1
|
Sahib AS, Fawzi A, Zabibah RS, Koka NA, Khudair SA, Muhammad FA, Hamad DA. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: A focus on gastric and bladder cancers. Cell Signal 2023; 112:110881. [PMID: 37666286 DOI: 10.1016/j.cellsig.2023.110881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-β, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.
Collapse
Affiliation(s)
- Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Amjid Fawzi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | | | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
2
|
Lu S, Zhang X, Cai Z, Xi Z, Wang F, Wang X, Li W, Dai P. Identification of novel lncRNA prognostic biomarkers and their associated ceRNAs in bladder urothelial carcinoma. J Biochem Mol Toxicol 2023; 37:e23441. [PMID: 37393523 DOI: 10.1002/jbt.23441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/19/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
Bladder urothelial carcinoma (BUCA) is a common malignant tumor with a high rate of metastasis and recurrence. The lack of specific and sensitive biomarkers for the prognostic assessment makes it important to seek alternatives. Recent studies have demonstrated that long noncoding RNAs (lncRNAs) function as competitive endogenous RNAs (ceRNAs) and play an important role in BUCA prognosis. Therefore, this study aimed to establish a prognosis-related lncRNAs-microRNAs (miRNAs)-messenger RNA (mRNA) (pceRNA) network and identify novel prognostic biomarkers. Integrated weighted coexpression analysis, functional clustering, and ceRNA network were used for the prognostic assessment of BUCA. The transcriptome sequencing datasets of lncRNA, miRNA, and mRNA from The Cancer Genome Atlas database were used for the identification of key lncRNAs and construction of the lncRNAs expression signature for prognostic prediction of BUCA patients. Then, 14 differentially expressed lncRNAs (DE-lncRNAs) were identified as candidate prognostic RNAs based on the ceRNAs network and functional clustering. In the Cox regression analysis, two (AC008676.1 and ADAMTS9-AS1) of all DE-lncRNAs were significantly associated with overall survival (OS) of BUCA patients. This two DE-lncRNA signature was significantly correlated with OS and was an independent prognostic factor, which was confirmed in an independent dataset of GSE216037. Moreover, we constructed the pceRNA network that includes 2 DE-lncRNAs, 9 DE-miRNAs, and 10 DE-mRNAs. Pathway enrichment analysis showed that AC008676.1 and ADAMTS9-AS1 are involved in several cancer-related pathways such as proteoglycans in cancer and TGF-beta signaling pathway. The novel-identified DE-lncRNA prognostic signature and the pceRNA network in this study will be valuable risk predictors and diagnostic markers for BUCA.
Collapse
Affiliation(s)
- Sihai Lu
- School of Life Sciences, Northwest University, Xi'an, China
- Shaanxi Lifegen Co. Ltd., Xi'an, China
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | | | - Zhiye Cai
- School of Life Sciences, Northwest University, Xi'an, China
| | - Ziyi Xi
- School of Life Sciences, Northwest University, Xi'an, China
| | - Fei Wang
- School of Life Sciences, Northwest University, Xi'an, China
| | - Xuan Wang
- School of Life Sciences, Northwest University, Xi'an, China
| | - Wenqi Li
- School of Life Sciences, Northwest University, Xi'an, China
| | - Penggao Dai
- School of Life Sciences, Northwest University, Xi'an, China
- Shaanxi Lifegen Co. Ltd., Xi'an, China
| |
Collapse
|
3
|
Weng M, Bai Y, Xu L, Chang C, Teng X. Comparison of PD-L1 detection methods, platforms and reagents in bladder cancer. Ann Diagn Pathol 2022; 60:151986. [DOI: 10.1016/j.anndiagpath.2022.151986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/02/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
|
4
|
POFUT1 mRNA expression as an independent prognostic parameter in muscle-invasive bladder cancer. Transl Oncol 2020; 14:100900. [PMID: 33099185 PMCID: PMC7581975 DOI: 10.1016/j.tranon.2020.100900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/25/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is characterized by high recurrence and rapid progression. Progression is linked to changes in glycan structures and altered levels of glycosyltransferases. The relationship of mRNA expression by glycosyltransferase genes B4GALT1, EXT1, MGAT5B, and POFUT1 to the probability of surviving MIBC after radical cystectomy has not yet been investigated. mRNA expression was analyzed using qRT-PCR in formalin-fixed and paraffin-embedded tumor samples (n = 105; 74% male patients and 26% female patients; median age = 72 years), correlated with histopathological variables, and evaluated by means of multivariable Cox regression analysis regarding to overall survival (OS), cancer-specific survival (CSS), and disease-free survival (DFS). Multivariable Cox regression analysis identified POFUT1 mRNA expression as superior prognostic marker, compared with currently used histological tumor stage methods, for CSS by MIBC patients following radical cystectomy. Thus, the patients with low POFUT1 mRNA were at a 4.9-fold greater risk for cancer-specific death according to the multivariable analysis (p = 0.0001). Low mRNA levels predicted poor survival according to the Kaplan-Meier analysis ((POFUT1:OS p = 0.0014; CSS p = 0.0007; DFS p = 0.0088); (EXT1:OS p = 0.0150; CSS p = 0.0130; DFS p = 0.0286); (B4GALT1:CSS p = 0.0134; DFS p = 0.0493)). A subgroup analysis of patients without lymph node metastasis (pN−; n = 73) indicated that low expression of POFUT1 predicted reduced OS (p = 0.0073), CSS (p = 0.0058,) and DSS (p = 0.0079). Low levels of POFUT1 mRNA are an independent prognostic indicator for OS and CSS in MIBC patients following radical cystectomy. This finding demonstrates the importance of altered glycosylation for the progress of MIBC. Low POFUT1 mRNA expression is associated with a higher risk for overall and cancer-specific death in MIBC treated with RC. MIBC patients with pN0 histology and, decreased POFUT1 mRNA levels showed poor outcome for OS, CSS and, DFS. POFUT1 mRNA is an independent prognostic indicator for OS and CSS in multivariable analysis of MIBC patients following RC.
Collapse
|
5
|
Bednova O, Leyton JV. Targeted Molecular Therapeutics for Bladder Cancer-A New Option beyond the Mixed Fortunes of Immune Checkpoint Inhibitors? Int J Mol Sci 2020; 21:E7268. [PMID: 33019653 PMCID: PMC7582582 DOI: 10.3390/ijms21197268] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
The fact that there are now five immune checkpoint inhibitor (ICI) monoclonal antibodies approved since 2016 that target programmed cell death protein 1 or programmed death ligand-1 for the treatment of metastatic and refractory bladder cancer is an outstanding achievement. Although patients can display pronounced responses that extend survival when treated with ICIs, the main benefit of these drugs compared to traditional chemotherapy is that they are better tolerated and result in reduced adverse events (AEs). Unfortunately, response rates to ICI treatment are relatively low and, these drugs are expensive and have a high economic burden. As a result, their clinical efficacy/cost-value relationship is debated. Long sought after targeted molecular therapeutics have now emerged and are boasting impressive response rates in heavily pre-treated, including ICI treated, patients with metastatic bladder cancer. The antibody-drug conjugates (ADCs) enfortumab vedotin (EV) and sacituzumab govitecan (SG) have demonstrated the ability to provide objective response rates (ORRs) of 44% and 31% in patients with bladder tumor cells that express Nectin-4 and Trop-2, respectively. As a result, EV was approved by the U.S. Food and Drug Administration for the treatment of patients with advanced or metastatic bladder cancer who have previously received ICI and platinum-containing chemotherapy. SG has been granted fast track designation. The small molecule Erdafitinib was recently approved for the treatment of patients with advanced or metastatic bladder cancer with genetic alterations in fibroblast growth factor receptors that have previously been treated with a platinum-containing chemotherapy. Erdafitinib achieved an ORR of 40% in patients including a proportion who had previously received ICI therapy. In addition, these targeted drugs are sufficiently tolerated or AEs can be appropriately managed. Hence, the early performance in clinical effectiveness of these targeted drugs are substantially increased relative to ICIs. In this article, the most up to date follow-ups on treatment efficacy and AEs of the ICIs and targeted therapeutics are described. In addition, drug price and cost-effectiveness are described. For best overall value taking into account clinical effectiveness, price and cost-effectiveness, results favor avelumab and atezolizumab for ICIs. Although therapeutically promising, it is too early to determine if the described targeted therapeutics provide the best overall value as cost-effectiveness analyses have yet to be performed and long-term follow-ups are needed. Nonetheless, with the arrival of targeted molecular therapeutics and their increased effectiveness relative to ICIs, creates a potential novel paradigm based on 'targeting' for affecting clinical practice for metastatic bladder cancer treatment.
Collapse
Affiliation(s)
- Olga Bednova
- Departément de Medécine Nucléaire et Radiobiologie, Faculté de Medécine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada;
| | - Jeffrey V. Leyton
- Departément de Medécine Nucléaire et Radiobiologie, Faculté de Medécine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada;
- Centre d’Imagerie Moleculaire, Centre de Rechcerche, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1H5N4, Canada
| |
Collapse
|
6
|
Yang D, Ma Y, Zhao P, Ma J, He C. Systematic screening of protein-coding gene expression identified HMMR as a potential independent indicator of unfavorable survival in patients with papillary muscle-invasive bladder cancer. Biomed Pharmacother 2019; 120:109433. [PMID: 31568988 DOI: 10.1016/j.biopha.2019.109433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
Papillary and non-papillary are two histological patterns of bladder carcinogenesis and are considered as dual-track oncogenic pathways, which have different genetic alterations. The TCGA-bladder cancer (BLCA) database contains clinicopathological, genomic and survival data from over 400 muscle-invasive bladder cancer patients. In this study, using data from this database, we performed a systematic screening of gene expression to identify the protein-coding gene that might have prognostic value in papillary and non-papillary muscle-invasive bladder cancer (MIBC). The data of patients with primary MIBC in TCGA-BLCA was acquired from the UCSC Xena project (http://xena.ucsc.edu) for re-analysis. By setting |log2 fold change|≥2 and adjusted p value <0.01 as the screening criteria, we found 751 significantly dysregulated genes, including 183 overexpressed and 568 downregulated genes. HMMR was identified as a potential prognostic marker with unique expression. Multivariate analysis showed that its expression was an independent prognostic indicator of shorter progression-free survival (PFS) (HR: 1.400, 95%CI: 1.021-1.920, p = 0.037) in the papillary subtype. ENST00000393915.8 and ENST00000358715.3, two transcripts that contain all 18 exons and encode the full length of HMMR, were significantly upregulated in cancer tissues compared with normal bladder tissues. None of the 17 CpG sites in its DNA locus was relevant to HMMR expression. 26/403 (6.5%) MIBC cases had HMMR gene-level amplification, which was associated with upregulated HMMR expression compared with the copy-neutral and deletion groups. Gene set enrichment analysis (GSEA) in papillary MIBC found that the high HMMR expression group was associated with upregulated genes enriched in multiple gene sets with well-established role in BC development, including G2M checkpoint, E2 F Targets, Myc Targets V1, Myc Targets V2 and Glycolysis. Based on these findings, we infer that HMMR expression might be a specific prognostic marker in terms of PFS in papillary MIBC. DNA amplification might be an important mechanism of its elevation.
Collapse
Affiliation(s)
- Dong Yang
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yan Ma
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Pengcheng Zhao
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jing Ma
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Chaohong He
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
7
|
Afshar S, Seyedabadi S, Saidijam M, Samadi P, Mazaherilaghab H, Mahdavinezhad A. Long Non-coding Ribonucleic Acid as a Novel Diagnosis and Prognosis Biomarker of Bladder Cancer. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2019. [DOI: 10.34172/ajmb.2019.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long non-coding ribonucleic acids (lncRNAs) are the largest group of non-coding RNAs and supposedly have a broad spectrum of diverse functions in normal cellular processes. This study was carried out to review the biological functions of candidate lncRNAs (i.e., H19, MALAT-1, TUG1, UCA-1, MEG-3, HOTAIR, CCAT2, AATBC, and the like) with aberrant expressions that play critical roles in bladder cancer (BC) initiation, progression, and metastasis. A formal narrative review was performed by searching the PubMed database for English articles using a combination of keywords such as "long non-coding RNA", "lncRNA", "cancer", "bladder cancer", "screening", "prognosis", "diagnosis", and "response to therapy". In addition, the existing literature was studied on biological function, aberrant expression, and the clinical applications of candidate lncRNAs in BC. By a better understanding of the molecular mechanisms of lncRNAs, they can be used as biomarkers for tumor signatures in urologic malignancies, which can improve screening, prognosis, diagnosis, and the treatment of BC.
Collapse
Affiliation(s)
- Saeid Afshar
- PhD, Assistant Professor, Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saman Seyedabadi
- MSc, Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- PhD,Full Professor in Medical Biothecnology, Research Center for Molecular Medicine, Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- PhD Student in Medical Biothecnology,Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamzeh Mazaherilaghab
- PhD, Assistant Professor ,School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Mahdavinezhad
- MD, Phd, Assistant Professor, Research Center for Molecular Medicine, Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Zhang G, Wang Q, Yang M, Yuan Q, Dang Y, Sun X, An Y, Dong H, Xie L, Zhu W, Wang Y, Guo X. OSblca: A Web Server for Investigating Prognostic Biomarkers of Bladder Cancer Patients. Front Oncol 2019; 9:466. [PMID: 31275847 PMCID: PMC6593271 DOI: 10.3389/fonc.2019.00466] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022] Open
Abstract
Bladder cancer (BC) is one of the most common malignant tumors in the urinary system. The discovery of prognostic biomarkers is still one of the major challenges to improve clinical treatment of BC patients. In order to assist biologists and clinicians in easily evaluating the prognostic potency of genes in BC patients, we developed a user-friendly Online consensus Survival tool for bladder cancer (OSblca), to analyze the prognostic value of genes. The OSblca includes gene expression profiles of 1,075 BC patients and their respective clinical follow-up information. The clinical follow-up data include overall survival (OS), disease specific survival (DSS), disease free interval (DFI), and progression free interval (PFI). To analyze the prognostic value of a gene, users only need to input the official gene symbol and then click the “Kaplan-Meier plot” button, and Kaplan-Meier curve with the hazard ratio, 95% confidence intervals and log-rank P-value are generated and graphically displayed on the website using default options. For advanced analysis, users could limit their analysis by confounding factors including data source, survival type, TNM stage, histological type, smoking history, gender, lymph invasion, and race, which are set up as optional parameters to meet the specific needs of different researchers. To test the performance of the web server, we have tested and validated its reliability using previously reported prognostic biomarkers, including KPNA2, TP53, and MYC etc., which had their prognostic values validated as reported in OSblca. In conclusion, OSblca is a useful tool to evaluate and discover novel prognostic biomarkers in BC. The web server can be accessed at http://bioinfo.henu.edu.cn/BLCA/BLCAList.jsp.
Collapse
Affiliation(s)
- Guosen Zhang
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Qiang Wang
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Mengsi Yang
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Quan Yuan
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Yifang Dang
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Xiaoxiao Sun
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Yang An
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Huan Dong
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Longxiang Xie
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, CA, United States
| | - Yunlong Wang
- Henan Bioengineering Research Center, Zhengzhou, China
| | - Xiangqian Guo
- Cell Signal Transduction Laboratory, Department of Preventive Medicine, Bioinformatics Center, School of Basic Medical Sciences, School of Software, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| |
Collapse
|
9
|
Novel protein signatures suggest progression to muscular invasiveness in bladder cancer. PLoS One 2018; 13:e0206475. [PMID: 30419021 PMCID: PMC6231613 DOI: 10.1371/journal.pone.0206475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/12/2018] [Indexed: 11/21/2022] Open
Abstract
Patients with bladder cancer need frequent controls over long follow-up time due to high recurrence rate and risk of conversion to muscle invasive cancer with poor prognosis. We identified cancer-related molecular signatures in apparently healthy bladder in patients with subsequent muscular invasiveness during follow-up. Global proteomics of the normal tissue biopsies revealed specific proteome fingerprints in these patients prior to subsequent muscular invasiveness. In these presumed normal samples, we detected modulations of proteins previously associated with different cancer types. This study indicates that analyzing apparently healthy tissue of a cancer-invaded organ may suggest disease progression.
Collapse
|
10
|
Favaretto RL, Zequi SC, Oliveira RAR, Santana T, Costa WH, Cunha IW, Guimarães GC. Tissue-based molecular markers in upper tract urothelial carcinoma and their prognostic implications. Int Braz J Urol 2018; 44:22-37. [PMID: 29135410 PMCID: PMC5815529 DOI: 10.1590/s1677-5538.ibju.2017.0204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/29/2017] [Indexed: 11/22/2022] Open
Abstract
Upper tract urothelial carcinoma (UTUC) is a rare and aggressive disease that is associated with high rates of recurrence and death. Radical nephroureterectomy (RNU) with excision of the bladder cuff is considered the standard of care for high-risk UTUC, whereas kidney-sparing techniques can be indicated for select patients with low-risk disease. There is a significant lack of clinical and pathological prognostic factors for stratifying patients with regard to making treatment decisions. Incorporation of tissue-based molecular markers into prognostic tools could help accurately stratify patients for clinical decision-making in this heterogeneous disease. Although the number of studies on tissue-based markers in UTUC has risen dramatically in the past several years-many of which are based on single centers and small cohorts, with a low level of evidence-many discrepancies remain between their results. Nevertheless, certain biomarkers are promising tools, necessitating prospective multi-institution studies to validate their function.
Collapse
Affiliation(s)
- Ricardo L Favaretto
- Departamento de Cirurgia Pélvica, Serviço de Urologia AC Camargo Cancer Center, São Paulo, Brasil, São Paulo, Brasil
| | - Stênio C Zequi
- Departamento de Cirurgia Pélvica, Serviço de Urologia AC Camargo Cancer Center, São Paulo, Brasil, São Paulo, Brasil
| | - Renato A R Oliveira
- Departamento de Cirurgia Pélvica, Serviço de Urologia AC Camargo Cancer Center, São Paulo, Brasil, São Paulo, Brasil
| | - Thiago Santana
- Departamento de Cirurgia Pélvica, Serviço de Urologia AC Camargo Cancer Center, São Paulo, Brasil, São Paulo, Brasil
| | - Walter H Costa
- Departamento de Cirurgia Pélvica, Serviço de Urologia AC Camargo Cancer Center, São Paulo, Brasil, São Paulo, Brasil
| | - Isabela W Cunha
- Departamento de Patologia, AC Camargo Cancer Center, São Paulo, Brasil
| | - Gustavo C Guimarães
- Departamento de Cirurgia Pélvica, Serviço de Urologia AC Camargo Cancer Center, São Paulo, Brasil, São Paulo, Brasil
| |
Collapse
|
11
|
Araújo JE, López-Fernández H, Diniz MS, Baltazar PM, Pinheiro LC, da Silva FC, Carrascal M, Videira P, Santos HM, Capelo JL. Dithiothreitol-based protein equalization technology to unravel biomarkers for bladder cancer. Talanta 2017; 180:36-46. [PMID: 29332824 DOI: 10.1016/j.talanta.2017.11.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022]
Abstract
This study aimed to assess the benefits of dithiothreitol (DTT)-based sample treatment for protein equalization to assess potential biomarkers for bladder cancer. The proteome of plasma samples of patients with bladder carcinoma, patients with lower urinary tract symptoms (LUTS) and healthy volunteers, was equalized with dithiothreitol (DTT) and compared. The equalized proteomes were interrogated using two-dimensional gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry. Six proteins, namely serum albumin, gelsolin, fibrinogen gamma chain, Ig alpha-1 chain C region, Ig alpha-2 chain C region and haptoglobin, were found dysregulated in at least 70% of bladder cancer patients when compared with a pool of healthy individuals. One protein, serum albumin, was found overexpressed in 70% of the patients when the equalized proteome of the healthy pool was compared with the equalized proteome of the LUTS patients. The pathways modified by the proteins differentially expressed were analyzed using Cytoscape. The method here presented is fast, cheap, of easy application and it matches the analytical minimalism rules as outlined by Halls. Orthogonal validation was done using western-blot. Overall, DTT-based protein equalization is a promising methodology in bladder cancer research.
Collapse
Affiliation(s)
- J E Araújo
- BIOSCOPE Research Group, UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - H López-Fernández
- BIOSCOPE Research Group, UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; SING Research Group, Escuela Superior de Ingeniería Informática, University of Vigo, Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004 Ourense, Spain; Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
| | - M S Diniz
- Biotox Group, UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro M Baltazar
- Serviço de Urologia, Centro Hospital de Lisboa Central, Lisboa, Portugal; Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Luís Campos Pinheiro
- Serviço de Urologia, Centro Hospital de Lisboa Central, Lisboa, Portugal; Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Fernando Calais da Silva
- Serviço de Urologia, Centro Hospital de Lisboa Central, Lisboa, Portugal; Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Mylène Carrascal
- Glycoimmunology Group, UCIBIO, Departamento Ciências da Vida, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paula Videira
- Glycoimmunology Group, UCIBIO, Departamento Ciências da Vida, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - H M Santos
- BIOSCOPE Research Group, UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - J L Capelo
- BIOSCOPE Research Group, UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal.
| |
Collapse
|
12
|
Zhao M, He XL, Teng XD. Understanding the molecular pathogenesis and prognostics of bladder cancer: an overview. Chin J Cancer Res 2016; 28:92-8. [PMID: 27041931 DOI: 10.3978/j.issn.1000-9604.2016.02.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The knowledge of cellular mechanisms in malignances of the bladder has grown exponentially. Molecular technologies have led to the discovery of the molecular pathways distinguishing low-and high-grade urothelial neoplasms. This trend portends the future in which the classification and diagnosis of the bladder tumors through morphologic analysis will be supported by molecular information correlating with prognosis and targeted therapy. This article outlines tumor molecular pathology of bladder cancer with an emphasis on several promising candidate biomarkers that may soon make their transition to the realm of clinical management of bladder cancer.
Collapse
Affiliation(s)
- Ming Zhao
- 1 Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China ; 2 Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiang-Lei He
- 1 Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China ; 2 Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao-Dong Teng
- 1 Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China ; 2 Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
13
|
Molecular Biomarkers in Bladder Cancer: Novel Potential Indicators of Prognosis and Treatment Outcomes. DISEASE MARKERS 2016; 2016:8205836. [PMID: 26924873 PMCID: PMC4746343 DOI: 10.1155/2016/8205836] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
Although many clinical and molecular markers for predicting outcomes in bladder cancer (BC) have been reported, their application in clinical practice remains unclear. Bladder carcinogenesis has two distinct molecular pathways that direct the development of BC. FGFR3 mutations are common in low-grade BC, while TP53 mutation or loss of RB1 is associated with muscle-invasive BC. However, no tissue-based gene markers confirmed by prospective large-scale trials in BC have been used in clinical practice. Micro-RNA analyses of BC tissue revealed that miR-145 and miR-29c⁎ function as tumor suppressors, whereas miR-183 and miR-17-5p function as oncogenic miRNAs. In liquid biopsy, circulating tumor cells (CTC), exosomes, or cell-free RNA is extracted from the peripheral blood samples of cancer patients to analyze cancer prognosis. It was reported that detection of CTC was associated with poor prognostic factors. However, application of liquid biopsy in BC treatment is yet to be explored. Although several cell-free RNAs, such as miR-497 in plasma or miR-214 in urine, could be promising novel circulating biomarkers, they are used only for diagnosing BC as the case that now stands. Here, we discuss the application of novel biomarkers in evaluating and measuring BC outcomes.
Collapse
|
14
|
Ross JS, Wang K, Khaira D, Ali SM, Fisher HAG, Mian B, Nazeer T, Elvin JA, Palma N, Yelensky R, Lipson D, Miller VA, Stephens PJ, Subbiah V, Pal SK. Comprehensive genomic profiling of 295 cases of clinically advanced urothelial carcinoma of the urinary bladder reveals a high frequency of clinically relevant genomic alterations. Cancer 2015; 122:702-11. [PMID: 26651075 DOI: 10.1002/cncr.29826] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the current study, the authors present a comprehensive genomic profile (CGP)-based study of advanced urothelial carcinoma (UC) designed to detect clinically relevant genomic alterations (CRGAs). METHODS DNA was extracted from 40 µm of formalin-fixed, paraffin-embedded sections from 295 consecutive cases of recurrent/metastatic UC. CGP was performed on hybridization-captured, adaptor ligation-based libraries to a mean coverage depth of 688X for all coding exons of 236 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer, using process-matched normal control samples as a reference. CRGAs were defined as GAs linked to drugs on the market or currently under evaluation in mechanism-driven clinical trials. RESULTS All 295 patients assessed were classified with high-grade (International Society of Urological Pathology classification) and advanced stage (stage III/IV American Joint Committee on Cancer) disease, and 294 of 295 patients (99.7%) had at least 1 GA on CGP with a mean of 6.4 GAs per UC (61% substitutions/insertions/deletions, 37% copy number alterations, and 2% fusions). Furthermore, 275 patients (93%) had at least 1 CRGA involving 75 individual genes with a mean of 2.6 CRGAs per UC. The most common CRGAs involved cyclin-dependent kinase inhibitor 2A (CDKN2A) (34%), fibroblast growth factor receptor 3 (FGFR3) (21%), phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) (20%), and ERBB2 (17%). FGFR3 GAs were diverse types and included 10% fusions. ERBB2 GAs were equally divided between amplifications and substitutions. ERBB2 substitutions were predominantly within the extracellular domain and were highly enriched in patients with micropapillary UC (38% of 32 cases vs 5% of 263 nonmicropapillary UC cases; P<.0001). CONCLUSIONS Using a CGP assay capable of detecting all classes of GA simultaneously, an extraordinarily high frequency of CRGA was identified in a large series of patients with advanced UC. Cancer 2016;122:702-711. © 2015 American Cancer Society.
Collapse
Affiliation(s)
- Jeffrey S Ross
- Department of Pathology and Laboratory Medicine, Albany Medical College Albany, New York.,Department of Clinical Development, Foundation Medicine Inc, Cambridge, Massachusetts
| | - Kai Wang
- Department of Clinical Development, Foundation Medicine Inc, Cambridge, Massachusetts
| | - Depinder Khaira
- Department of Clinical Development, Foundation Medicine Inc, Cambridge, Massachusetts
| | - Siraj M Ali
- Department of Clinical Development, Foundation Medicine Inc, Cambridge, Massachusetts
| | - Huge A G Fisher
- Department of Pathology and Laboratory Medicine, Albany Medical College Albany, New York
| | - Badar Mian
- Department of Pathology and Laboratory Medicine, Albany Medical College Albany, New York
| | - Tipu Nazeer
- Department of Pathology and Laboratory Medicine, Albany Medical College Albany, New York
| | - Julia A Elvin
- Department of Clinical Development, Foundation Medicine Inc, Cambridge, Massachusetts
| | - Norma Palma
- Department of Clinical Development, Foundation Medicine Inc, Cambridge, Massachusetts
| | - Roman Yelensky
- Department of Clinical Development, Foundation Medicine Inc, Cambridge, Massachusetts
| | - Doron Lipson
- Department of Clinical Development, Foundation Medicine Inc, Cambridge, Massachusetts
| | - Vincent A Miller
- Department of Clinical Development, Foundation Medicine Inc, Cambridge, Massachusetts
| | - Philip J Stephens
- Department of Clinical Development, Foundation Medicine Inc, Cambridge, Massachusetts
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sumanta K Pal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Cancer Center, Duarte, California
| |
Collapse
|
15
|
Abstract
OPINION STATEMENT Advanced bladder cancer (ABC) is an aggressive malignancy with a poor prognosis. For the last 30 years, the standard of care for this disease has consisted of combination chemotherapy with a platinum-containing regimen as first-line therapy. Cisplatin is the most active cytotoxic agent against bladder cancer, but because of competing comorbidities, many patients are ineligible for this agent and instead receive carboplatin. The two-drug regimen of cisplatin and gemcitabine was found to be better tolerated and have comparable efficacy as the four-drug regimen of methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) in a randomized study of patients with advanced disease. Therefore, cisplatin (or carboplatin) and gemcitabine is the most commonly used first-line regimen in this setting. No agents have been approved by the Food and Drug Administration (FDA) for second-line therapy in ABC. If patients are eligible for additional systemic treatment at the time of progression, options include single-agent therapy such as a taxane or pemetrexed, though given the lack of standard approaches participation in a clinical trial should be strongly encouraged. Recent molecular characterization of ABC reveals significant genetic heterogeneity and actionable genomic alterations in the majority of tumors. Emerging therapies may effectively target known molecular drivers of ABC, including the FGFR2, EGFR/HER2, VEGF, MET, and PI3/AKT/mTOR pathways. Reports of dramatic and prolonged responses to targeted therapy provide additional support for the use of genome sequencing in the rationale selection of treatment for subsets of patients. The current focus of clinical trial development is to design molecularly driven studies that "match" tumors with driver mutations and appropriate targeted therapies rather than a "one-size-fits-all" approach based on clinical and pathologic parameters of disease. The hope of patients and clinicians alike is that this therapeutic approach combined with novel agents may usher in a new era of effective treatments for patients with ABC.
Collapse
|
16
|
Magiorkinis E, Diamantis A. The fascinating story of urine examination: From uroscopy to the era of microscopy and beyond. Diagn Cytopathol 2015; 43:1020-36. [DOI: 10.1002/dc.23370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 06/27/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022]
|