type Retrospective (retrospective analysis using prospective designed data). Population Thirty-one PCa patients undergoing prostatectomy (mean age 74 years, range 64-91 years), and thirty CP patients undergoing prostate needle biopsies (mean age 68 years, range 46-79 years). Field strength/Sequence MRI scans on a 3.0T scanner (uMR790, United Imaging Healthcare, Shanghai, China). DWI were acquired with 12 b-values (0, 50, 100, 150, 200, 500, 800, 1200, 1500, 2000, 2500, 3000 s/mm2). Assessment CTRW parameters and ADC were quantified in PCa and CP lesions. Statistical tests The Mann-Whitney U test was used to evaluate the differences in CTRW parameters and ADC between PCa and CP, high-grade PCa, and low-grade PCa. Spearman's correlation of the pathologic grading group (GG) with CTRW parameters and ADC was evaluated. The usefulness of CTRW parameters, ADC, and their combinations (Dm, α and β; Dm, α, β, and ADC) to differentiate PCa from CP and high-grade PCa from low-grade PCa was determined by logistic regression and receiver operating characteristic curve (ROC) analysis. Delong test was used to compare the differences among AUCs. Results Significant differences were found for the CTRW parameters (α, Dm) between CP and PCa (all P<0.001), high-grade PCa, and low-grade PCa (α:P=0.024, Dm:P=0.021). GG is correlated with certain CTRW parameters and ADC(α:P<0.001,r=-0.795; Dm:P<0.001,r=-0.762;ADC:P<0.001,r=-0.790). Moreover, CTRW parameters (α, β, Dm) combined with ADC showed the best diagnostic efficacy for distinguishing between PCa and CP as well as predicting Gleason grading. The differences among AUCs of ADC, CTRW parameters and their combinations were not statistically significant (P=0.051-0.526). Conclusion CTRW parameters α and Dm, as well as their combination were beneficial to distinguish between CA and PCa, low-grade PCa and high-grade PCa lesions, and CTRW parameters and ADC had comparable diagnostic performance.
Collapse
Affiliation(s)
- Yurui Sheng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Huan Chang
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Ke Xue
- Magnenic Resonance (MR) Collaboration, United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Jinming Chen
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Tianyu Jiao
- Department of Radiology, Shandong Public Health Clinical Center, Jinan, Shandong, China
| | - Dongqing Cui
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hao Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Guanghui Zhang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yuxin Yang
- Magnenic Resonance (MR) Collaboration, United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Qingshi Zeng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
7
|
Muthusamy S, Smith SC. Contemporary Diagnostic Reporting for Prostatic Adenocarcinoma: Morphologic Aspects, Molecular Correlates, and Management Perspectives. Adv Anat Pathol 2024; 31:188-201. [PMID: 38525660 DOI: 10.1097/pap.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The diagnosis and reporting of prostatic adenocarcinoma have evolved from the classic framework promulgated by Dr Donald Gleason in the 1960s into a complex and nuanced system of grading and reporting that nonetheless retains the essence of his remarkable observations. The criteria for the "Gleason patterns" originally proposed have been continually refined by consensuses in the field, and Gleason scores have been stratified into a patient-friendly set of prognostically validated and widely adopted Grade Groups. One product of this successful grading approach has been the opportunity for pathologists to report diagnoses that signal carefully personalized management, placing the surgical pathologist's interpretation at the center of patient care. At one end of the continuum of disease aggressiveness, personalized diagnostic care means to sub-stratify patients with more indolent disease for active surveillance, while at the other end of the continuum, reporting histologic markers signaling aggression allows sub-stratification of clinically significant disease. Whether contemporary reporting parameters represent deeper nuances of more established ones (eg, new criteria and/or quantitation of Gleason patterns 4 and 5) or represent additional features reported alongside grade (intraductal carcinoma, cribriform patterns of carcinoma), assessment and grading have become more complex and demanding. Herein, we explore these newer reporting parameters, highlighting the state of knowledge regarding morphologic, molecular, and management aspects. Emphasis is made on the increasing value and stakes of histopathologists' interpretations and reporting into current clinical risk stratification and treatment guidelines.
Collapse
Affiliation(s)
| | - Steven Christopher Smith
- Department of Pathology, VCU School of Medicine, Richmond, VA
- Department of Surgery, Division of Urology, VCU School of Medicine, Richmond, VA
- Richmond Veterans Affairs Medical Center, Richmond, VA
- Massey Comprehensive Cancer Center, VCU Health, Richmond, VA
| |
Collapse
|
8
|
Zhang N, Harbers L, Simonetti M, Diekmann C, Verron Q, Berrino E, Bellomo SE, Longo GMC, Ratz M, Schultz N, Tarish F, Su P, Han B, Wang W, Onorato S, Grassini D, Ballarino R, Giordano S, Yang Q, Sapino A, Frisén J, Alkass K, Druid H, Roukos V, Helleday T, Marchiò C, Bienko M, Crosetto N. High clonal diversity and spatial genetic admixture in early prostate cancer and surrounding normal tissue. Nat Commun 2024; 15:3475. [PMID: 38658552 PMCID: PMC11043350 DOI: 10.1038/s41467-024-47664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Somatic copy number alterations (SCNAs) are pervasive in advanced human cancers, but their prevalence and spatial distribution in early-stage, localized tumors and their surrounding normal tissues are poorly characterized. Here, we perform multi-region, single-cell DNA sequencing to characterize the SCNA landscape across tumor-rich and normal tissue in two male patients with localized prostate cancer. We identify two distinct karyotypes: 'pseudo-diploid' cells harboring few SCNAs and highly aneuploid cells. Pseudo-diploid cells form numerous small-sized subclones ranging from highly spatially localized to broadly spread subclones. In contrast, aneuploid cells do not form subclones and are detected throughout the prostate, including normal tissue regions. Highly localized pseudo-diploid subclones are confined within tumor-rich regions and carry deletions in multiple tumor-suppressor genes. Our study reveals that SCNAs are widespread in normal and tumor regions across the prostate in localized prostate cancer patients and suggests that a subset of pseudo-diploid cells drive tumorigenesis in the aging prostate.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Luuk Harbers
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Michele Simonetti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Constantin Diekmann
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Quentin Verron
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, SP142, km 3,95, 10060, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sara E Bellomo
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, SP142, km 3,95, 10060, Turin, Italy
- Department of Oncology, University of Turin, Turin, Italy
| | | | - Michael Ratz
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, 17177, Sweden
| | - Niklas Schultz
- Science for Life Laboratory, Stockholm, 17177, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | | | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Bo Han
- Department of Pathology, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Wanzhong Wang
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Sofia Onorato
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Dora Grassini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Silvia Giordano
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, SP142, km 3,95, 10060, Turin, Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Anna Sapino
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, SP142, km 3,95, 10060, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, 17177, Sweden
| | - Kanar Alkass
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Henrik Druid
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Vassilis Roukos
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
- Department of General Biology, Medical School, University of Patras, Patras, Greece
| | - Thomas Helleday
- Science for Life Laboratory, Stockholm, 17177, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, SP142, km 3,95, 10060, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Magda Bienko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden.
- Science for Life Laboratory, Stockholm, 17177, Sweden.
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| |
Collapse
|
9
|
Lachance G, Robitaille K, Laaraj J, Gevariya N, Varin TV, Feldiorean A, Gaignier F, Julien IB, Xu HW, Hallal T, Pelletier JF, Bouslama S, Boufaied N, Derome N, Bergeron A, Ellis L, Piccirillo CA, Raymond F, Fradet Y, Labbé DP, Marette A, Fradet V. The gut microbiome-prostate cancer crosstalk is modulated by dietary polyunsaturated long-chain fatty acids. Nat Commun 2024; 15:3431. [PMID: 38654015 DOI: 10.1038/s41467-024-45332-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/17/2024] [Indexed: 04/25/2024] Open
Abstract
The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.
Collapse
Affiliation(s)
- Gabriel Lachance
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Centre de recherche de l'IUCPQ, Québec, QC, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Jalal Laaraj
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | | | - Andrei Feldiorean
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Fanny Gaignier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Isabelle Bourdeau Julien
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Hui Wen Xu
- Department of Mathematics and Statistics, Université Laval, Québec, QC, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Jean-François Pelletier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ciriaco A Piccirillo
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Frédéric Raymond
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | | | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada.
| |
Collapse
|
10
|
Wissing M, Brimo F, McKercher G, Scarlata E, Saad F, Carmel M, Lacombe L, Têtu B, Ekindi-Ndongo N, Latour M, Trudel D, Chevalier S, Aprikian A. Long term evaluation of optimized Gleason grading in a large cohort of men with prostate cancer in Canada. Hum Pathol 2024; 146:66-74. [PMID: 38608782 DOI: 10.1016/j.humpath.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVES To evaluate the International Society of Urological Pathology (ISUP) 5-tier grade grouping (GG) system of prostate cancers as well as previously proposed optimizations. PATIENTS AND METHODS The PROCURE biobank is a prospective cohort study of patients with localized prostate cancer who underwent radical prostatectomy in Quebec province between 2005 and 2013. Surgical specimens were graded by experienced genitourinary pathologists using 2019 ISUP criteria. Follow-up was conducted until November 2021. The current 5-tier and a proposed 6-tier GG system were evaluated, the latter having two changes: 1) Gleason 3 + 4 and 4 + 3 tumors with minor/tertiary Gleason 5 patterns were upgraded to GG 3 and 4, respectively; and 2) patients in GG5 were separated based on primary Gleason pattern (4 or 5). Cox proportional hazards models and Harrell's concordance (C) indices were used for statistical analyses. RESULTS 2003 patients were included (median follow-up: 8.7 years). The current 5-tier GG system predicted time to recurrence (hazard ratio [HR] 2.12, 95% confidence interval [95%CI] 1.99-2.25, C 0.717), androgen-deprivation therapy (HR 2.58, 95%CI 2.38-2.80, C 0.790), metastasis (HR 2.48, 95%CI 2.17-2.83, C 0.806), castration-resistant prostate cancer (HR 2.67, 95%CI 2.28-3.13, C 0.829), and cancer-specific mortality (HR 2.80, 95%CI 2.27-3.44, C 0.835). Goodness-of-fit further improved with the proposed 6-tier GG system, with Harrell's C of 0.733, 0.807, 0.827, 0.853, and 0.853, respectively. CONCLUSIONS The 5-tier GG system predicted short- and long-term outcomes for patients with localized prostate cancer, and the proposed 6-tier GG system further improved its accuracy.
Collapse
Affiliation(s)
- Michel Wissing
- Department of Surgery, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada; Department of Oncology, McGill University, 5100 Blvd de Maisonneuve Ouest, bureau 720, Montreal, QC, H4A 3T2, Canada.
| | - Fadi Brimo
- Department of Pathology, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada.
| | - Ginette McKercher
- Department of Surgery, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada.
| | - Eleonora Scarlata
- Department of Surgery, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada.
| | - Fred Saad
- Department of Surgery, Université de Montréal, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada.
| | - Michel Carmel
- Department of Surgery, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.
| | - Louis Lacombe
- Department of Surgery, Laval University, 1050 Av. de la Médecine, Quebec City, QC, G1V 0A6, Canada.
| | - Bernard Têtu
- Department of Pathology, Laval University, 1050 Av. de la Médecine, Quebec City, QC, G1V 0A6, Canada.
| | - Nadia Ekindi-Ndongo
- Department of Pathology, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.
| | - Mathieu Latour
- Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada.
| | - Dominique Trudel
- Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada.
| | - Simone Chevalier
- Department of Surgery, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada; Department of Oncology, McGill University, 5100 Blvd de Maisonneuve Ouest, bureau 720, Montreal, QC, H4A 3T2, Canada.
| | - Armen Aprikian
- Department of Surgery, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada; Department of Oncology, McGill University, 5100 Blvd de Maisonneuve Ouest, bureau 720, Montreal, QC, H4A 3T2, Canada.
| |
Collapse
|
11
|
Sayan M, Tuac Y, Akgul M, Pratt GK, Rowan MD, Akbulut D, Kucukcolak S, Tjio E, Moningi S, Leeman JE, Orio PF, Nguyen PL, D’Amico AV, Aktan C. Prognostic Significance of the Cribriform Pattern in Prostate Cancer: Clinical Outcomes and Genomic Alterations. Cancers (Basel) 2024; 16:1248. [PMID: 38610926 PMCID: PMC11011150 DOI: 10.3390/cancers16071248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE Given the diverse clinical progression of prostate cancer (PC) and the evolving significance of histopathological factors in its management, this study aimed to explore the impact of cribriform pattern 4 (CP4) on clinical outcomes in PC patients and examine its molecular characteristics. METHODS This retrospective study analyzed data from The Cancer Genome Atlas (TCGA) database and included PC patients who underwent radical prostatectomy (RP) and had pathology slides available for the assessment of CP4. A multivariable competing risk regression analysis was used to assess the association between CP4 and progression-free survival (PFS) while adjusting for established PC prognostic factors. The frequency of genomic alterations was compared between patients with and without CP4 using the Fisher's exact test. RESULTS Among the 394 patients analyzed, 129 (32.74%) had CP4. After a median follow-up of 40.50 months (IQR: 23.90, 65.60), the presence of CP4 was significantly associated with lower PFS (AHR, 1.84; 95% CI, 1.08 to 3.114; p = 0.023) after adjusting for covariates. Seven hub genes-KRT13, KRT5, KRT15, COL17A1, KRT14, KRT16, and TP63-had significantly lower mRNA expression levels in patients with CP4 compared to those without. CONCLUSIONS PC patients with CP4 have distinct genomic alterations and are at a high risk of disease progression following RP. Therefore, these patients may benefit from additional post-RP treatments and should be the subject of a prospective randomized clinical trial.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Yetkin Tuac
- Department of Statistics, Ankara University, 06100 Ankara, Türkiye;
| | - Mahmut Akgul
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Grace K. Pratt
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Mary D. Rowan
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Dilara Akbulut
- Center for Cancer Research, Laboratory of Pathology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samet Kucukcolak
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elza Tjio
- Histopathology Department, Harrogate District Hospital, Harrogate HG2 7SX, UK
| | - Shalini Moningi
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan E. Leeman
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Peter F. Orio
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Paul L. Nguyen
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Anthony V. D’Amico
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Cagdas Aktan
- Department of Medical Biology, Faculty of Medicine, Bandirma Onyedi Eylul University, 10250 Balikesir, Türkiye
| |
Collapse
|
12
|
Robitaille K, Guertin MH, Jamshidi A, Xu HW, Hovington H, Pelletier JF, Beaudoin L, Gevariya N, Lacombe L, Tiguert R, Caumartin Y, Dujardin T, Toren P, Lodde M, Racine É, Trudel D, Perigny M, Duchesne T, Savard J, Julien P, Fradet Y, Fradet V. A phase IIb randomized placebo-controlled trial testing the effect of MAG-EPA long-chain omega-3 fatty acid dietary supplement on prostate cancer proliferation. COMMUNICATIONS MEDICINE 2024; 4:56. [PMID: 38519581 PMCID: PMC10960033 DOI: 10.1038/s43856-024-00456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND High prostate eicosapentaenoic fatty acid (EPA) levels were associated with a significant reduction of upgrading to grade group (GG) ≥ 2 prostate cancer in men under active surveillance. We aimed to evaluate the effect of MAG-EPA long-chain omega-3 fatty acid dietary supplement on prostate cancer proliferation. METHODS A phase II double-blind randomized placebo-controlled trial was conducted in 130 men diagnosed with GG ≥ 2 prostate cancer and undergoing radical prostatectomy between 2015-2017 (Clinicaltrials.gov: NCT02333435). Participants were randomized to receive 3 g daily of either MAG-EPA (n = 65) or placebo (n = 65) for 7 weeks (range 4-10) prior to radical prostatectomy. The primary outcome was the cancer proliferation index quantified by automated image analysis of tumor nuclear Ki-67 expression using standardized prostatectomy tissue microarrays. Additional planned outcomes at surgery are reported including plasma levels of 27 inflammatory cytokines and fatty acid profiles in circulating red blood cells membranes and prostate tissue. RESULTS Cancer proliferation index measured by Ki-67 expression was not statistically different between the intervention (3.10%) and placebo (2.85%) groups (p = 0.64). In the per protocol analyses, the adjusted estimated effect of MAG-EPA was greater but remained non-significant. Secondary outcome was the changes in plasma levels of 27 cytokines, of which only IL-7 was higher in MAG-EPA group compared to placebo (p = 0.026). Men randomized to MAG-EPA prior to surgery had four-fold higher EPA levels in prostate tissue compared to those on placebo. CONCLUSIONS This MAG-EPA intervention did not affect the primary outcome of prostate cancer proliferation according to nuclear Ki-67 expression. More studies are needed to decipher the effects of long-chain omega-3 fatty acid dietary supplementation in men with prostate cancer.
Collapse
Affiliation(s)
- Karine Robitaille
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, G1R 3S3, Canada
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, G1V 0A6, Canada
| | - Marie-Hélène Guertin
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada
- Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Afshin Jamshidi
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, G1R 3S3, Canada
| | - Hui Wen Xu
- Department of Mathematics and Statistics, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Hélène Hovington
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, G1R 3S3, Canada
| | | | - Lisanne Beaudoin
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada
| | - Nikunj Gevariya
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada
| | - Louis Lacombe
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, G1R 3S3, Canada
- Centre de Recherche Clinique et Évaluative en Oncologie de L'Hôtel-Dieu de Québec, CHU de Québec-Université Laval, Québec, QC, G1R 3S1, Canada
- Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Rabi Tiguert
- Centre de Recherche Clinique et Évaluative en Oncologie de L'Hôtel-Dieu de Québec, CHU de Québec-Université Laval, Québec, QC, G1R 3S1, Canada
| | - Yves Caumartin
- Centre de Recherche Clinique et Évaluative en Oncologie de L'Hôtel-Dieu de Québec, CHU de Québec-Université Laval, Québec, QC, G1R 3S1, Canada
| | - Thierry Dujardin
- Centre de Recherche Clinique et Évaluative en Oncologie de L'Hôtel-Dieu de Québec, CHU de Québec-Université Laval, Québec, QC, G1R 3S1, Canada
| | - Paul Toren
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, G1R 3S3, Canada
- Centre de Recherche Clinique et Évaluative en Oncologie de L'Hôtel-Dieu de Québec, CHU de Québec-Université Laval, Québec, QC, G1R 3S1, Canada
- Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Michele Lodde
- Centre de Recherche Clinique et Évaluative en Oncologie de L'Hôtel-Dieu de Québec, CHU de Québec-Université Laval, Québec, QC, G1R 3S1, Canada
| | - Étienne Racine
- Department of Pathology, CHU de Québec-Université Laval, Québec, QC, G1R 2J6, Canada
| | - Dominique Trudel
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, and Department of Pathology and Cellular Biology, Université de Montréal, Montréal, H3C 3J7, Canada
| | - Martine Perigny
- Department of Pathology, CHU de Québec-Université Laval, Québec, QC, G1R 2J6, Canada
| | - Thierry Duchesne
- Department of Mathematics and Statistics, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Josée Savard
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, G1R 3S3, Canada
- School of psychology, Université Laval, Montréal, QC, G1R 2J6, Canada
| | - Pierre Julien
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada
- Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Yves Fradet
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, G1R 3S3, Canada
- Centre de Recherche Clinique et Évaluative en Oncologie de L'Hôtel-Dieu de Québec, CHU de Québec-Université Laval, Québec, QC, G1R 3S1, Canada
- Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Vincent Fradet
- CHU de Québec-Université Laval Research Center, Québec, QC, G1R 3S1, Canada.
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, G1R 3S3, Canada.
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, G1V 0A6, Canada.
- Centre de Recherche Clinique et Évaluative en Oncologie de L'Hôtel-Dieu de Québec, CHU de Québec-Université Laval, Québec, QC, G1R 3S1, Canada.
| |
Collapse
|
13
|
Wen J, Liu W, Shen X, Hu W. PI-RADS v2.1 and PSAD for the prediction of clinically significant prostate cancer among patients with PSA levels of 4-10 ng/ml. Sci Rep 2024; 14:6570. [PMID: 38503972 PMCID: PMC10951302 DOI: 10.1038/s41598-024-57337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
This study intended to evaluate the diagnostic accuracy of the prostate imaging reporting and data system (PI-RADS) and prostate-specific antigen density (PSAD) for clinically significant prostate cancer (csPCa) with PSA levels of 4-10 ng/ml. Between July 2018 and June 2022, a total of 453 patients with PSA levels of 4-10 ng/ml were retrospectively included, which were randomly assigned to the training group (323 patients) and validation group (130 patients). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with their 95% CI were calculated. The overall diagnostic performance was determined with area under the receiver operating characteristic curve (AUC), and an integrated nomogram combining PI-RADS score and PSAD was constructed and tested in a validation cohort. In the training group, the AUC for PI-RADS 2.1 and PSAD alone were 0.875 (95% CI 0.834-0.916) and 0.712 (95% CI 0.648-0.775). At the cutoff PI-RADS score ≥ 4, the sensitivity and specificity were 86.2% (95% CI 77.4-1.9%) and 84.7% (95% CI 79.6-88.8%), respectively. For PSAD, the sensitivity and specificity were 73.3% (95% CI 63.0-82.4%) and 62.1% (95% CI 55.8-68.5%) at the cutoff 0.162 ng/ml/ml. While combining PI-RADS with PSAD, the diagnostic performance was improved significantly, with AUC of 0.893 (95% CI 0.853-0.933). In the validation group, the nomogram yielded a AUC of 0.871 (95% CI 0.807-0.934), which is significantly higher than PI-RADS alone (0.829, 95% CI 0.759-0.899, P = 0.02). For patients with PSA levels of 4-10 ng/ml, PSAD demonstrated moderate diagnostic accuracy whereas PI-RADS showed high performance. By combination of PSAD and PI-RADS together, the diagnostic performance could be improved significantly.
Collapse
Affiliation(s)
- Jing Wen
- Department of Medical Imaging, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Wei Liu
- Department of Radiology, Yancheng Tinghu District People's Hospital, Yancheng, China
| | - Xiaocui Shen
- Department of Medical Imaging, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Wei Hu
- Department of Radiology, Yixing Traditional Chinese Medicine Hospital, Yixing, China.
| |
Collapse
|
14
|
Frei K, Schecher S, Daher T, Hörner N, Richter J, Hildebrand U, Schindeldecker M, Witzel HR, Tsaur I, Porubsky S, Gaida MM, Roth W, Tagscherer KE. Inhibition of the Cyclin K-CDK12 complex induces DNA damage and increases the effect of androgen deprivation therapy in prostate cancer. Int J Cancer 2024; 154:1082-1096. [PMID: 37916780 DOI: 10.1002/ijc.34778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Androgen deprivation therapy (ADT) is the mainstay of the current first-line treatment concepts for patients with advanced prostate carcinoma (PCa). However, due to treatment failure and recurrence investigation of new targeted therapeutics is urgently needed. In this study, we investigated the suitability of the Cyclin K-CDK12 complex as a novel therapeutic approach in PCa using the new covalent CDK12/13 inhibitor THZ531. Here we show that THZ531 impairs cellular proliferation, induces apoptosis, and decreases the expression of selected DNA repair genes in PCa cell lines, which is associated with an increasing extent of DNA damage. Furthermore, combination of THZ531 and ADT leads to an increase in these anti-tumoral effects in androgen-sensitive PCa cells. The anti-proliferative and pro-apoptotic activity of THZ531 in combination with ADT was validated in an ex vivo PCa tissue culture model. In a retrospective immunohistochemical analysis of 300 clinical tissue samples we show that Cyclin K (CycK) but not CDK12 expression correlates with a more aggressive type of PCa. In conclusion, this study demonstrates the clinical relevance of the CycK-CDK12 complex as a promising target for combinational therapy with ADT in PCa and its importance as a prognostic biomarker for patients with PCa.
Collapse
Affiliation(s)
- Katharina Frei
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sabrina Schecher
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tamas Daher
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nina Hörner
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jutta Richter
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ute Hildebrand
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Tissue Biobank of the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hagen R Witzel
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Porubsky
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katrin E Tagscherer
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Skotheim RI, Bogaard M, Carm KT, Axcrona U, Axcrona K. Prostate cancer: Molecular aspects, consequences, and opportunities of the multifocal nature. Biochim Biophys Acta Rev Cancer 2024; 1879:189080. [PMID: 38272101 DOI: 10.1016/j.bbcan.2024.189080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Prostate cancer is unique compared to other major cancers due to the presence of multiple primary malignant foci in the majority of patients at the time of diagnosis. Each malignant focus has distinct somatic mutations and gene expression patterns, which represents a challenge for the development of prognostic tests for localized prostate cancer. Additionally, the molecular heterogeneity of advanced prostate cancer has important implications for management, particularly for patients with metastatic and locally recurrent cancer. Studies have shown that prostate cancers with mutations in DNA damage response genes are more sensitive to drugs inhibiting the poly ADP-ribose polymerase (PARP) enzyme. However, testing for such mutations should consider both spatial and temporal heterogeneity. Here, we summarize studies where multiregional genomics and transcriptomics analyses have been performed for primary prostate cancer. We further discuss the vast interfocal heterogeneity and how prognostic biomarkers and a molecular definition of the index tumor should be developed. The concept of focal treatments in prostate cancer has been evolving as a demand from patients and clinicians and is one example where there is a need for defining an index tumor. Here, biomarkers must have proven value for individual malignant foci. The potential discovery and implementation of biomarkers that are agnostic to heterogeneity are also explored as an alternative to multisample testing. Thus, deciding upon whole-organ treatment, such as radical prostatectomy, should depend on information from biomarkers which are informative for the whole organ.
Collapse
Affiliation(s)
- Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| | - Mari Bogaard
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Kristina T Carm
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ulrika Axcrona
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Karol Axcrona
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Urology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
16
|
Feng X, Chen X, Peng P, Zhou H, Hong Y, Zhu C, Lu L, Xie S, Zhang S, Long L. Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis. BMC Urol 2024; 24:40. [PMID: 38365673 PMCID: PMC10870467 DOI: 10.1186/s12894-024-01411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). METHODS A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. RESULTS The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. CONCLUSIONS PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, P.R. China
| | - Xin Chen
- Department of Radiology, Jiangjin Hospital, Chongqing University, No.725, Jiangzhou Avenue, Dingshan Street, Chongqing, 402260, China
| | - Peng Peng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, P.R. China
| | - He Zhou
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, P.R. China
| | - Yi Hong
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, P.R. China
| | - Chunxia Zhu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, P.R. China
| | - Libing Lu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, P.R. China
| | - Siyu Xie
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, P.R. China
| | - Sijun Zhang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, P.R. China
| | - Liling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, P.R. China.
| |
Collapse
|
17
|
Varma M, Compérat E, van der Kwast T. Head-to-head: how many categories for grading urothelial carcinoma? Histopathology 2024; 84:421-428. [PMID: 37936516 DOI: 10.1111/his.15091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Tumour grade is a critical prognostic parameter for guiding the management of patients with non-muscle invasive bladder cancer. In 2004, the World Health Organisation (WHO) adopted a binary (low-grade/high-grade) grading system to replace the three-tier (grades 1-3) system used to grade urothelial carcinoma since 1973. However, there is significant global variation in the grading of urothelial carcinoma. Some pathology and clinical guidelines recommend reporting of the WHO 1973 and 2004 grades in parallel, while others require reporting only of the WHO 2004 grade. This variation in pathology practice is clinically significant, because the two grading systems are not readily translatable. Some experts have proposed novel systems for grading urothelial carcinoma that involve splitting of the WHO 1973 and 2004 grade categories. The arguments for and against splitting urothelial carcinomas into two-, three- and four-grade categories are independently discussed by the three authors.
Collapse
Affiliation(s)
- Murali Varma
- Department of Cellular Pathology, University Hospital of Wales, Cardiff, UK
| | - Eva Compérat
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Theodorus van der Kwast
- Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Russo GI, Soeterik T, Puche-Sanz I, Broggi G, Lo Giudice A, De Nunzio C, Lombardo R, Marra G, Gandaglia G. Oncological outcomes of cribriform histology pattern in prostate cancer patients: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 2023; 26:646-654. [PMID: 36216967 DOI: 10.1038/s41391-022-00600-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Changes applied to the Prostate cancer (PCa) histopathology grading, where patients with cribriform patterns (CP) may be categorized as grade group 2 and could hypothetically be surveilled. However, CP has been associated with worse oncological outcomes. The aim of our study is to systematically review and meta-analyze the available evidence on CP in PCa patients. METHODS This analysis was registered on PROSPERO (CRD42022298473). We performed a systematic literature search of PubMed, EMBASE and Scopus using Medical Subject Headings (MeSH) indexes, keyword searches, and publication types until December 2021. The search terms included: "prostate", "prostate cancer" and "cribriform". We also searched reference lists of relevant articles. Eligible studies included published journal articles that provided quantitative data on the association between cribriform patterns at radical prostatectomy and the presence of extra-prostatic extension (EPE), seminal vesicle invasion (SVI), positive surgical margins (PSM), biochemical recurrence (BCR) or cancer specific mortality (CSM). RESULTS Overall, 31 studies were included for the quantitative analysis. All articles have been published during a span of 11 years (2011-2022) with a mean month of follow-up of 62.87 months. The mean quality of these studies, assessed with the Newcastle Ottawa Scale was 6.27. We demonstrated that CP was associated with greater risk of EPE (odds ratio [OR] 1.96; P < 0.0001), SVI (OR: 2.89; p < 0.01), and PSM (OR: 1.88; p < 0.0007). Our analyses showed that CP was associated with greater risk of BCR (hazard ratio [HR]: 2.14; p < 0.01) and of CSM (HR: 3.30, p < 0.01). CONCLUSION The presence of CP is associated with adverse pathology at radical prostatectomy and worse biochemical recurrence and cancer specific mortality. These results highlight the importance of a better pathologic report of CP to advise clinician for a strict follow-up in PCa patients.
Collapse
Affiliation(s)
| | - Timo Soeterik
- Department of Urology, St Antonius Hospital, Utrecht, The Netherlands
| | - Ignacio Puche-Sanz
- Hospital Universitario Virgen de las Nieves (HUVN). Department of Urology. Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | | | - Cosimo De Nunzio
- Department of Urology, "Sant'Andrea" Hospital, "La Sapienza" University, Rome, Italy
| | - Riccardo Lombardo
- Department of Urology, "Sant'Andrea" Hospital, "La Sapienza" University, Rome, Italy
| | - Giancarlo Marra
- Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, Turin, Italy
| | - Giorgio Gandaglia
- Unit of Urology/Division of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
19
|
Belue MJ, Blake Z, Yilmaz EC, Lin Y, Harmon SA, Nemirovsky DR, Enders JJ, Kenigsberg AP, Mendhiratta N, Rothberg M, Toubaji A, Merino MJ, Gurram S, Wood BJ, Choyke PL, Turkbey B, Pinto PA. Is prostatic adenocarcinoma with cribriform architecture more difficult to detect on prostate MRI? Prostate 2023; 83:1519-1528. [PMID: 37622756 PMCID: PMC10840859 DOI: 10.1002/pros.24610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Cribriform (CBFM) pattern on prostate biopsy has been implicated as a predictor for high-risk features, potentially leading to adverse outcomes after definitive treatment. This study aims to investigate whether the CBFM pattern containing prostate cancers (PCa) were associated with false negative magnetic resonance imaging (MRI) and determine the association between MRI and histopathological disease burden. METHODS Patients who underwent multiparametric magnetic resonance imaging (mpMRI), combined 12-core transrectal ultrasound (TRUS) guided systematic (SB) and MRI/US fusion-guided biopsy were retrospectively queried for the presence of CBFM pattern at biopsy. Biopsy cores and lesions were categorized as follows: C0 = benign, C1 = PCa with no CBFM pattern, C2 = PCa with CBFM pattern. Correlation between cancer core length (CCL) and measured MRI lesion dimension were assessed using a modified Pearson correlation test for clustered data. Differences between the biopsy core groups were assessed with the Wilcoxon-signed rank test with clustering. RESULTS Between 2015 and 2022, a total of 131 consecutive patients with CBFM pattern on prostate biopsy and pre-biopsy mpMRI were included. Clinical feature analysis included 1572 systematic biopsy cores (1149 C0, 272 C1, 151 C2) and 736 MRI-targeted biopsy cores (253 C0, 272 C1, 211 C2). Of the 131 patients with confirmed CBFM pathology, targeted biopsy (TBx) alone identified CBFM in 76.3% (100/131) of patients and detected PCa in 97.7% (128/131) patients. SBx biopsy alone detected CBFM in 61.1% (80/131) of patients and PCa in 90.8% (119/131) patients. TBx and SBx had equivalent detection in patients with smaller prostates (p = 0.045). For both PCa lesion groups there was a positive and significant correlation between maximum MRI lesion dimension and CCL (C1 lesions: p < 0.01, C2 lesions: p < 0.001). There was a significant difference in CCL between C1 and C2 lesions for T2 scores of 3 and 5 (p ≤ 0.01, p ≤ 0.01, respectively) and PI-RADS 5 lesions (p ≤ 0.01), with C2 lesions having larger CCL, despite no significant difference in MRI lesion dimension. CONCLUSIONS The extent of disease for CBFM-containing tumors is difficult to capture on mpMRI. When comparing MRI lesions of similar dimensions and PIRADS scores, CBFM-containing tumors appear to have larger cancer yield on biopsy. Proper staging and planning of therapeutic interventions is reliant on accurate mpMRI estimation. Special considerations should be taken for patients with CBFM pattern on prostate biopsy.
Collapse
Affiliation(s)
- Mason J. Belue
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zoë Blake
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Enis C. Yilmaz
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yue Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie A. Harmon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel R. Nemirovsky
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacob J. Enders
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander P. Kenigsberg
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neil Mendhiratta
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Rothberg
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Antoun Toubaji
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria J. Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Gurram
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradford J. Wood
- Center for Interventional Oncology, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter A. Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Spadarotto N, Sauck A, Hainc N, Keller I, John H, Hohmann J. Quantitative Evaluation of Apparent Diffusion Coefficient Values, ISUP Grades and Prostate-Specific Antigen Density Values of Potentially Malignant PI-RADS Lesions. Cancers (Basel) 2023; 15:5183. [PMID: 37958357 PMCID: PMC10648562 DOI: 10.3390/cancers15215183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to demonstrate the correlation between ADC values and the ADC/PSAD ratio for potentially malignant prostate lesions classified into ISUP grades and to determine threshold values to differentiate benign lesions (noPCa), clinically insignificant (nsPCa) and clinically significant prostate cancer (csPCa). We enrolled a total of 403 patients with 468 prostate lesions, of which 46 patients with 50 lesions were excluded for different reasons. Therefore, 357 patients with a total of 418 prostate lesions remained for the final evaluation. For all lesions, ADC values were measured; they demonstrated a negative correlation with ISUP grades (p < 0.001), with a significant difference between csPCa and a combined group of nsPCa and noPCa (ns-noPCa, p < 0.001). The same was true for the ADC/PSAD ratio, but only the ADC/PSAD ratio proved to be a significant discriminator between nsPCa and noPCa (p = 0.0051). Using the calculated threshold values, up to 31.6% of biopsies could have been avoided. Furthermore, the ADC/PSAD ratio, with the ability to distinguish between nsPCa and noPCa, offers possible active surveillance without prior biopsy.
Collapse
Affiliation(s)
- Nadine Spadarotto
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland;
| | - Anja Sauck
- Clinic of Urology, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland; (A.S.); (I.K.); (H.J.)
| | - Nicolin Hainc
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Isabelle Keller
- Clinic of Urology, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland; (A.S.); (I.K.); (H.J.)
| | - Hubert John
- Clinic of Urology, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland; (A.S.); (I.K.); (H.J.)
- Medical Faculty, University of Zurich, 8032 Zurich, Switzerland
| | - Joachim Hohmann
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland;
- Medical Faculty, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
21
|
Tao W, Wang BY, Luo L, Li Q, Meng ZA, Xia TL, Deng WM, Yang M, Zhou J, Zhang X, Gao X, Li LY, He YD. A urine extracellular vesicle lncRNA classifier for high-grade prostate cancer and increased risk of progression: A multi-center study. Cell Rep Med 2023; 4:101240. [PMID: 37852185 PMCID: PMC10591064 DOI: 10.1016/j.xcrm.2023.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/03/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
To construct a urine extracellular vesicle long non-coding RNA (lncRNA) classifier that can detect high-grade prostate cancer (PCa) of grade group 2 or greater and estimate the risk of progression during active surveillance, we identify high-grade PCa-specific lncRNAs by combined analyses of cohorts from TAHSY, TCGA, and the GEO database. We develop and validate a 3-lncRNA diagnostic model (Clnc, being made of AC015987.1, CTD-2589M5.4, RP11-363E6.3) that can detect high-grade PCa. Clnc shows higher accuracy than prostate cancer antigen 3 (PCA3), multiparametric magnetic resonance imaging (mpMRI), and two risk calculators (Prostate Cancer Prevention Trial [PCPT]-RC 2.0 and European Randomized Study of Screening for Prostate Cancer [ERSPC]-RC) in the training cohort (n = 350), two independent cohorts (n = 232; n = 251), and TCGA cohort (n = 499). In the prospective active surveillance cohort (n = 182), Clnc at diagnosis remains a powerful independent predictor for overall active surveillance progression. Thus, Clnc is a potential biomarker for high-grade PCa and can also serve as a biomarker for improved selection of candidates for active surveillance.
Collapse
Affiliation(s)
- Wen Tao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bang-Yu Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Liang Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qing Li
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Zhan-Ao Meng
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tao-Lin Xia
- Department of Urology, Foshan First Municipal People's Hospital, Sun Yat-sen University, Foshan 528000, China
| | - Wei-Ming Deng
- Department of Urology, The First Affiliated Hospital, University of South China, Hengyang 421000, China
| | - Ming Yang
- Department of Urology, Foshan Municipal Chinese Medicine Hospital, Foshan 528000, China
| | - Jing Zhou
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xin Zhang
- Department of Pathology, Foshan First Municipal People's Hospital, Sun Yat-sen University, Foshan 528000, China
| | - Xin Gao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Liao-Yuan Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Ya-Di He
- Health Management Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
22
|
Li D, Zhang L, Xu Y, Wu X, Hua S, Jiang Y, Huang Q, Gao Y. Exploration of the diagnostic capacity of PSAMR combined with PI-RADS scoring for clinically significant prostate cancer and establishment and validation of the Nomogram prediction model. J Cancer Res Clin Oncol 2023; 149:11309-11317. [PMID: 37365430 DOI: 10.1007/s00432-023-05008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE The objective of this investigation was to explore the diagnostic capability of Prostate Specific Antigen Mass Ratio (PSAMR) combined with Prostate Imaging Reporting and Data System (PI-RADS) scoring for clinically significant prostate cancer (CSPC), develop and validate a Nomogram prediction model for the probability of prostate cancer occurrence in patients who have not undergone prostate biopsy. METHODS Initially, we retrospectively collected clinical and pathological data of patients who underwent trans-perineal prostate puncture at Yijishan Hospital of Wanan Medical College from July 2021 to January 2023. Through logistic univariate and multivariate regression analysis, independent risk factors for CSPC were determined. Receiver Operating Characteristic (ROC) curves were generated to compare the ability of different factors for diagnosis of CSPC. Then, we split the dataset into a training set and validation set, compared their heterogeneity, and developed a Nomogram prediction model based on the training set. Finally, we validated the Nomogram prediction model in terms of discrimination, calibration, and clinical usefulness. RESULTS Logistic multivariate regression analysis illustrated that age [64-69 (OR = 2.736, P = 0.029); 69-75 (OR = 4.728, P = 0.001); > 75 (OR = 11.344, P < 0.001)], PSAMR [0.44-0.73 (OR = 4.144, P = 0.028); 0.73-1.64(OR = 13.022, P < 0.001); > 1.64(OR = 50.541, P < 0.001)], and PI-RADS score [4 points (OR = 7.780, P < 0.001); 5 points (OR = 24.533, P < 0.001)] were independent risk factors for CSPC. The Area Under the Curve (AUC) of the ROC curves of PSA, PSAMR, PI-RADS score, and PSAMR combined with PI-RADS score were respectively 0.797, 0.874, 0.889, and 0.928. The performance of PSAMR and PI-RADS score for diagnosis of CSPC was superior to PSA, but inferior to PSAMR combined with PI-RADS. Age, PSAMR, and PI-RADS were included in the Nomogram prediction model. The AUCs of the training set ROC curve and the validation set ROC curve were 0.943 (95% CI 0.917-0.970) and 0.878 (95% CI 0.816-0.940), respectively, in the discrimination validation. The calibration curve showed good consistency, and the decision analysis curve suggested the model had good clinical efficacy. CONCLUSIONS We found that PSAMR combined with PI-RADS scoring had a strong diagnostic capability for CSPC, and provided a Nomogram prediction model to predict the probability of prostate cancer occurrence combined with clinical data.
Collapse
Affiliation(s)
- Dengke Li
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, People's Republic of China
| | - Lulu Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, People's Republic of China
| | - Yujie Xu
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, People's Republic of China
| | - Xun Wu
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, People's Republic of China
| | - Shaokui Hua
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, People's Republic of China
| | - Yan Jiang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, People's Republic of China
| | - Qunlian Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, People's Republic of China.
| | - Yukui Gao
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, People's Republic of China.
| |
Collapse
|
23
|
Chua MLK, Hakansson AK, Ong EHW, Hong BH, Miao JJ, Sim AYL, Tan JSH, Tan KM, Lee GCJ, Low KP, Tuan JKL, Tan TWK, Wang MLC, Yeong JPS, Tan MCS, Lee LS, Kanesvaran R, Zhao X, Ho J, Spratt DE, Schaeffer EM, Tay K, Liu Y, Davicioni E, Khor LY. Transcriptomic analyses of localized prostate cancers of East Asian and North American men reveal race-specific luminal-basal and microenvironmental differences. Cancer Commun (Lond) 2023; 43:1164-1168. [PMID: 37700560 PMCID: PMC10565378 DOI: 10.1002/cac2.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/27/2023] [Accepted: 07/07/2023] [Indexed: 09/14/2023] Open
Affiliation(s)
- Melvin L. K. Chua
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
- Division of Medical SciencesNational Cancer Centre SingaporeSingaporeSingapore
| | | | - Enya H. W. Ong
- Division of Medical SciencesNational Cancer Centre SingaporeSingaporeSingapore
| | - Boon Hao Hong
- Division of Medical SciencesNational Cancer Centre SingaporeSingaporeSingapore
| | - Jing Jing Miao
- Division of Medical SciencesNational Cancer Centre SingaporeSingaporeSingapore
- Department of Nasopharyngeal CarcinomaState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Adelene Y. L. Sim
- Duke‐NUS Medical SchoolSingaporeSingapore
- Division of Medical SciencesNational Cancer Centre SingaporeSingaporeSingapore
| | - Janice S. H. Tan
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | - Kah Min Tan
- Division of Medical SciencesNational Cancer Centre SingaporeSingaporeSingapore
| | - Gabrielle C. J. Lee
- Faculty of MedicineNursing and Health SciencesMonash UniversityVictoriaAustralia
| | - Kar Perng Low
- Division of Medical SciencesNational Cancer Centre SingaporeSingaporeSingapore
| | - Jeffrey K. L. Tuan
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Terence W. K. Tan
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Michael L. C. Wang
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Joe P. S. Yeong
- Department of Anatomical PathologySingapore General HospitalSingaporeSingapore
| | | | - Lui Shiong Lee
- Duke‐NUS Medical SchoolSingaporeSingapore
- Department of UrologySengkang General HospitalSingaporeSingapore
| | - Ravindran Kanesvaran
- Duke‐NUS Medical SchoolSingaporeSingapore
- Division of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | | | | | - Daniel E. Spratt
- Department of Radiation OncologyUniversity Hospitals Seidman Cancer CenterCase Comprehensive Cancer CenterClevelandOHUSA
| | - Edward M. Schaeffer
- Department of UrologyNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Kae‐Jack Tay
- Duke‐NUS Medical SchoolSingaporeSingapore
- Department of UrologySingapore General HospitalSingaporeSingapore
| | | | | | - Li Yan Khor
- Duke‐NUS Medical SchoolSingaporeSingapore
- Department of Anatomical PathologySingapore General HospitalSingaporeSingapore
| |
Collapse
|
24
|
Paulino Pereira LJ, Reesink DJ, de Bruin P, Gandaglia G, van der Hoeven EJRJ, Marra G, Prinsen A, Rajwa P, Soeterik T, Kasivisvanathan V, Wever L, Zattoni F, van Melick HHE, van den Bergh RCN. Outcomes of a Diagnostic Pathway for Prostate Cancer Based on Biparametric MRI and MRI-Targeted Biopsy Only in a Large Teaching Hospital. Cancers (Basel) 2023; 15:4800. [PMID: 37835494 PMCID: PMC10571962 DOI: 10.3390/cancers15194800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Diagnostic pathways for prostate cancer (PCa) balance detection rates and burden. MRI impacts biopsy indication and strategy. METHODS A prospectively collected cohort database (N = 496) of men referred for elevated PSA and/or abnormal DRE was analyzed. All underwent biparametric MRI (3 Tesla scanner) and ERSPC prostate risk-calculator. Indication for biopsy was PIRADS ≥ 3 or risk-calculator ≥ 20%. Both targeted (cognitive-fusion) and systematic cores were combined. A hypothetical full-MRI-based pathway was retrospectively studied, omitting systematic biopsies in: (1) PIRADS 1-2 but risk-calculator ≥ 20%, (2) PIRADS ≥ 3, receiving targeted biopsy-cores only. RESULTS Significant PCa (GG ≥ 2) was detected in 120 (24%) men. Omission of systematic cores in cases with PIRADS 1-2 but risk-calculator ≥ 20%, would result in 34% less biopsy indication, not-detecting 7% significant tumors. Omission of systematic cores in PIRADS ≥ 3, only performing targeted biopsies, would result in a decrease of 75% cores per procedure, not detecting 9% significant tumors. Diagnosis of insignificant PCa dropped by 52%. PCa undetected by targeted cores only, were ipsilateral to MRI-index lesions in 67%. CONCLUSIONS A biparametric MRI-guided PCa diagnostic pathway would have missed one out of six cases with significant PCa, but would have considerably reduced the number of biopsy procedures, cores, and insignificant PCa. Further refinement or follow-up may identify initially undetected cases. Center-specific data on the performance of the diagnostic pathway is required.
Collapse
Affiliation(s)
- Leonor J. Paulino Pereira
- Department of Urology, St Antonius Hospital, 3435CM Nieuwegein, The Netherlands (P.d.B.); (H.H.E.v.M.); (R.C.N.v.d.B.)
| | - Daan J. Reesink
- Department of Urology, St Antonius Hospital, 3435CM Nieuwegein, The Netherlands (P.d.B.); (H.H.E.v.M.); (R.C.N.v.d.B.)
| | - Peter de Bruin
- Department of Urology, St Antonius Hospital, 3435CM Nieuwegein, The Netherlands (P.d.B.); (H.H.E.v.M.); (R.C.N.v.d.B.)
| | - Giorgio Gandaglia
- Unit of Urology, Division of Oncology, Gianfranco Soldera Prostate Cancer Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Erik J. R. J. van der Hoeven
- Department of Urology, St Antonius Hospital, 3435CM Nieuwegein, The Netherlands (P.d.B.); (H.H.E.v.M.); (R.C.N.v.d.B.)
| | - Giancarlo Marra
- Department of Urology, Città della Salute e della Scienza, University of Turin, 10124 Turin, Italy
| | - Anne Prinsen
- Department of Urology, St Antonius Hospital, 3435CM Nieuwegein, The Netherlands (P.d.B.); (H.H.E.v.M.); (R.C.N.v.d.B.)
| | - Pawel Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Urology, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Timo Soeterik
- Department of Urology, St Antonius Hospital, 3435CM Nieuwegein, The Netherlands (P.d.B.); (H.H.E.v.M.); (R.C.N.v.d.B.)
| | - Veeru Kasivisvanathan
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| | - Lieke Wever
- Department of Urology, St Antonius Hospital, 3435CM Nieuwegein, The Netherlands (P.d.B.); (H.H.E.v.M.); (R.C.N.v.d.B.)
| | - Fabio Zattoni
- Urologic Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padua, Italy
| | - Harm H. E. van Melick
- Department of Urology, St Antonius Hospital, 3435CM Nieuwegein, The Netherlands (P.d.B.); (H.H.E.v.M.); (R.C.N.v.d.B.)
| | - Roderick C. N. van den Bergh
- Department of Urology, St Antonius Hospital, 3435CM Nieuwegein, The Netherlands (P.d.B.); (H.H.E.v.M.); (R.C.N.v.d.B.)
| |
Collapse
|
25
|
Stokidis S, Baxevanis CN, Fortis SP. The Prognostic Significance of Selected HLA Alleles on Prostate Cancer Outcome. Int J Mol Sci 2023; 24:14454. [PMID: 37833904 PMCID: PMC10572221 DOI: 10.3390/ijms241914454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, we have shown that HLA-A*02:01 and HLA-A*24:02 in de novo metastatic prostate cancer (MPCa) have an important role in disease progression. Since de novo MPCa represents a small group among patients diagnosed with prostate cancer (PCa), it was obvious to try to extend the validity of our results to larger cohorts of PCa patients. Herein, we analyzed patients irrespective of their disease status at diagnosis to include, besides patients with MPCa, those with localized PCa (LPCa). Our goal was to specify the prognostic value of HLA-A*02:01 and HLA-A*24:02 for overall survival (OS) prospectively and for early biochemical recurrence (BCR) and castrate resistance (CR) as additional clinical endpoints in a prospective/retrospective manner, to improve clinical decisions for patients covering all stages of PCa. On univariate analysis, HLA-A alleles were significantly associated as prognostic biomarkers with early BCR (p = 0.028; HR = 1.822), OS (p = 0.013; HR = 1.547) and showed a trend for CR (p = 0.150; HR = 1.239). On multivariate analysis, HLA-A alleles proved to be independent prognosticators for early BCR (p = 0.017; HR = 2.008), CR (p = 0.005; HR = 1.615), and OS (p = 0.002; HR = 2.063). Kaplan-Meier analyses revealed that patients belonging to the HLA-A*02:01+HLA-A*24:02- group progressed much faster to BCR and CR and had also shorter OS compared to HLA-A*24:02+ patients. Patients being HLA-A*02:01-HLA-A*24:02- exhibited varying clinical outcomes, pointing to the presence of additional HLA-A alleles with potential prognostic value. Our data underline the HLA-A alleles as valuable prognostic biomarkers for PCa that may assist with the appropriate treatment and follow-up schedule based on the risk for disease progression to avoid over-diagnosis and over-treatment.
Collapse
Affiliation(s)
| | | | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece; (S.S.); (C.N.B.)
| |
Collapse
|
26
|
Falahkheirkhah K, Mukherjee SS, Gupta S, Herrera-Hernandez L, McCarthy MR, Jimenez RE, Cheville JC, Bhargava R. Accelerating Cancer Histopathology Workflows with Chemical Imaging and Machine Learning. CANCER RESEARCH COMMUNICATIONS 2023; 3:1875-1887. [PMID: 37772992 PMCID: PMC10506535 DOI: 10.1158/2767-9764.crc-23-0226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Histopathology has remained a cornerstone for biomedical tissue assessment for over a century, with a resource-intensive workflow involving biopsy or excision, gross examination, sampling, tissue processing to snap frozen or formalin-fixed paraffin-embedded blocks, sectioning, staining, optical imaging, and microscopic assessment. Emerging chemical imaging approaches, including stimulated Raman scattering (SRS) microscopy, can directly measure inherent molecular composition in tissue (thereby dispensing with the need for tissue processing, sectioning, and using dyes) and can use artificial intelligence (AI) algorithms to provide high-quality images. Here we show the integration of SRS microscopy in a pathology workflow to rapidly record chemical information from minimally processed fresh-frozen prostate tissue. Instead of using thin sections, we record data from intact thick tissues and use optical sectioning to generate images from multiple planes. We use a deep learning–based processing pipeline to generate virtual hematoxylin and eosin images. Next, we extend the computational method to generate archival-quality images in minutes, which are equivalent to those obtained from hours/days-long formalin-fixed, paraffin-embedded processing. We assessed the quality of images from the perspective of enabling pathologists to make decisions, demonstrating that the virtual stained image quality was diagnostically useful and the interpathologist agreement on prostate cancer grade was not impacted. Finally, because this method does not wash away lipids and small molecules, we assessed the utility of lipid chemical composition in determining grade. Together, the combination of chemical imaging and AI provides novel capabilities for rapid assessments in pathology by reducing the complexity and burden of current workflows. SIGNIFICANCE Archival-quality (formalin-fixed paraffin-embedded), thin-section diagnostic images are obtained from thick-cut, fresh-frozen prostate tissues without dyes or stains to expedite cancer histopathology by combining SRS microscopy and machine learning.
Collapse
Affiliation(s)
- Kianoush Falahkheirkhah
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Sudipta S. Mukherjee
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Sounak Gupta
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Rafael E. Jimenez
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - John C. Cheville
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
- Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
27
|
Hu B, Zhang H, Zhang Y, Jin Y. A nomogram based on biparametric magnetic resonance imaging for detection of clinically significant prostate cancer in biopsy-naïve patients. Cancer Imaging 2023; 23:82. [PMID: 37667393 PMCID: PMC10478308 DOI: 10.1186/s40644-023-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
PURPOSE This study aimed to develop and validate a model based on biparametric magnetic resonance imaging (bpMRI) for the detection of clinically significant prostate cancer (csPCa) in biopsy-naïve patients. METHOD This retrospective study included 324 patients who underwent bpMRI and MRI targeted fusion biopsy (MRGB) and/or systematic biopsy, of them 217 were randomly assigned to the training group and 107 were assigned to the validation group. We assessed the diagnostic performance of three bpMRI-based scorings in terms of sensitivity and specificity. Subsequently, 3 models (Model 1, Model 2, and Model 3) combining bpMRI scorings with clinical variables were constructed and compared with each other using the area under the receiver operating characteristic (ROC) curves (AUC). The statistical significance of differences among these models was evaluated using DeLong's test. RESULTS In the training group, 68 of 217 patients had pathologically proven csPCa. The sensitivity and specificity for Scoring 1 were 64.7% (95% CI 52.2%-75.9%) and 80.5% (95% CI 73.3%-86.6%); for Scoring 2 were 86.8% (95% CI 76.4%-93.8%) and 73.2% (95% CI 65.3%-80.1%); and for Scoring 3 were 61.8% (95% CI 49.2%-73.3%) and 80.5% (95% CI 73.3%-86.6%), respectively. Multivariable regression analysis revealed that scorings based on bpMRI, age, and prostate-specific antigen density (PSAD) were independent predictors of csPCa. The AUCs for the 3 models were 0.88 (95% CI 0.83-0.93), 0.90 (95% CI 0.85-0.94), and 0.88 (95% CI 0.83-0.93), respectively. Model 2 showed significantly higher performance than Model 1 (P = 0.03) and Model 3 (P < 0.01). CONCLUSION All three scorings had favorite diagnostic accuracy. While in conjunction with age and PSAD the prediction power was significantly improved, and the Model 2 that based on Scoring 2 yielded the highest performance.
Collapse
Affiliation(s)
- Beibei Hu
- Department of Medical Imaging, Jiangsu Vocational College of Medicine, Yancheng, China.
| | - Huili Zhang
- Department of Medical Imaging, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yueyue Zhang
- Department of Radiology, Second Affiliated Hospital of Soochow University, Soochow, China
| | - Yongming Jin
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University; Yancheng Third People's Hospital, Yancheng, China.
| |
Collapse
|
28
|
Ho AS, Luu M, Balzer BL, Aro K, Jang JK, Mita AC, Scher KS, Mallen-St Clair J, Vasquez M, Bastien AJ, Epstein JB, Lin DC, Chen MM, Zumsteg ZS. Comparative impact of grade on mortality across salivary cancers: A novel, unifying staging system. Head Neck 2023; 45:2028-2039. [PMID: 37345665 DOI: 10.1002/hed.27429] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND The comparative impact of histologic variants and grade has not been well described. METHODS Salivary cancer histologies were profiled using hospital and population-based cancer registries. Multivariable models were employed to assess relationships between histology, grade, and survival. RESULTS On univariate analysis, histologic variants exhibited a wide spectrum of mortality risk (5-year overall survival (OS): 86% (acinic cell carcinoma), 78% (mucoepidermoid carcinoma), 72% (adenoid cystic carcinoma), 64% (carcinoma ex-pleomorphic adenoma), 52% (adenocarcinoma NOS), and 47% (salivary duct carcinoma) (p < 0.001). However, on multivariable analysis these differences largely vanished. Worsening grade corresponded with deteriorating survival (5-year OS: 89% [low-grade], 81% [intermediate-grade], 45% [high-grade]; p < 0.001), which was upheld on multivariable analysis and propensity score matching. Recursive partitioning analysis generated TNM + G schema (c-index 0.75) superior to the existing system (c-index 0.73). CONCLUSION Grade represents a primary determinant of salivary cancer prognosis. Integrating grade into stage strengthens current staging systems.
Collapse
Affiliation(s)
- Allen S Ho
- Samuel Oschin Comprehensive Cancer Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Michael Luu
- Samuel Oschin Comprehensive Cancer Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Biostatistics and Bioinformatics Research Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Bonnie L Balzer
- Samuel Oschin Comprehensive Cancer Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Katri Aro
- Department of Otorhinolaryngology - Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Julie K Jang
- Samuel Oschin Comprehensive Cancer Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alain C Mita
- Samuel Oschin Comprehensive Cancer Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kevin S Scher
- Samuel Oschin Comprehensive Cancer Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jon Mallen-St Clair
- Samuel Oschin Comprehensive Cancer Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Missael Vasquez
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Amanda J Bastien
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Joel B Epstein
- Samuel Oschin Comprehensive Cancer Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - De-Chen Lin
- Herman Ostrow School of Dentistry, University of Southern California, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michelle M Chen
- Samuel Oschin Comprehensive Cancer Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Zachary S Zumsteg
- Samuel Oschin Comprehensive Cancer Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
29
|
Ko KJ, Choi S, Song W. The Impact of Multiparametric Magnetic Resonance Imaging on Treatment Strategies for Incidental Prostate Cancer after Holmium Laser Enucleation of the Prostate. J Clin Med 2023; 12:4826. [PMID: 37510942 PMCID: PMC10381121 DOI: 10.3390/jcm12144826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE To investigate the impact of multiparametric magnetic resonance imaging (mpMRI) on treatment strategies for incidental prostate cancer (iPCa) after holmium enucleation of the prostate (HoLEP); Methods: Data from 1781 men who underwent HoLEP for clinical bladder outlet obstruction between September 2009 and March 2022 were reviewed retrospectively. Among patients with confirmed iPCa, those with prostate-specific antigen (PSA) levels < 10 ng/mL and who underwent mpMRI 3 months after HoLEP were included. Pathologic results, including Gleason grade (GG) and tumor volume, were identified. mpMRI was interpreted using the Prostate Imaging Reporting and Data System version 2 (PI-RADSv2). Treatment strategies for iPCa according to GG alone, or according to a combination of Gleason grade and mpMRI, were analyzed and compared. RESULTS Of 1764 men with serum PSA levels < 10 ng/mL, iPCa was confirmed in 64 (3.6%) after HoLEP. Of the 62 men who underwent mpMRI, the median (IQR) age at the time of HoLEP was 72.5 (66.5-78.0) years. The median PSA level and prostate volume were 3.49 (1.82-5.03) ng/mL and 49.6 (38.5-85.4) cm3, respectively. The pathologic results of iPCa were as follows: GG1 = 42 (67.7%), GG2 = 13 (21.0%), GG3 = 2 (3.2%), GG4 = 1 (1.6%), and GG5 = 4 (6.5%). Of the patients with GG1 and GG2, 78.6% (33/42) and 53.8% (7/13), respectively, underwent active surveillance (AS). However, of 42 patients with GG1, 27 (64.3%) had a PI-RADSv2 score of 2, and 24 (88.9%) of them underwent AS. Of the 13 patients with GG2, 4 (80%) with a PI-RADSv2 score of 2 underwent AS. All patients with GG 3-5 were clinically expected to have locally advanced PCa and be treated with radiotherapy and/or ADT. CONCLUSIONS For patients with iPCa of GG 1-2 after HoLEP, mpMRI helps to establish a treatment strategy by allowing risk stratification to select those who should be considered for AS or active treatment.
Collapse
Affiliation(s)
- Kwang-Jin Ko
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Seongik Choi
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Wan Song
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| |
Collapse
|
30
|
Ruiz C, Alborelli I, Manzo M, Calgua B, Keller E, Vuaroqueaux V, Quagliata L, Rentsch CA, Spagnoli GC, Diener PA, Bubendorf L, Morant R, Eppenberger-Castori S. Critical Evaluation of Transcripts and Long Noncoding RNA Expression Levels in Prostate Cancer Following Radical Prostatectomy. Pathobiology 2023; 90:400-408. [PMID: 37463569 PMCID: PMC10733933 DOI: 10.1159/000531175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/18/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION The clinical course of prostate cancer (PCa) is highly variable, ranging from indolent behavior to rapid metastatic progression. The Gleason score is widely accepted as the primary histologic assessment tool with significant prognostic value. However, additional biomarkers are required to better stratify patients, particularly those at intermediate risk. METHODS In this study, we analyzed the expression of 86 cancer hallmark genes in 171 patients with PCa who underwent radical prostatectomy and focused on the outcome of the 137 patients with postoperative R0-PSA0 status. RESULTS Low expression of the IGF1 and SRD52A, and high expression of TIMP2, PLAUR, S100A2, and CANX genes were associated with biochemical recurrence (BR), defined as an increase of prostate-specific antigen above 0.2 ng/mL. Furthermore, the analysis of the expression of 462 noncoding RNAs (ncRNA) in a sub-cohort of 39 patients with Gleason score 7 tumors revealed that high levels of expression of the ncRNAs LINC00624, LINC00593, LINC00482, and cd27-AS1 were significantly associated with BR. Our findings provide further evidence for tumor-promoting roles of ncRNAs in PCa patients at intermediate risk. The strong correlation between expression of LINC00624 and KRT8 gene, encoding a well-known cell surface protein present in PCa, further supports a potential contribution of this ncRNA to PCa progression. CONCLUSION While larger and further studies are needed to define the role of these genes/ncRNA in PCa, our findings pave the way toward the identification of a subgroup of patients at intermediate risk who may benefit from adjuvant treatments and new therapeutic agents.
Collapse
Affiliation(s)
- Christian Ruiz
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ilaria Alborelli
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Massimiliano Manzo
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Byron Calgua
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Eveline Keller
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Luca Quagliata
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Medical Affairs Team, Genetic Sciences Group, Thermo Fisher Scientific, Monza, Italy
| | - Cyrill A. Rentsch
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giulio C. Spagnoli
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | | | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rudolf Morant
- Tumor-und Brustzentrum ZeTuP, St. Gallen, Switzerland
| | - on behalf of the former members of the Urology Team in St. Gallen**
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- 4HF Biotec, Freiburg, Germany
- Medical Affairs Team, Genetic Sciences Group, Thermo Fisher Scientific, Monza, Italy
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
- Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Tumor-und Brustzentrum ZeTuP, St. Gallen, Switzerland
| | | |
Collapse
|
31
|
Wang Y, Qian H, Shao X, Zhang H, Liu S, Pan J, Xue W. Multimodal convolutional neural networks based on the Raman spectra of serum and clinical features for the early diagnosis of prostate cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122426. [PMID: 36787677 DOI: 10.1016/j.saa.2023.122426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
We collected surface-enhanced Raman spectroscopy (SERS) data from the serum of 729 patients with prostate cancer or benign prostatic hyperplasia (BPH), corresponding to their pathological results, and built an artificial intelligence-assisted diagnosis model based on a convolutional neural network (CNN). We then evaluated its value in diagnosing prostate cancer and predicting the Gleason score (GS) using a simple cross-validation method. Our CNN model based on the spectral data for prostate cancer diagnosis revealed an accuracy of 85.14 ± 0.39%. After adjusting the model with patient age and prostate specific antigen (PSA), the accuracy of the multimodal CNN was up to 88.55 ± 0.66%. Our multimodal CNN for distinguishing low-GS/high-GS and GS = 3 + 3/GS = 3 + 4 revealed accuracies of 68 ± 0.58% and 77 ± 0.52%, respectively.
Collapse
Affiliation(s)
- Yan Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongyang Qian
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Heng Zhang
- Shanghai Institute for Advanced Communication and Data Science, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Shupeng Liu
- Shanghai Institute for Advanced Communication and Data Science, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
32
|
Bellei E, Caramaschi S, Giannico GA, Monari E, Martorana E, Reggiani Bonetti L, Bergamini S. Research of Prostate Cancer Urinary Diagnostic Biomarkers by Proteomics: The Noteworthy Influence of Inflammation. Diagnostics (Basel) 2023; 13:diagnostics13071318. [PMID: 37046536 PMCID: PMC10093134 DOI: 10.3390/diagnostics13071318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Nowadays, in the case of suspected prostate cancer (PCa), tissue needle biopsy remains the benchmark for diagnosis despite its invasiveness and poor tolerability, as serum prostate-specific antigen (PSA) is limited by low specificity. The aim of this proteomic study was to identify new diagnostic biomarkers in urine, an easily and non-invasively available sample, able to selectively discriminate cancer from benign prostatic hyperplasia (BPH), evaluating whether the presence of inflammation may be a confounding parameter. The analysis was performed by two-dimensional gel electrophoresis (2-DE), mass spectrometry (LC-MS/MS) and Enzyme-Linked Immunosorbent Assay (ELISA) on urine samples from PCa and BPH patients, divided into subgroups based on the presence or absence of inflammation. Significant quantitative and qualitative differences were found in the urinary proteomic profile of PCa and BPH groups. Of the nine differentially expressed proteins, only five can properly be considered potential biomarkers of PCa able to discriminate the two diseases, as they were not affected by the inflammatory process. Therefore, the proteomic research of novel and reliable urinary biomarkers of PCa should be conducted considering the presence of inflammation as a realistic interfering element, as it could hinder the detection of important protein targets.
Collapse
Affiliation(s)
- Elisa Bellei
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Stefania Caramaschi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, AOU Policlinico di Modena, 41124 Modena, Italy
| | - Giovanna A. Giannico
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emanuela Monari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Eugenio Martorana
- Division of Urology, New Civilian Hospital of Sassuolo, 41049 Modena, Italy
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, AOU Policlinico di Modena, 41124 Modena, Italy
| | - Stefania Bergamini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
33
|
Netto GJ, Amin MB, Compérat EM, Gill AJ, Hartmann A, Moch H, Menon S, Raspollini MR, Rubin MA, Srigley JR, Hoon Tan P, Tickoo SK, Tsuzuki T, Turajlic S, Cree I, Berney DM. Prostate Adenocarcinoma Grade Group 1: Rationale for Retaining a Cancer Label in the 2022 World Health Organization Classification. Eur Urol 2023; 83:301-303. [PMID: 36202687 DOI: 10.1016/j.eururo.2022.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
We present the rationale for keeping the "cancer" label for grade group 1 (GG1) prostate cancer. Maintaining GG1 as the lowest grade outweighs the potential benefits that a benign designation may bring. Patient and surgeon education on the vital role of active surveillance for GG1 cancers and avoidance of overtreatment should be the focus rather than such a drastic change in nomenclature.
Collapse
Affiliation(s)
- George J Netto
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Urology, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Eva M Compérat
- Department of Pathology, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Anthony J Gill
- Sydney Medical School, University of Sydney, Sydney, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia; Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Santosh Menon
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Maria R Raspollini
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Italy
| | - Mark A Rubin
- Department for BioMedical Research, Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - John R Srigley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| | - Satish K Tickoo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakut, Japan
| | - Samra Turajlic
- Francis Crick Institute and Royal Marsden NHS Foundation Trust, London, UK
| | - Ian Cree
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Daniel M Berney
- Barts Cancer Institute, Queen Mary University of London and Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| |
Collapse
|
34
|
Sandúa A, Sanmamed MF, Rodríguez M, Ancizu-Marckert J, Gúrpide A, Perez-Gracia JL, Alegre E, González Á. PSA reactivity in extracellular microvesicles to commercial immunoassays. Clin Chim Acta 2023; 543:117303. [PMID: 36948237 DOI: 10.1016/j.cca.2023.117303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
AIMS Characterization of PSA in extracellular microvesicles (EVs) and its reactivity to commercial methods. MATERIALS AND METHODS EVs derived from serum of 47 prostate cancer (PCa) patients, 27 benign prostatic hyperplasia (BPH) patients and 42 healthy controls were analyzed. EVs isolation and quantification of PSA immunoreactive to total (ev-T-PSA) or free (ev-F-PSA) PSA immunoassays, were performed using commercial assays. PSA in CD81+ or CD63+ EVs was determined directly in serum by an immunocapture-ELISA (IC-ELISA). RESULTS Ev-T-PSA immunoreactive to Elecsys assay was detected in all samples. Median T-PSA ev/srm ratio was 2.20% (Q1-Q3: 0.80-4.00%), although in some samples this ratio reached 59%. T-PSA ev/srm ratio was higher in those samples with serum T-PSA below 4 µg/L than in those exceeding that cut-off (p<0.001). T-PSA ev/srm ratio was lower in PCa patients compared to healthy controls and BPH patients (p<0.001). Elecsys immunoassays detected higher concentrations of ev-T-PSA and ev-F-PSA than Immulite (p<0.001). PSA was detected by IC-ELISA more intensely in CD81+ EVs than in CD63+ EVs, and ev-T-PSA correlated with PSA+CD63+ (p<0.001) but not with PSA+CD81+. CONCLUSION EVs-bound PSA is another form of circulating PSA whose measurement could be easily performed in clinical laboratories by automated immunoassays.
Collapse
Affiliation(s)
- Amaia Sandúa
- Service of Biochemistry. Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain.
| | - Miguel F Sanmamed
- Oncology Department. Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Calle Irunlarrea 3, 31008, Pamplona, Spain
| | - María Rodríguez
- Oncology Department. Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Calle Irunlarrea 3, 31008, Pamplona, Spain
| | - Javier Ancizu-Marckert
- Urology Department. Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain
| | - Alfonso Gúrpide
- Oncology Department. Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain
| | - José L Perez-Gracia
- Oncology Department. Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Calle Irunlarrea 3, 31008, Pamplona, Spain
| | - Estibaliz Alegre
- Service of Biochemistry. Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Calle Irunlarrea 3, 31008, Pamplona, Spain
| | - Álvaro González
- Service of Biochemistry. Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Calle Irunlarrea 3, 31008, Pamplona, Spain
| |
Collapse
|
35
|
Stinson J, McCall C, Dobbs RW, Mistry N, Rosenberg A, Nettey OS, Sharma P, Dixon M, Sweis J, Macias V, Sharifi R, Kittles RA, Kajdacsy-Balla A, Murphy AB. Vitamin D and genetic ancestry are associated with apoptosis rates in benign and malignant prostatic epithelium. Prostate 2023; 83:352-363. [PMID: 36479698 PMCID: PMC9870946 DOI: 10.1002/pros.24467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Vitamin D metabolites may be protective against prostate cancer (PCa). We conducted a cross-sectional analysis to evaluate associations between in vivo vitamin D status, genetic ancestry, and degree of apoptosis using prostatic epithelial terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. EXPERIMENTAL DESIGN Benign and tumor epithelial punch biopsies of participants with clinically localized PCa underwent indirect TUNEL staining. Serum levels of 25 hydroxyvitamin D [25(OH)D] and 1,25 dihydroxyvitamin D were assessed immediately before radical prostatectomy; levels of prostatic 25(OH)D were obtained from the specimen once the prostate was extracted. Ancestry informative markers were used to estimate the percentage of genetic West African, Native American, and European ancestry. RESULTS One hundred twenty-one newly diagnosed men, age 40-79, were enrolled between 2013 and 2018. Serum 25(OH)D correlated positively with both tumor (ρ = 0.17, p = 0.03), and benign (ρ = 0.16, p = 0.04) prostatic epithelial TUNEL staining. Similarly, prostatic 25(OH)D correlated positively with both tumor (ρ = 0.31, p < 0.001) and benign (ρ = 0.20, p = 0.03) epithelial TUNEL staining. Only Native American ancestry was positively correlated with tumor (ρ = 0.22, p = 0.05) and benign (ρ = 0.27, p = 0.02) TUNEL staining. In multivariate regression models, increasing quartiles of prostatic 25(OH)D (β = 0.25, p = 0.04) and Native American ancestry (β = 0.327, p = 0.004) were independently associated with tumor TUNEL staining. CONCLUSIONS Physiologic serum and prostatic 25(OH)D levels and Native American ancestry are positively associated with the degree of apoptosis in tumor and benign prostatic epithelium in clinically localized PCa. Vitamin D may have secondary chemoprevention benefits in preventing PCa progression in localized disease.
Collapse
Affiliation(s)
- James Stinson
- Division of Urology, Cook County Health and Hospitals System, Chicago IL
| | - Cordero McCall
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Ryan W. Dobbs
- Division of Urology, Cook County Health and Hospitals System, Chicago IL
| | - Neil Mistry
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Adrian Rosenberg
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Oluwarotimi S. Nettey
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Pooja Sharma
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Michael Dixon
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Jamila Sweis
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago School of Medicine, Chicago IL
| | | | - Rick A. Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Cancer Center, Duarte CA
| | - Andre Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago School of Medicine, Chicago IL
| | - Adam B. Murphy
- Division of Urology, Cook County Health and Hospitals System, Chicago IL
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago IL
- Section of Urology, Jesse Brown VA Medical Center, Chicago IL
| |
Collapse
|
36
|
Zhang J, Xu L, Zhang G, Zhang X, Bai X, Sun H, Jin Z. Effects of dynamic contrast enhancement on transition zone prostate cancer in Prostate Imaging Reporting and Data System Version 2.1. Radiol Oncol 2023; 57:42-50. [PMID: 36655324 PMCID: PMC10039479 DOI: 10.2478/raon-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/18/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The aim of the study was to analyse the effects of dynamic contrast enhanced (DCE)-MRI on transitional-zone prostate cancer (tzPCa) and clinically significant transitional-zone prostate cancer (cs-tzPCa) in Prostate Imaging Reporting and Data System (PI-RADS) Version 2.1. PATIENTS AND METHODS The diagnostic efficiencies of T2-weighted imaging (T2WI) + diffusion-weighted imaging (DWI), T2WI + dynamic contrast-enhancement (DCE), and T2WI + DWI + DCE in tzPCa and cs-tzPCa were compared using the score of ≥ 4 as the positive threshold and prostate biopsy as the reference standard. RESULTS A total of 425 prostate cases were included in the study: 203 cases in the tzPCa group, and 146 in the cs-tzPCa group. The three sequence combinations had the similar areas under the curves in diagnosing tzPCa and cs-tzPCa (all P < 0.05). The sensitivity of T2WI + DCE and T2WI + DWI + DCE (84.7% and 85.7% for tzPCa; 88.4% and 89.7% for cs-tzPCa, respectively) in diagnosing tzPCa and cs-tzPCa was significantly greater than that of T2WI + DWI (79.3% for tzPCa; 82.9% for cs-tzPCa). The specificity of T2WI + DWI (86.5% for tzPCa; 74.9% for cs-tzPCa) were significantly greater than those of T2WI + DCE and T2WI + DWI + DCE (68.0% and 68.5% for tzPCa; 59.1% and 59.5% for cs-tzPCa, respectively) (all P > 0.05). The diagnostic efficacies of T2WI + DCE and T2WI + DWI + DCE had no significant differences (all P < 0.05). CONCLUSIONS DCE can improve the sensitivity of diagnosis for tzPCa and cs-tzPCa, and it is useful for small PCa lesion diagnosis.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Xu
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gumuyang Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiao Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Bai
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Sun
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Quality Control of Radiology, Beijing, China
| | - Zhengyu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Quality Control of Radiology, Beijing, China
| |
Collapse
|
37
|
Zhou KP, Huang HB, Bu C, Luo ZX, Huang WS, Xie LZ, Liu QY, Bian J. Sub-differentiation of PI-RADS 3 lesions in TZ by advanced diffusion-weighted imaging to aid the biopsy decision process. Front Oncol 2023; 13:1092073. [PMID: 36845749 PMCID: PMC9950630 DOI: 10.3389/fonc.2023.1092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Background Performing biopsy for intermediate lesions with PI-RADS 3 has always been controversial. Moreover, it is difficult to differentiate prostate cancer (PCa) and benign prostatic hyperplasia (BPH) nodules in PI-RADS 3 lesions by conventional scans, especially for transition zone (TZ) lesions. The purpose of this study is sub-differentiation of transition zone (TZ) PI-RADS 3 lesions using intravoxel incoherent motion (IVIM), stretched exponential model, and diffusion kurtosis imaging (DKI) to aid the biopsy decision process. Methods A total of 198 TZ PI-RADS 3 lesions were included. 149 lesions were BPH, while 49 lesions were PCa, including 37 non-clinical significant PCa (non-csPCa) lesions and 12 clinical significant PCa (csPCa) lesions. Binary logistic regression analysis was used to examine which parameters could predict PCa in TZ PI-RADS 3 lesions. The ROC curve was used to test diagnostic efficiency in distinguishing PCa from TZ PI-RADS 3 lesions, while one-way ANOVA analysis was used to examine which parameters were statistically significant among BPH, non-csPCa and csPCa. Results The logistic model was statistically significant (χ2 = 181.410, p<0.001) and could correctly classify 89.39% of the subjects. Parameters of fractional anisotropy (FA) (p=0.004), mean diffusion (MD) (p=0.005), mean kurtosis (MK) (p=0.015), diffusion coefficient (D) (p=0.001), and distribute diffusion coefficient (DDC) (p=0.038) were statistically significant in the model. ROC analysis showed that AUC was 0.9197 (CI 95%: 0.8736-0.9659). Sensitivity, specificity, positive predictive value and negative predictive value were 92.1%, 80.4%, 93.9% and 75.5%, respectively. FA and MK of csPCa were higher than those of non-csPCa (all p<0.05), while MD, ADC, D, and DDC of csPCa were lower than those of non-csPCa (all p<0.05). Conclusion FA, MD, MK, D, and DDC can predict PCa in TZ PI-RADS 3 lesions and inform the decision-making process of whether or not to perform a biopsy. Moreover, FA, MD, MK, D, DDC, and ADC may have ability to identify csPCa and non-csPCa in TZ PI-RADS 3 lesions.
Collapse
Affiliation(s)
- Kun-Peng Zhou
- Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hua-Bin Huang
- Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chao Bu
- Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhong-Xing Luo
- Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wen-Sheng Huang
- Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | - Qing-Yu Liu
- Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jie Bian
- Radiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China,*Correspondence: Jie Bian,
| |
Collapse
|
38
|
Variation in patient reported outcomes following radical prostatectomy: A bi-national registry-based study. Urol Oncol 2023; 41:105.e9-105.e18. [PMID: 36437157 DOI: 10.1016/j.urolonc.2022.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Radical prostatectomy (RP) is a common and widely used treatment for localized prostate cancer. Sequela following RP may include urinary incontinence and sexual dysfunction, outcomes which are recorded within a bi-national Prostate Cancer Outcomes Registry. The objective was to report population-wide urinary incontinence and sexual function outcomes recorded at 12 months following RP; and to quantify and explore factors associated with variation in outcome. MATERIALS AND METHODS The Prostate Cancer Outcomes Registry of Australia and New Zealand (PCOR-ANZ) was used for this study. Participants were treated with radical prostatectomy between 2016 and 2020. Domain summary scores for urinary incontinence and sexual function from the EPIC-26 instrument were the main outcomes, taken at 12 months following surgery (6-18 months). "Major" urinary and sexual function bother were also assessed. Variation in outcomes was investigated using linear and logistic multivariable regression models adjusted for covariates: age, socioeconomic status, PSA at diagnosis, surgical technique, surgical specimen grade group, margin status, and clinician surgical volume. RESULTS AND CONCLUSIONS The analytic cohort included 13,083 men with the mean urinary incontinence domain score being 76/100 (SD = 25) with 9.2% reporting major bother. For sexual function, the mean score was 29/100 (SD = 26) with 46% reporting major bother. Of the examined variables, age at surgery and surgical volume category were most predictive of function, with disparities exceeding minimally important differences, though large variation was observed between urologists within volume categories. There is considerable variation in 12-month postprostatectomy functional outcomes. Variation is explained by both patient and clinician factors, though some confounders are unmeasured in this cohort.
Collapse
|
39
|
Hao Y, Zhang Q, Hang J, Xu L, Zhang S, Guo H. Development of a Prediction Model for Positive Surgical Margin in Robot-Assisted Laparoscopic Radical Prostatectomy. Curr Oncol 2022; 29:9560-9571. [PMID: 36547165 PMCID: PMC9776736 DOI: 10.3390/curroncol29120751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
A positive surgical margin (PSM) is reported to have some connection to the occurrence of biochemical recurrence and tumor metastasis in prostate cancer after the operation. There are no clinically usable models and the study is to predict the probability of PSM after robot-assisted laparoscopic radical prostatectomy (RALP) based on preoperative examinations. It is a retrospective cohort from a single center. The Lasso method was applied for variable screening; logistic regression was employed to establish the final model; the strengthened bootstrap method was adopted for model internal verification; the nomogram and web calculator were used to visualize the model. All the statistical analyses were based on the R-4.1.2. The main outcome was a pathologically confirmed PSM. There were 151 PSMs in the 903 patients, for an overall positive rate of 151/903 = 16.7%; 0.727 was the adjusted C statistic, and the Brier value was 0.126. Hence, we have developed and validated a predictive model for PSM after RALP for prostate cancer that can be used in clinical practice. In the meantime, we observed that the International Society of Urological Pathology (ISUP) score, Prostate Imaging Reporting and Data System (PI-RADS) score, and Prostate-Specific Antigen (PSA) were the independent risk factors for PSM.
Collapse
Affiliation(s)
- Ying Hao
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
- Institute of Urology, Nanjing University, Nanjing 210008, China
| | - Qing Zhang
- Institute of Urology, Nanjing University, Nanjing 210008, China
| | - Junke Hang
- Institute of Urology, Nanjing University, Nanjing 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Linfeng Xu
- Institute of Urology, Nanjing University, Nanjing 210008, China
| | - Shiwei Zhang
- Institute of Urology, Nanjing University, Nanjing 210008, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
- Institute of Urology, Nanjing University, Nanjing 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
40
|
Andolfi C, Vickers AJ, Cooperberg MR, Carroll PR, Cowan JE, Paner GP, Helfand BT, Liauw SL, Eggener SE. Blood Prostate-specific Antigen by Volume of Benign, Gleason Pattern 3 and 4 Prostate Tissue. Urology 2022; 170:154-160. [PMID: 35987380 PMCID: PMC10515713 DOI: 10.1016/j.urology.2022.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To evaluate how blood levels of prostate-specific antigen (PSA) relate to prostate volume of benign tissue, Gleason pattern 3 (GP3) and Gleason pattern 4 (GP4) cancer. METHODS The cohort included 2209 consecutive men undergoing radical prostatectomy at 2 academic institutions with pT2N0, Grade Group 1-4 prostate cancer and an undetectable postoperative PSA. Volume of benign, GP3, and GP4 were estimated. The primary analysis evaluated the association between PSA and volume of each type of tissue using multivariable linear regression. R2, a measure of explained variation, was calculated using a multivariable model. RESULTS Estimated contribution to PSA was 0.04/0.06 ng/mL/cc for benign, 0.08/0.14 ng/mL/cc for GP3, and 0.62/0.80 ng/ml/cc for GP4 for the 2 independent cohorts, respectively. GP4 was associated with 6 to 8-fold more PSA per cc compared to GP3 and 15-fold higher compared to benign tissue. We did not observe a difference between PSA per cc for GP3 vs. benign tissue (P = 0.2). R2 decreased only slightly when removing age (0.006/0.018), volume of benign tissue (0.051/0.054) or GP3 (0.014/0.023) from the model. When GP4 was removed, R2 decreased 0.051/0.310. PSA density (PSA divided by prostate volume) was associated with volume of GP4 but not GP3, after adjustment for benign volume. CONCLUSION Gleason pattern 4 cancer contributes considerably more to PSA and PSA density per unit volume compared to GP3 and benign tissue. Contributions from GP3 and benign are similar. Further research should examine the utility of determining clinical management recommendations by absolute volume of GP4 rather than the ratio of GP3 to GP4.
Collapse
Affiliation(s)
- Ciro Andolfi
- Section of Urology, Department of Surgery, The University of Chicago, Chicago, IL
| | - Andrew J Vickers
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY.
| | - Matthew R Cooperberg
- Department of Urology, University of California San Francisco, San Francisco, CA; Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA
| | - Peter R Carroll
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Janet E Cowan
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Gladell P Paner
- Department of Pathology, The University of Chicago, Chicago, IL
| | | | - Stanley L Liauw
- Department of Radiation Oncology, The University of Chicago, Chicago, IL
| | - Scott E Eggener
- Section of Urology, Department of Surgery, The University of Chicago, Chicago, IL
| |
Collapse
|
41
|
Bakbak H, Sayar E, Kaur HB, Salles DC, Patel RA, Hicks J, Lotan TL, De Marzo AM, Gulati R, Epstein JI, Haffner MC. Clonal relationships of adjacent Gleason pattern 3 and Gleason pattern 5 lesions in Gleason Scores 3+5=8 and 5+3=8. Hum Pathol 2022; 130:18-24. [PMID: 36309296 PMCID: PMC10542864 DOI: 10.1016/j.humpath.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2022]
Abstract
Genomic studies have demonstrated a high level of intra-tumoral heterogeneity in prostate cancer. There is strong evidence suggesting that individual tumor foci can arise as genetically distinct, clonally independent lesions. However, recent studies have also demonstrated that adjacent Gleason pattern (GP) 3 and GP4 lesions can originate from the same clone but follow divergent genetic and morphologic evolution. The clonal relationship of adjacent GP3 and GP5 lesions has thus far not been investigated. Here we analyzed a cohort of 14 cases-11 biopsy and 3 radical prostatectomy specimens-with a Gleason score of 3 + 5 = 8 or 5 + 3 = 8 present in the same biopsy or in a single dominant tumor nodule at radical prostatectomy. Clonal and subclonal relationships between GP3 and GP5 lesions were assessed using genetically validated immunohistochemical assays for ERG, PTEN, and P53. 9/14 (64%) cases showed ERG reactivity in both GP3 and GP5 lesions. Only 1/14 (7%) cases showed a discordant pattern with ERG staining present only in GP3. PTEN expression was lost in 2/14 (14%) cases with perfect concordance between GP5 and GP3. P53 nuclear reactivity was present in 1/14 (7%) case in both GP5 and GP3. This study provides first evidence that the majority of adjacent GP3 and GP5 lesions share driver alterations and are clonally related. In addition, we observed a lower-than-expected rate of PTEN loss in GP5 in the context of Gleason score 3 + 5 = 8 or 5 + 3 = 8 tumors.
Collapse
Affiliation(s)
- Hasim Bakbak
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
| | - Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
| | - Harsimar B Kaur
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA
| | - Daniela C Salles
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA
| | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
| | - Jessica Hicks
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA
| | - Tamara L Lotan
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA; Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA; Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA
| | - Roman Gulati
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
| | - Jonathan I Epstein
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA; Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA.
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, 98195, WA, USA.
| |
Collapse
|
42
|
Modified the 8th AJCC staging system for patients with advanced prostate cancer: a study based on SEER database. BMC Urol 2022; 22:185. [PMID: 36384495 PMCID: PMC9670393 DOI: 10.1186/s12894-022-01135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background The American Joint Committee on Cancer (AJCC) 8th staging system of prostate cancer may be insufficient in predicting the prognosis of some staged patients. This study aimed to modify the AJCC 8th staging system in patients with advanced prostate cancer. Methods Data of patients with advanced prostate cancer from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2016 were enrolled in this cohort study. All patients were divided into the training set and the testing set with a ratio of 6:4. Multivariate Cox survival model was utilized to obtain the nomogram score for each stage variable. The modified staging system was based on the total nomogram score. The C-index and Kaplan-Meier (K-M) curves were used to show the prognostic prediction effect of patients with different staging systems. Results A total of 28,006 patients were included for analysis. T stage, N stage, M stage, primary Gleason pattern score, secondary Gleason pattern score, and PSA level were included as stage variables. Patients with AJCC stage III C [hazard ratio (HR) = 4.17, 95% confidence interval (CI), 3.39–5.13] and AJCC stage IV B (HR = 3.19, 95%CI, 1.79–5.69) were associated with worse prognosis compared with those of AJCC stage III B, while no statistical significance was found in patients with stage IV A (P > 0.05). In terms of the modified staging system, patients with modified stage III C (HR = 2.06, 95%CI, 1.46–2.92), modified stage IV A (HR = 6.91, 95%CI, 4.81–9.94), and modified stage IV B (HR = 21.89, 95%CI, 14.76–32.46) were associated with a poorer prognosis compared with patients with modified stage III B. The prognostic ability (C-index) of the modified staging system (0.789; 95%CI, 0.777–0.801) was better than that of the AJCC 8th edition system (0.762; 95%CI, 0.748–0.776) (0.789 vs. 0.762, P = 0.004). The K-M curves indicated that the modified staging system may be distinguished prognostic differences in patients with different stages. Conclusion Modified staging system may be better than AJCC 8th staging system for predicting prognosis in prostate cancer patients. The AJCC 8th staging system should be further optimized.
Collapse
|
43
|
Wong HY, Sheng Q, Hesterberg AB, Croessmann S, Rios BL, Giri K, Jackson J, Miranda AX, Watkins E, Schaffer KR, Donahue M, Winkler E, Penson DF, Smith JA, Herrell SD, Luckenbaugh AN, Barocas DA, Kim YJ, Graves D, Giannico GA, Rathmell JC, Park BH, Gordetsky JB, Hurley PJ. Single cell analysis of cribriform prostate cancer reveals cell intrinsic and tumor microenvironmental pathways of aggressive disease. Nat Commun 2022; 13:6036. [PMID: 36229464 PMCID: PMC9562361 DOI: 10.1038/s41467-022-33780-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Cribriform prostate cancer, found in both invasive cribriform carcinoma (ICC) and intraductal carcinoma (IDC), is an aggressive histological subtype that is associated with progression to lethal disease. To delineate the molecular and cellular underpinnings of ICC/IDC aggressiveness, this study examines paired ICC/IDC and benign prostate surgical samples by single-cell RNA-sequencing, TCR sequencing, and histology. ICC/IDC cancer cells express genes associated with metastasis and targets with potential for therapeutic intervention. Pathway analyses and ligand/receptor status model cellular interactions among ICC/IDC and the tumor microenvironment (TME) including JAG1/NOTCH. The ICC/IDC TME is hallmarked by increased angiogenesis and immunosuppressive fibroblasts (CTHRC1+ASPN+FAP+ENG+) along with fewer T cells, elevated T cell dysfunction, and increased C1QB+TREM2+APOE+-M2 macrophages. These findings support that cancer cell intrinsic pathways and a complex immunosuppressive TME contribute to the aggressive phenotype of ICC/IDC. These data highlight potential therapeutic opportunities to restore immune signaling in patients with ICC/IDC that may afford better outcomes.
Collapse
Affiliation(s)
- Hong Yuen Wong
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Quanhu Sheng
- grid.412807.80000 0004 1936 9916Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN USA
| | - Amanda B. Hesterberg
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Sarah Croessmann
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Brenda L. Rios
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Khem Giri
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Jorgen Jackson
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Adam X. Miranda
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Evan Watkins
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Kerry R. Schaffer
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Vanderbilt-Ingram Cancer Center, Nashville, TN USA
| | - Meredith Donahue
- grid.412807.80000 0004 1936 9916Department of Urology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Elizabeth Winkler
- grid.412807.80000 0004 1936 9916Department of Urology, Vanderbilt University Medical Center, Nashville, TN USA
| | - David F. Penson
- grid.412807.80000 0004 1936 9916Vanderbilt-Ingram Cancer Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Department of Urology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Joseph A. Smith
- grid.412807.80000 0004 1936 9916Department of Urology, Vanderbilt University Medical Center, Nashville, TN USA
| | - S. Duke Herrell
- grid.412807.80000 0004 1936 9916Department of Urology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Amy N. Luckenbaugh
- grid.412807.80000 0004 1936 9916Department of Urology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Daniel A. Barocas
- grid.412807.80000 0004 1936 9916Department of Urology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Young J. Kim
- grid.412807.80000 0004 1936 9916Vanderbilt-Ingram Cancer Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN USA ,grid.418961.30000 0004 0472 2713Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Diana Graves
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Giovanna A. Giannico
- grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Jeffrey C. Rathmell
- grid.412807.80000 0004 1936 9916Vanderbilt-Ingram Cancer Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA ,Vanderbilt Center for Immunobiology, Nashville, TN USA
| | - Ben H. Park
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Vanderbilt-Ingram Cancer Center, Nashville, TN USA
| | - Jennifer B. Gordetsky
- grid.412807.80000 0004 1936 9916Vanderbilt-Ingram Cancer Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Paula J. Hurley
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Vanderbilt-Ingram Cancer Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Department of Urology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
44
|
Increased Density of Growth Differentiation Factor-15+ Immunoreactive M1/M2 Macrophages in Prostate Cancer of Different Gleason Scores Compared with Benign Prostate Hyperplasia. Cancers (Basel) 2022; 14:cancers14194591. [PMID: 36230513 PMCID: PMC9578283 DOI: 10.3390/cancers14194591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is the second most diagnosed cancer and cause of death in men worldwide. The main challenge is to discover biomarkers for malignancy to guide the physician towards optimized diagnosis and therapy. There is recent evidence that growth differentiation factor-15 (GDF-15) is elevated in cancer patients. Therefore, we aimed to decipher GDF-15+ cell types and their density in biopsies of human PCa patients with Gleason score (GS)6–9 and benign prostate hyperplasia (BPH). Here we show that the density of GDF-15+ cells, mainly identified as interstitial macrophages (MΦ), was higher in GS6–9 than in BPH, and, thus, GDF-15 is intended to differentiate patients with high GS vs. BPH, as well as GS6 vs. GS7 (or even with higher malignancy). Some GDF-15+ MΦ showed a transepithelial migration into the glandular lumen and, thus, might be used for measurement in urine/semen. Taken together, GDF-15 is proposed as a novel tool to diagnose PCa vs. BPH or malignancy (GS6 vs. higher GS) and as a potential target for anti-tumor therapy. GDF-15 in seminal plasma and/or urine could be utilized as a non-invasive biomarker of PCa as compared to BPH. Abstract Although growth differentiation factor-15 (GDF-15) is highly expressed in PCa, its role in the development and progression of PCa is unclear. The present study aims to determine the density of GDF-15+ cells and immune cells (M1-/M2 macrophages [MΦ], lymphocytes) in PCa of different Gleason scores (GS) compared to BPH. Immunohistochemistry and double immunofluorescence were performed on paraffin-embedded human PCa and BPH biopsies with antibodies directed against GDF-15, CD68 (M1 MΦ), CD163 (M2 MΦ), CD4, CD8, CD19 (T /B lymphocytes), or PD-L1. PGP9.5 served as a marker for innervation and neuroendocrine cells. GDF-15+ cell density was higher in all GS than in BPH. CD68+ MΦ density in GS9 and CD163+ MΦ exceeded that in BPH. GDF-15+ cell density correlated significantly positively with CD68+ or CD163+ MΦ density in extratumoral areas. Double immunoreactive GDF-15+/CD68+ cells were found as transepithelial migrating MΦ. Stromal CD68+ MΦ lacked GDF-15+. The area of PGP9.5+ innervation was higher in GS9 than in BPH. PGP9.5+ cells, occasionally copositive for GDF-15+, also occurred in the glandular epithelium. In GS6, but not in BPH, GDF-15+, PD-L1+, and CD68+ cells were found in epithelium within luminal excrescences. The degree of extra-/intra-tumoral GDF-15 increases in M1/M2Φ is proposed to be useful to stratify progredient malignancy of PCa. GDF-15 is a potential target for anti-tumor therapy.
Collapse
|
45
|
Clinical Trial Protocol for PSMA-SELECT: A Dutch National Randomised Study of Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography as a Triage Tool for Pelvic Lymph Node Dissection in Patients Undergoing Radical Prostatectomy. Eur Urol Focus 2022; 8:1198-1203. [PMID: 34933831 DOI: 10.1016/j.euf.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/16/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022]
|
46
|
Paulson N, Zeevi T, Papademetris M, Leapman MS, Onofrey JA, Sprenkle PC, Humphrey PA, Staib LH, Levi AW. Prediction of Adverse Pathology at Radical Prostatectomy in Grade Group 2 and 3 Prostate Biopsies Using Machine Learning. JCO Clin Cancer Inform 2022; 6:e2200016. [PMID: 36179281 DOI: 10.1200/cci.22.00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE There is ongoing clinical need to improve estimates of disease outcome in prostate cancer. Machine learning (ML) approaches to pathologic diagnosis and prognosis are a promising and increasingly used strategy. In this study, we use an ML algorithm for prediction of adverse outcomes at radical prostatectomy (RP) using whole-slide images (WSIs) of prostate biopsies with Grade Group (GG) 2 or 3 disease. METHODS We performed a retrospective review of prostate biopsies collected at our institution which had corresponding RP, GG 2 or 3 disease one or more cores, and no biopsies with higher than GG 3 disease. A hematoxylin and eosin-stained core needle biopsy from each site with GG 2 or 3 disease was scanned and used as the sole input for the algorithm. The ML pipeline had three phases: image preprocessing, feature extraction, and adverse outcome prediction. First, patches were extracted from each biopsy scan. Subsequently, the pre-trained Visual Geometry Group-16 convolutional neural network was used for feature extraction. A representative feature vector was then used as input to an Extreme Gradient Boosting classifier for predicting the binary adverse outcome. We subsequently assessed patient clinical risk using CAPRA score for comparison with the ML pipeline results. RESULTS The data set included 361 WSIs from 107 patients (56 with adverse pathology at RP). The area under the receiver operating characteristic curves for the ML classification were 0.72 (95% CI, 0.62 to 0.81), 0.65 (95% CI, 0.53 to 0.79) and 0.89 (95% CI, 0.79 to 1.00) for the entire cohort, and GG 2 and GG 3 patients, respectively, similar to the performance of the CAPRA clinical risk assessment. CONCLUSION We provide evidence for the potential of ML algorithms to use WSIs of needle core prostate biopsies to estimate clinically relevant prostate cancer outcomes.
Collapse
Affiliation(s)
| | - Tal Zeevi
- Yale School of Medicine, New Haven, CT
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Varma M, Williamson S. Clinical utility of histopathology data: urological cancers. J Clin Pathol 2022; 75:506-513. [PMID: 35853652 DOI: 10.1136/jclinpath-2022-208186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022]
Abstract
Cancer datasets recommend standardised reporting of histopathological data items with elements categorised as either core (required) or non-core (recommended), irrespective of the clinical scenario. However, the clinical significance of a data item in an individual case would depend on the clinicopathological setting as well as local management guidelines. A data item that is critical for patient management in one clinical scenario may be largely irrelevant in another patient. Pathologists must understand how their data are used in clinical practice so that they can focus their limited resources appropriately. We briefly review the use of histopathological data in the management of urological cancers, highlighting scenarios where a data item may be of limited clinical utility.
Collapse
Affiliation(s)
- Murali Varma
- Department of Cellular Pathology, University Hospital of Wales, Cardiff, UK
| | - Sean Williamson
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
48
|
Comparison between biparametric and multiparametric MRI diagnosis strategy for prostate cancer in the peripheral zone using PI-RADS version 2.1. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:2905-2916. [PMID: 35622121 DOI: 10.1007/s00261-022-03553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To compare and analyse the diagnostic value of PI-RADS v2.1 when used with biparametric MRI (bpMRI) versus multiparametric MRI (mpMRI), DWI versus T2WI to detect peripheral-zone prostate cancer (pzPCa) and clinically significant peripheral-zone prostate cancer (cs-pzPCa). METHODS The diagnostic efficiencies of mpMRI and bpMRI as well as DWI and T2WI in pzPCa and cs-pzPCa were compared using a PI-RADS score of ≥ 4 as the positive threshold and prostate biopsy and radical prostatectomy as the reference standards. RESULTS A total of 307 prostate cases were included in the study, including 142 in the non-pzPCa group, 165 in the pzPCa group, and 130 in the cs-pzPCa group. The AUCs of mpMRI and bpMRI were 0.717 and 0.733 (P = 0.317), respectively, for the diagnosis of pzPCa (sensitivities: 89.1% and 81.8%; specificities: 54.2% and 64.8%, both P < 0.001) and 0.594 and 0.602 (P = 0.756), respectively, for the diagnosis of cs-pzPCa (sensitivities: 93.1% and 86.2%, P = 0.004; specificities: 25.7% and 34.3%, P = 0.250). The AUCs of DWI and T2WI were 0.733 and 0.749 (P = 0.308), respectively, for the diagnosis of pzPCa (sensitivities: 81.8% and 84.2%; specificities: 64.8% and 66.2%, both P > 0.05) and 0.602 and 0.581 (P = 0.371), respectively, for the diagnosis of cs-pzPCa (sensitivities: 86.2% and 87.7%; specificities: 34.3% and 28.6%, both P > 0.05). CONCLUSION mpMRI and bpMRI as well as DWI and T2WI using PI-RADS v2.1 exhibited similar diagnostic efficiency in pzPCa and cs-pzPCa.
Collapse
|
49
|
Peng YC, Lin YC, Hung YL, Fu CC, Chang MDT, Lin YY, Chou TY. Rapid Histological Assessment of Prostate Specimens in the Three-dimensional Space by Hydrophilic Tissue Clearing and Confocal Microscopy. J Histochem Cytochem 2022; 70:597-608. [PMID: 35912522 PMCID: PMC9393508 DOI: 10.1369/00221554221116936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microscopic examination of biopsied and resected prostatic specimens is the mainstay in the diagnosis of prostate cancer. However, conventional analysis of hematoxylin and eosin (H&E)-stained tissue is time-consuming and offers limited two-dimensional (2D) information. In the current study, we devised a method-termed Prostate Rapid Optical examination for cancer STATus (proSTAT)-for rapid screening of prostate cancer using high-resolution 2D and three-dimensional (3D) confocal images obtained after hydrophilic tissue clearing of 100-µm-thick tissue slices. The results of the proSTAT method were compared with those of traditional H&E stains for the analysis of cores (n=15) obtained from radical prostatectomy specimens (n=5). Gland lumen formation, consistent with Gleason pattern 3, was evident following tracking of multiple optical imaging sections. In addition, 3D rendering allowed visualizing a tubular network of interconnecting branches. Rapid 3D fluorescent labeling of tumor protein p63 accurately distinguished prostate adenocarcinoma from normal tissue and benign lesions. Compared with conventional stains, the 3D spatial and molecular information extracted from proSTAT may significantly increase the amount of available data for pathological assessment of prostate specimens. Our approach is amenable to automation and-subject to independent validation-can find a wide spectrum of clinical and research applications.
Collapse
Affiliation(s)
- Yu-Ching Peng
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Chieh Lin
- JelloX Biotech Inc., Zhubei City, Taiwan.,Department of Power Engineering, National Tsing Hua University, Hsinchu, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Chien-Chung Fu
- Department of Power Engineering, National Tsing Hua University, Hsinchu, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | - Teh-Ying Chou
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
50
|
Diamand R, Mjaess G, Ploussard G, Fiard G, Oderda M, Lefebvre Y, Sirtaine N, Roumeguère T, Peltier A, Albisinni S. Magnetic Resonance Imaging-Targeted Biopsy and Pretherapeutic Prostate Cancer Risk Assessment: a Systematic Review: Biopsie ciblée par Imagerie par résonance magnétique et évaluation pré-thérapeutique du risque de cancer de la prostate : revue systématique. Prog Urol 2022; 32:6S3-6S18. [PMID: 36719644 DOI: 10.1016/s1166-7087(22)00170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Multiparametric magnetic resonance imaging (MRI) has been included in prostate cancer (PCa) diagnostic pathway and may improve disease characterization. The aim of this systematic review is to assess the added value of MRI-targeted biopsy (TB) in pre-therapeutic risk assessment models over existing tools based on systematic biopsy (SB) for localized PCa. EVIDENCE ACQUISITION A systematic search was conducted using Pubmed (Medline), Scopus and ScienceDirect databases according to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement. We included studies through October 2021 reporting on TB in pretherapeutic risk assessment models. EVIDENCE SYNTHESIS We identified 24 eligible studies including 24'237 patients for the systematic review. All included studies were retrospective and conducted in patients undergoing radical prostatectomy. Nine studies reported on the risk of extraprostatic extension, seven on the risk of lymph node invasion, three on the risk of biochemical recurrence and nine on the improvement of PCa risk stratification. Overall, the combination of TB with imaging, clinical and biochemical parameters outperformed current pretherapeutic risk assessment models. External validation studies are lacking for certain endpoints and the absence of standardization among TB protocols, including number of TB cores and fusion systems, may limit the generalizability of the results. CONCLUSION TB should be incorporated in pretherapeutic risk assessment models to improve clinical decision making. Further high-quality studies are required to determine models' generalizability while there is an urgent need to reach consensus on a standardized TB protocol. Long-term outcomes after treatment are also awaited to confirm the superiority of such models over classical risk classifications only based on SB. © 2022 Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- R Diamand
- Department of Urology, Jules Bordet Institute, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium.
| | - G Mjaess
- Department of Urology, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - G Ploussard
- Department of Urology, La Croix du Sud Hospital, IUCT-O, Quint Fonsegrives, France
| | - G Fiard
- Department of Urology, Grenoble Alpes University Hospital, Grenoble INP, CNRS, University Grenoble Alpes, Grenoble, France
| | - M Oderda
- Department of Urology, Città della Salute e della Scienza di Torino, Molinette Hospital, University of Turin, Turin, Italy
| | - Y Lefebvre
- Department of Radiology, Jules Bordet Institute, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - N Sirtaine
- Department of Pathology, Jules Bordet Institute, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - T Roumeguère
- Department of Urology, Jules Bordet Institute, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium; Department of Urology, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - A Peltier
- Department of Urology, Jules Bordet Institute, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - S Albisinni
- Department of Urology, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|