1
|
Cao L, Tian W, Zhao Y, Song P, Zhao J, Wang C, Liu Y, Fang H, Liu X. Gene Mutations in Gastrointestinal Stromal Tumors: Advances in Treatment and Mechanism Research. Glob Med Genet 2024; 11:251-262. [PMID: 39176108 PMCID: PMC11341198 DOI: 10.1055/s-0044-1789204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Although gastrointestinal stromal tumors (GISTs) has been reported in patients of all ages, its diagnosis is more common in elders. The two most common types of mutation, receptor tyrosine kinase (KIT) and platelet-derived growth factor receptor a (PDGFRA) mutations, hold about 75 and 15% of GISTs cases, respectively. Tumors without KIT or PDGFRA mutations are known as wild type (WT)-GISTs, which takes up for 15% of all cases. WT-GISTs have other genetic alterations, including mutations of the succinate dehydrogenase and serine-threonine protein kinase BRAF and neurofibromatosis type 1. Other GISTs without any of the above genetic mutations are named "quadruple WT" GISTs. More types of rare mutations are being reported. These mutations or gene fusions were initially thought to be mutually exclusive in primary GISTs, but recently it has been reported that some of these rare mutations coexist with KIT or PDGFRA mutations. The treatment and management differ according to molecular subtypes of GISTs. Especially for patients with late-stage tumors, developing a personalized chemotherapy regimen based on mutation status is of great help to improve patient survival and quality of life. At present, imatinib mesylate is an effective first-line drug for the treatment of unresectable or metastatic recurrent GISTs, but how to overcome drug resistance is still an important clinical problem. The effectiveness of other drugs is being further evaluated. The progress in the study of relevant mechanisms also provides the possibility to develop new targets or new drugs.
Collapse
Affiliation(s)
- Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Wencong Tian
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Yongjie Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Peng Song
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Jia Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Chuntao Wang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Hong Fang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xingqiang Liu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Chaurasia A, Turkbey EB, Firouzabadi FD, Singh S, Samimi S, Gopal N, Millo C, Ball MW, Linehan WM, Malayeri AA. Imaging finding of renal masses associated with pathogenic variation in succinate dehydrogenase subunit B gene. Clin Imaging 2024; 115:110280. [PMID: 39260085 DOI: 10.1016/j.clinimag.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC) is a newly defined, rare subtype of renal cancer, associated with pathogenic variations in the Succinate Dehydrogenase Subunit B (SDHB) gene. Our aim is to investigate the imaging findings of SDHB-associated renal tumors, utilizing cross-sectional and FDG-PET imaging in patients with pathogenic variations in SDHB gene, to facilitate accurate tumor characterization. METHODS Twenty SDH-deficient tumors from 16 patients with pathogenic variations in SDHB gene were retrospectively evaluated using cross-sectional and FDG-PET imaging. Clinical findings such as demographics, family history, extra-renal findings and metastases were recorded. Tumor imaging characteristics on CT/MRI included were laterality, size, homogeneity, morphology, margins, internal content, T1/T2 signal intensity, enhancement features, and restricted diffusion. RESULTS Sixteen patients (median age 31 years, IQR 19-41, 8 males) were identified with 68.8 % of patients having a known family history of SDHB variation. 81.3 % of lesions were solitary and majority were solid (86.7 % on CT, 87.5 % on MRI) with well-defined margins in >62.5 % of lesions, without evidence of internal fat, calcifications, or vascular invasion. 100 % of lesions demonstrated restricted diffusion and avid enhancement, with degree >75 % for most lesions on CT and MRI. On FDG-PET, all renal masses showed increased radiotracer uptake. 43.8 % of patients demonstrated extra-renal manifestations and 43.8 % had distant metastasis. CONCLUSION SDHB-associated RCC is predominantly noted in young patients with no gender predilection. On imaging, SDH-deficient RCC are frequently unilateral, solitary, and solid with well-defined margins demonstrating avid enhancement with variability in enhancement pattern and showing restricted diffusion.
Collapse
Affiliation(s)
- Aditi Chaurasia
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bldg. 10, 10 Center Drive, Bethesda, MD 20892, USA
| | - Evrim B Turkbey
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Fatemeh Dehghani Firouzabadi
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Shiva Singh
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Safa Samimi
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Nikhil Gopal
- Depatment of Urology, College of Medicine, University of Tennessee, 910 Madison Avenue, Memphis, TN 38163, USA
| | - Corina Millo
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Mark W Ball
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bldg. 10, 10 Center Drive, Bethesda, MD 20892, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bldg. 10, 10 Center Drive, Bethesda, MD 20892, USA
| | - Ashkan A Malayeri
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
潘 秀, 卫 昱, 隋 晓, 尹 晓, 郑 林, 曾 浩, 周 桥, 陈 铌. [Succinate Dehydrogenase-Deficient Renal Cell Carcinoma: Clinicopathological Analysis of 11 Cases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1099-1106. [PMID: 39507957 PMCID: PMC11536229 DOI: 10.12182/20240960101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 11/08/2024]
Abstract
Objective To investigate the clinicopathological features, immunophenotypes, molecular genetic alterations, and prognosis of succinate dehydrogenase-deficient renal cell carcinoma (SDH-RCC). Methods A total of 11 cases of SDH-RCC diagnosed at West China Hospital, Sichuan University between 2016 and 2023 were selected for clinicopathological, immunohistochemical, and DNA sequencing analyses. Results Among the 11 cases of SDH-RCC, there were 5 male patients and 6 female patients. The patients' ages ranged from 12 to 71 years, with an average age of 39.7 years. Among them, 5 patients had tumors located in the right kidney, 5 had tumors located in the left kidney, and 1 patient had bilateral tumors. Microscopic observation showed that the tumor cells of the SDH-RCC patients displayed a wide spectrum of structures, forming sheet-like, nested, and glandular structures. In addition, tumor cells in papillary structures were observed in some cases. The tumor cells had abundant cytoplasm, was eosinophilic, and contained flocculent materials. Intracytoplasmic vacuolations were observed in some of the cells. Among all the patients, 7 (7/11, 63.6%) showed typical low-grade features (grade 1-2 according to the International Society of Urological Pathology [ISUP]/WHO 2016 classification), and 4 (4/11, 36.4%) showed high-grade features (grade 3 according to the ISUP/WHO 2016 classification). The average ages of patients with low-grade and high-grade features were 32.1 years and 58.0 years, respectively. Immunohistochemical staining of all 11 cases demonstrated negative results for SDHB and cytokeratin 7 (CK7), and positive staining results for paired box 8 (PAX-8), fumarate hydratase (FH), and epithelial membrane antigen (EMA). Their Ki-67 index was 1%-30%. In one case, the loss of SDHB expression was also accompanied by a loss of SDHA expression. Sanger sequencing was performed to examine all the exons of SDHB in 7 cases. One case showed a frameshift mutation, c.236Tdel (p.K80Rfs*), and another case harbored a missense mutation, c.725G>A (p.Arg242His). In another case, next generation sequencing revealed that large fragments of SDHB (Exon 4-8 del) were missing. Follow-up data were available for 10 patients. The follow-up time ranged from 4 to 138 months, with the average being 32.8 months, and all patients survived. Metastasis and recurrence were reported in 5 cases, with 3 of them showing high-grade features and 2 showing low-grade features. Conclusion SDH-RCC is rare and the patients demonstrate a relatively young age of onsets. Patients may present with bilateral tumors. Tumors with low-grade features usually occur in young patients, with their Ki-67 index usually being lower than 5%. Individual cases may experience tumor recurrence and metastasis over a long period of follow-up. Tumors with high-grade features tend to occur in older patients who have a higher Ki-67 index, and who are prone to recurrence and metastasis. Negative immunohistochemical staining results for SDHB can assist in tumor diagnosis, but the loss of SDHB protein expression does not necessarily lead to the detection of SDHB gene mutation.
Collapse
Affiliation(s)
- 秀懿 潘
- 四川大学华西医院 病理科 (成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 昱燕 卫
- 四川大学华西医院 病理科 (成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 晓晨 隋
- 四川大学华西医院 病理科 (成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 晓雪 尹
- 四川大学华西医院 病理科 (成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 林茂 郑
- 四川大学华西医院 病理科 (成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 浩 曾
- 四川大学华西医院 病理科 (成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 桥 周
- 四川大学华西医院 病理科 (成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 铌 陈
- 四川大学华西医院 病理科 (成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Dai Z, Wang X, Zhang Y, Qiu Y, Liu J. A highly malignant succinate dehydrogenase A‑deficient renal cell carcinoma with bone metastasis misdiagnosed as hereditary leiomyomatosis and renal cell carcinoma: A case report. Oncol Lett 2024; 28:351. [PMID: 38872860 PMCID: PMC11170261 DOI: 10.3892/ol.2024.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC) is an autosomal dominant syndrome caused by heterozygous pathogenic germline variants of the SDH gene. SDH mutations are associated with an increased risk of developing RCC, although studies describing SDH-deficient RCC are currently limited. The present study reported a case of SDH-deficient RCC with high malignancy and rare bone metastasis. The patient was diagnosed with a right renal mass through B-mode ultrasound imaging and showed a carcinoma embolus in the right renal vein and inferior vena cava through kidney contrast-enhanced computed tomography. A whole-body bone scan showed radionuclide accumulation in the upper end of the left humerus, which indicated possible pathological bone destruction. As a result, surgical resection was performed. The postoperative pathology indicated a high-grade RCC and although the specific classification remained uncertain, hereditary leiomyomatosis and RCC was suspected. Subsequently, a germline mutation of the succinate dehydrogenase complex flavoprotein subunit A gene was identified through high-throughput sequencing (c.1A>G, p. Met1?) and immunohistochemistry demonstrated the loss of succinate dehydrogenase complex flavoprotein subunit B expression. Postoperatively, the patient underwent radiotherapy and targeted therapy. After 6 months of follow-up treatment, there was no indication of recurrence or metastasis on thoracoabdominal CT and whole-body bone scintigraphy. Based on the present report, germline screening should potentially be encouraged in early-onset patients as family history or pathological results may not provide sufficient information for the early, differential diagnosis of SDH-deficient RCC.
Collapse
Affiliation(s)
- Zhicheng Dai
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaohui Wang
- Department of Nursing, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yinghao Zhang
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Ying Qiu
- Department of Pathology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Jie Liu
- Department of Urology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
5
|
Song L, Xue J, Xu L, Cheng L, Zhang Y, Wang X. Muscle-specific PGC-1α modulates mitochondrial oxidative stress in aged sarcopenia through regulating Nrf2. Exp Gerontol 2024; 193:112468. [PMID: 38801840 DOI: 10.1016/j.exger.2024.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Aged sarcopenia is characterized by loss of skeletal muscle mass and strength, and mitochondrial dysregulation in skeletal myocyte is considered as a major factor. Here, we aimed to analyze the effects of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) on mitochondrial reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) in aged skeletal muscles. METHODS C2C12 cells were stimulated by 50 μM 7β-hydroxycholesterol (7β-OHC) to observe the changes of cellular ROS, mitochondrial ROS, and expression of PGC-1α and Nrf2. Different PGC-1α expression in cells was established by transfection with small interfering RNA (siRNA) or plasmids overexpressing PGC-1α (pEX-3-PGC-1α). The effects of different PGC-1α expression on cellular ROS, mitochondrial ROS and Nrf2 expression were measured in cells. Wild type (WT) mice and PGC-1α conditional knockout (CKO) mice were used to analyze the effects of PGC-1α on aged sarcopenia and expression of Nrf2 and CD38 in gastrocnemius muscles. Diethylmaleate, a Nrf2 activator, was used to analyze the connection between PGC-1α and Nrf2 in cells and in mice. RESULTS In C2C12 cells, the expressions of PGC-1α and Nrf2 were declined by the 7β-OHC treatment or PGC-1α silence. Moreover, PGC-1α silence increased the harmful ROS and decreased the Nrf2 protein expression in the 7β-OHC-treated cells. PGC-1α overexpression decreased the harmful ROS and increased the Nrf2 protein expression in the 7β-OHC-treated cells. Diethylmaleate treatment decreased the harmful ROS in the 7β-OHC-treated or PGC-1α siRNA-transfected cells. At the same age, muscle-specific PGC-1α deficiency aggravated aged sarcopenia, decreased Nrf2 expression and increased CD38 expression in gastrocnemius muscles compared with the WT mice. Diethylmaleate treatment improved the muscle function and decreased the CD38 expression in the old two genotypes. CONCLUSIONS Our study demonstrated that PGC-1α modulated mitochondrial oxidative stress in aged sarcopenia through regulating Nrf2.
Collapse
Affiliation(s)
- Lei Song
- Geriatric Medicine Department, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Jianfeng Xue
- Geriatric Cardiovascular Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Lingfen Xu
- General Medicine Department, Qinghai Provincial Hospital, Xining 810000, China
| | - Lin Cheng
- Geriatric Medicine Department, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yongxia Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai 264000, China.
| | - Xiaojun Wang
- Geriatric Medicine Department, Yantai Yuhuangding Hospital, Yantai 264000, China.
| |
Collapse
|
6
|
Fu Y, Tao L, Wang X, Wang B, Qin W, Song L. PGC-1α participates in regulating mitochondrial function in aged sarcopenia through effects on the Sestrin2-mediated mTORC1 pathway. Exp Gerontol 2024; 190:112428. [PMID: 38604253 DOI: 10.1016/j.exger.2024.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Mitochondrial dysregulation in skeletal myocytes is considered a major factor in aged sarcopenia. In this study, we aimed to study the effects of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) on Sestrin2-mediated mechanistic target of rapamycin complex 1 (mTORC1) in aged skeletal muscles. METHODS C2C12 myoblasts were stimulated by 50 μM 7β-hydroxycholesterol (7β-OHC) to observe the changes of DNA damage, mitochondrial membrane potential (Δψm), mitochondrial ROS and PGC-1α protein. The PGC-1α silence in the C2C12 cells was established by siRNA transfection. The levels of DNA damage, Δψm, mitochondrial ROS, Sestrin2 and p-S6K1/S6K1 proteins were observed after the PGC-1α silence in the C2C12 cells. Recombinant Sestrin2 treatment was used to observe the changes of DNA damage, Δψm, mitochondrial ROS and p-S6K1/S6K1 protein in the 7β-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. Wild-type (WT) mice and muscle-specific PGC-1α conditional knockout (MKO) mice, including young and old, were used to analyse the effects of PGC-1α on muscle function and the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles. Recombinant Sestrin2 was administrated to analyse its effects on muscle function in the old WT mice and old MKO mice. RESULTS 7β-OHC treatment induced DNA damage, mitochondrial dysfunction and decrease of PGC-1α protein in the C2C12 cells. PGC-1α silence also induced DNA damage and mitochondrial dysfunction in the C2C12 cells. Additionally, PGC-1α silence or 7β-OHC treatment decreased the levels of Sestrin2 and p-S6K1/S6K1 protein in the C2C12 cells. Recombinant Sestrin2 treatment significantly improved the DNA damage and mitochondrial dysfunction in the 7β-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. At the same age, muscle-specific PGC-1α deficiency aggravated aged sarcopenia and decreased the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles when compared to the WT mice. Recombinant Sestrin2 treatment improved muscle function and increased p-S6K1 levels in the old two genotypes. CONCLUSION This research demonstrates that PGC-1α participates in regulating mitochondrial function in aged sarcopenia through effects on the Sestrin2-mediated mTORC1 pathway.
Collapse
Affiliation(s)
- Yimin Fu
- Geriatric Medicine Department, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Lei Tao
- Department of Rheumatology&Immunology, the Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
| | - Xiaojun Wang
- Geriatric Medicine Department, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Binyou Wang
- Department of Geriatrics, Second People's Hospital of Chengdu, Chengdu 610000, China
| | - Weilin Qin
- Department of Geriatrics, Qinghai Provincial People's Hospital, Xi'ning 810001, China.
| | - Lei Song
- Geriatric Medicine Department, Yantai Yuhuangding Hospital, Yantai 264000, China.
| |
Collapse
|
7
|
Golozar M, Motlagh AV, Mahdevar M, Peymani M, InanlooRahatloo K, Ghaedi K. TBX15 and SDHB expression changes in colorectal cancer serve as potential prognostic biomarkers. Exp Mol Pathol 2024; 136:104890. [PMID: 38378070 DOI: 10.1016/j.yexmp.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/07/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Alterations in the expression of certain genes could be associated with both patient mortality rates and drug resistance. This study aimed to identify genes in colorectal cancer (CRC) that potentially serve as hub genes influencing patient survival rates. RNA-Seq data were downloaded from the cancer genome atlas database, and differential expression analysis was performed between tumors and healthy controls. Through the utilization of univariate and multivariate Cox regression analyses, in combination with the MCODE clustering module, the genes whose expression changes were related to survival rate and the hub genes related to them were identified. The mortality risk model was computed using the hub genes. CRC samples and the RT-qPCR method were utilized to confirm the outcomes. PharmacoGx data were employed to link the expression of potential genes to medication resistance and sensitivity. The results revealed the discovery of seven hub genes, which emerged as independent prognostic markers. These included HOXC6, HOXC13, HOXC8, and TBX15, which were associated with poor prognosis and overexpression, as well as SDHB, COX5A, and UQCRC1, linked to favorable prognosis and downregulation. Applying the risk model developed with the mentioned genes revealed a markedly higher incidence of deceased patients in the high-risk group compared to the low-risk group. RT-qPCR results indicated a decrease in SDHB expression and an elevation in TBX15 levels in cancer samples relative to adjacent healthy tissue. Also, PharmacoGx data indicated that the expression level of SDHB was correlated with drug sensitivity to Crizotinib and Dovitinib. Our findings highlight the potential association between alterations in the expression of genes such as HOXC6, HOXC13, HOXC8, TBX15, SDHB, COX5A, and UQCRC1 and increased mortality rates in CRC patients. As revealed by the PPI network, these genes exhibited the most connections with other genes linked to survival.
Collapse
Affiliation(s)
- Melika Golozar
- Kish International Campus, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Valipour Motlagh
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8165131378, Iran
| | - Mohammad Mahdevar
- Genius Gene, Genetics and Biotechnology Company, Tehran, Iran; Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Kolsoum InanlooRahatloo
- Kish International Campus, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
8
|
Cao K, Yuan W, Hou C, Wang Z, Yu J, Wang T. Hypoxic Signaling Pathways in Carotid Body Tumors. Cancers (Basel) 2024; 16:584. [PMID: 38339335 PMCID: PMC10854715 DOI: 10.3390/cancers16030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Carotid body tumors (CBTs) are rare tumors with a 1-2 incidence per 100,000 individuals. CBTs may initially present without apparent symptoms, and symptoms begin to arise since tumors grow bigger to compress surrounding tissue, such as recurrent laryngeal nerve and esophagus. Also, the etiology of CBTs remains unclear since it is more likely to occur in those who live in high-altitude areas or suffer from chronic hypoxic diseases such as COPD. SDH mutations and familial inheritance have been reported to be related to CBTs. SDH complexes play crucial roles in aerobic respiration, and SDH mutations in CBTs have been reported to be associated with hypoxia. Hypoxic signaling pathways, specifically hypoxic markers, have attracted more research attention in tumor exploration. However, the existing literature on these signaling and markers lacks a systematic review. Also, therapeutic approaches in CBTs based on hypoxic signaling are rarely used in clinics. In this review, we concluded the role of hypoxic signaling and markers and their potential implications in the initiation and progression of CBTs. Our findings underscore the involvement of the SDH family, the HIF family, VEGFs, and inflammatory cytokines (ICs) in tumorigenesis and treatment. Of particular interest is the role played by SDHx, which has recently been linked to oxygen sensing through mutations leading to hereditary CBTs. Among the SDH family, SDHB and SDHD exhibit remarkable characteristics associated with metastasis and multiple tumors. Besides SDH mutations in CBTs, the HIF family also plays crucial roles in CBTs via hypoxic signaling pathways. The HIF family regulates angiogenesis during mammalian development and tumor growth by gene expression in CBTs. HIF1α could induce the transcription of pyruvate dehydrogenase kinase 1 (PDK1) to inhibit pyruvate dehydrogenase kinase (PDH) by inhibiting the TCA cycle. Then, carotid body cells begin to hyperplasia and hypertrophy. At the same time, EPAS1 mutation, an activating mutation, could decrease the degradation of HIF2α and result in Pacak-Zhuang syndrome, which could result in paraganglioma. HIFs can also activate VEGF expression, and VEGFs act on Flk-1 to control the hyperplasia of type I cells and promote neovascularization. ICs also play a pivotal signaling role within the CB, as their expression is induced under hypoxic conditions to stimulate CB hyperplasia, ultimately leading to CBTs detecting hypoxic areas in tumors, and improving the hypoxic condition could enhance photon radiotherapy efficacy. Moreover, this review offers valuable insights for future research directions on understanding the relationship between hypoxic signaling pathways and CBTs.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China; (K.C.); (W.Y.); (C.H.); (Z.W.); (J.Y.)
| |
Collapse
|
9
|
Brown AM, McCarthy HE. The Effect of CoQ10 supplementation on ART treatment and oocyte quality in older women. HUM FERTIL 2023; 26:1544-1552. [PMID: 37102567 DOI: 10.1080/14647273.2023.2194554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/17/2023] [Indexed: 04/28/2023]
Abstract
A significant problem associated with assisted reproductive technologies (ART) is recurrent treatment failure which can be attributed to the age-associated decline in oocyte quality. Co-enzyme Q10 (CoQ10) is an antioxidant and essential component of the mitochondrial electron transport chain. It is reported that de novo CoQ10 production declines with ageing and coincides with age-related decline in fertility, leading to CoQ10 supplementation being advocated to enhance response to ovarian stimulation and improve oocyte quality. CoQ10 supplementation was found to improve fertilization rates, embryo maturation rates and embryo quality when used before and during in vitro fertilization (IVF) and in vitro maturation (IVM) treatment in women aged 31 and over. Regarding oocyte quality, CoQ10 was able to reduce high rates of chromosomal abnormalities and oocyte fragmentation, as well as improve mitochondrial function. Proposed mechanisms of CoQ10 function include restoration of reactive oxygen species imbalance, preventing DNA damage and oocyte apoptosis, as well as restoration of Krebs cycle downregulation from ageing. In this literature review, we provide an overview of the use of CoQ10 in improving the success of IVF and IVM in older women, and additionally assess the impact of CoQ10 on oocyte quality and discuss potential mechanisms of action by CoQ10 on the oocyte.
Collapse
Affiliation(s)
- Alexandria M Brown
- Cardiff University School of Biosciences, Cardiff University, Cardiff, UK
| | - Helen E McCarthy
- Cardiff University School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Liu C, Zhou D, Yang K, Xu N, Peng J, Zhu Z. Research progress on the pathogenesis of the SDHB mutation and related diseases. Biomed Pharmacother 2023; 167:115500. [PMID: 37734265 DOI: 10.1016/j.biopha.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
With the improvement of genetic testing technology in diseases in recent years, researchers have a more detailed and clear understanding of the source of cancers. Succinate dehydrogenase B (SDHB), a mitochondrial gene, is related to the metabolic activities of cells and tissues throughout the body. The mutations of SDHB have been found in pheochromocytoma, paraganglioma and other cancers, and is proved to affect the occurrence and progress of those cancers due to the important structural functions. The importance of SDHB is attracting more and more attention of researchers, however, reviews on the structure and function of SDHB, as well as on the mechanism of its carcinogenesis is inadequate. This paper reviews the relationship between SDHB mutations and related cancers, discusses the molecular mechanism of SDHB mutations that may lead to tumor formation, analyzes the mutation spectrum, structural domains, and penetrance of SDHB and sorts out some of the previously discovered diseases. For the patients with SDHB mutation, it is recommended that people in SDHB mutation families undergo regular genetic testing or SDHB immunohistochemistry (IHC). The purpose of this paper is hopefully to provide some reference and help for follow-up researches on SDHB.
Collapse
Affiliation(s)
- Chang Liu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Dayang Zhou
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Kexin Yang
- Department of Surgical oncology, Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, 650118, China
| | - Ning Xu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Jibang Peng
- Department of Surgical oncology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Zhu Zhu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China.
| |
Collapse
|
11
|
Zhang W, Lang R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front Cell Dev Biol 2023; 11:1266973. [PMID: 37808079 PMCID: PMC10556696 DOI: 10.3389/fcell.2023.1266973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Succinate serves as an essential circulating metabolite within the tricarboxylic acid (TCA) cycle and functions as a substrate for succinate dehydrogenase (SDH), thereby contributing to energy production in fundamental mitochondrial metabolic pathways. Aberrant changes in succinate concentrations have been associated with pathological states, including chronic inflammation, ischemia/reperfusion (IR) injury, and cancer, resulting from the exaggerated response of specific immune cells, thereby rendering it a central area of investigation. Recent studies have elucidated the pivotal involvement of succinate and SDH in immunity beyond metabolic processes, particularly in the context of cancer. Current scientific endeavors are concentrated on comprehending the functional repercussions of metabolic modifications, specifically pertaining to succinate and SDH, in immune cells operating within a hypoxic milieu. The efficacy of targeting succinate and SDH alterations to manipulate immune cell functions in hypoxia-related diseases have been demonstrated. Consequently, a comprehensive understanding of succinate's role in metabolism and the regulation of SDH is crucial for effectively targeting succinate and SDH as therapeutic interventions to influence the progression of specific diseases. This review provides a succinct overview of the latest advancements in comprehending the emerging functions of succinate and SDH in metabolic processes. Furthermore, it explores the involvement of succinate, an intermediary of the TCA cycle, in chronic inflammation, IR injury, and cancer, with particular emphasis on the mechanisms underlying succinate accumulation. This review critically assesses the potential of modulating succinate accumulation and metabolism within the hypoxic milieu as a means to combat various diseases. It explores potential targets for therapeutic interventions by focusing on succinate metabolism and the regulation of SDH in hypoxia-related disorders.
Collapse
Affiliation(s)
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Feng Y, Tang M, Xiang J, Liu P, Wang Y, Chen W, Fang Z, Wang W. Genome-wide characterization of L-aspartate oxidase genes in wheat and their potential roles in the responses to wheat disease and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1210632. [PMID: 37476177 PMCID: PMC10354440 DOI: 10.3389/fpls.2023.1210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
L-aspartate oxidase (AO) is the first enzyme in NAD+ biosynthesis and is widely distributed in plants, animals, and microorganisms. Recently, AO family members have been reported in several plants, including Arabidopsis thaliana and Zea mays. Research on AO in these plants has revealed that AO plays important roles in plant growth, development, and biotic stresses; however, the nature and functions of AO proteins in wheat are still unclear. In this study, nine AO genes were identified in the wheat genome via sequence alignment and conserved protein domain analysis. These nine wheat AO genes (TaAOs) were distributed on chromosomes 2, 5, and 6 of sub-genomes A, B, and D. Analysis of the phylogenetic relationships, conserved motifs, and gene structure showed that the nine TaAOs were clustered into three groups, and the TaAOs in each group had similar conserved motifs and gene structure. Meanwhile, the subcellular localization analysis of transient expression mediated by Agrobacterium tumetioniens indicated that TaAO3-6D was localized to chloroplasts. Prediction of cis-elements indicated that a large number of cis-elements involved in responses to ABA, SA, and antioxidants/electrophiles, as well as photoregulatory responses, were found in TaAO promoters, which suggests that the expression of TaAOs may be regulated by these factors. Finally, transcriptome and real-time PCR analysis showed that the expression of TaAOs belonging to Group III was strongly induced in wheat infected by F. graminearum during anthesis, while the expression of TaAOs belonging to Group I was heavily suppressed. Additionally, the inducible expression of TaAOs belonging to Group III during anthesis in wheat spikelets infected by F. graminearum was repressed by ABA. Finally, expression of almost all TaAOs was induced by exposure to cold treatment. These results indicate that TaAOs may participate in the response of wheat to F. graminearum infection and cold stress, and ABA may play a negative role in this process. This study lays a foundation for further investigation of TaAO genes and provides novel insights into their biological functions.
Collapse
Affiliation(s)
- Yanqun Feng
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Mingshuang Tang
- Nanchong Academy of Agriculture Sciences, Nanchong, Sichuan, China
| | - Junhui Xiang
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Pingu Liu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Youning Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China
| | - Wang Chen
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Zhengwu Fang
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenli Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Qi L, Li Y, Dong Y, Ma S, Li G. Integrated metabolomics and transcriptomics reveal glyphosate based-herbicide induced reproductive toxicity through disturbing energy and nucleotide metabolism in mice testes. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37087751 DOI: 10.1002/tox.23808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Glyphosate is a widely used herbicide that has deleterious effects on animal reproduction. However, details regarding the systematic mechanisms of glyphosate-induced reproductive toxicity are limited. This study aimed to investigate the toxic effects of glyphosate-based herbicide (GBH) on reproduction in mice exposed to 0 (control group), 50 (low-dose group), 250 (middle-dose group), and 500 (high-dose group) mg/kg/day GBH for 30 days. Toxicological parameters, metabolomics, and transcriptomics were performed to reveal GBH-induced reproductive toxicity. Our findings demonstrated that GBH exposure damaged mitochondrial pyknosis and the nuclear membrane of spermatogonia. GBH triggered a significant increase in sperm malformations in the high-dose group. Omics data showed that GBH impaired the Krebs cycle and respiratory chain, blocked pyruvate metabolism and glycolysis/gluconeogenesis, and influenced the pentose phosphate pathway and nucleotide synthesis and metabolism. Overall, the multi-omics results revealed systematic and comprehensive evidence of the adverse effects of GBH exposure, providing new insights into the reproductive toxicity of organophosphorus pesticides.
Collapse
Affiliation(s)
- Lei Qi
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yupeng Li
- Physical Examination Center, the Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yanmei Dong
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Shuli Ma
- Public Health Experimental Center, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Gang Li
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
14
|
Mimma R, Anna C, Matteo B, Gaetano P, Carlo G, Guido M, Camillo P. Clinico-pathological implications of the 2022 WHO Renal Cell Carcinoma classification. Cancer Treat Rev 2023; 116:102558. [PMID: 37060647 DOI: 10.1016/j.ctrv.2023.102558] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
The new WHO classification of urogenital tumours published in 2022, contains significant revisions upon the previous 2016 version regarding Renal Cell Carcinoma (RCC). While the most common histotype remains almost untouched, some of the main novelties concerns papillary RCC and oncocytic neoplasms. The main change is the introduction of a new category of molecularly-defined RCC, which includes TFE3-rearranged RCC, TFEB-rearranged, and TFEB-amplified RCC, FH-deficient RCC, SDH-deficient RCC, ALK-rearranged RCC, ELOC (formerly TCEB1)-mutated RCC, SMARCB1 (INI1)-deficient RCC. In this paper we analyze the current knowledge on emerging entities and molecularly-defined RCC to assess whether the current pathological classification offers the oncologist the possibility of selecting more specific and personalized treatments, from both those currently available, as well as those that will soon be available.
Collapse
Affiliation(s)
- Rizzo Mimma
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy.
| | - Caliò Anna
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy
| | - Brunelli Matteo
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy
| | - Pezzicoli Gaetano
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari "A. Moro", Bari, Italy
| | - Ganini Carlo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari "A. Moro", Bari, Italy
| | - Martignoni Guido
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy; Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Verona, Italy
| | - Porta Camillo
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy; Chair of Oncology, Interdisciplinary Department of Medicine, University of Bari "A. Moro", Bari, Italy
| |
Collapse
|
15
|
Gupta S, Erickson LA. Back to Biochemistry: Evaluation for and Prognostic Significance of SDH Mutations in Paragangliomas and Pheochromocytomas. Surg Pathol Clin 2023; 16:119-129. [PMID: 36739159 DOI: 10.1016/j.path.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is increasing recognition of the high prevalence of hereditary predisposition syndromes in patients diagnosed with paraganglioma/pheochromocytoma. It is widely acknowledged that germline pathogenic alterations of the succinate dehydrogenase complex genes (SDHA, SDHB, SDHC, SDHD, SDHAF2) contribute to the pathogenesis of most of these tumors. Herein, we have provided an update on the biology and diagnosis of succinate dehydrogenase-deficient paraganglioma/pheochromocytoma, including the molecular biology of the succinate dehydrogenase complex, mechanisms and consequences of inactivation of this complex, the prevalence of pathogenic alterations, and patterns of inheritance.
Collapse
Affiliation(s)
- Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Khosroyani HM, Klug LR, Heinrich MC. TKI Treatment Sequencing in Advanced Gastrointestinal Stromal Tumors. Drugs 2023; 83:55-73. [PMID: 36607590 PMCID: PMC10029090 DOI: 10.1007/s40265-022-01820-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/07/2023]
Abstract
Prior to the early 2000s, patients with advanced gastrointestinal stromal tumors (GIST) had very poor prognoses owing to a lack of effective therapies. The development of tyrosine kinase inhibitors at the turn of the century significantly improved the overall survival for patients with GIST. The resounding success of imatinib in the first clinical trial of a tyrosine kinase inhibitor to treat GIST led to its approval for first-line therapy for advanced GIST; this study was open to all comers and not restricted to any GIST subtype(s). The trials that led to the approvals of second-, third-, and fourth-line therapy for advanced GIST were also open to all patients with advanced/metastatic GIST. Only in retrospect do we realize the role that the molecular subtypes played in the results observed in these studies. In this review, we discuss the studies that led to the US Food and Drug Administration approval of imatinib (first line), sunitinib (second line), regorafenib (third line), and ripretinib (fourth line) for advanced KIT-mutant GIST. In addition, we review how information about GIST molecular subtypes has been used to accelerate the approval of other targeted therapies for non-KIT mutant GIST, leading to the approval of five additional drugs indicated for the treatment of specific GIST molecular subtypes. We also discuss how our understanding of the molecular subtypes will play a role in the next generation of therapeutic approaches for treating advanced GIST.
Collapse
Affiliation(s)
- Homma M Khosroyani
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Lillian R Klug
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Michael C Heinrich
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
| |
Collapse
|
17
|
A Clinicopathologic and Molecular Analysis of Fumarate Hydratase-deficient Pheochromocytoma and Paraganglioma. Am J Surg Pathol 2023; 47:25-36. [PMID: 35993574 PMCID: PMC9760464 DOI: 10.1097/pas.0000000000001945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Up to 40% of pheochromocytomas (PCCs) and paragangliomas (PGLs) are hereditary. Germline mutations/deletions in fumarate hydratase ( FH ) cause hereditary leiomyomatosis and renal cell carcinoma syndrome which manifests predominantly with FH-deficient uterine/cutaneous leiomyomas and renal cell carcinomas (RCCs)-tumors characterized by loss of immunohistochemical (IHC) expression of FH and/or positive staining for S-(2-succino)-cysteine. Occasional patients develop PCC/PGL. We investigated the incidence, morphologic, and clinical features of FH-deficient PCC/PGL. We identified 589 patients with PCC/PGLs that underwent IHC screening for FH and/or S-(2-succino)-cysteine. Eight (1.4%) PCC/PGLs were FH deficient (1.1% in an unselected population). The median age for FH-deficient cases was 55 (range: 30 to 77 y) with 50% arising in the adrenal. All 4 with biochemical data were noradrenergic. Two (25%) metastasized, 1 dying of disease after 174 months. Germline testing was performed on 7 patients, 6 of whom had FH missense mutations. None were known to have a significant family history before presentation or developed cutaneous leiomyomas, or FH-deficient RCC at extended follow-up. The patient wild-type for FH on germline testing was demonstrated to have somatic FH mutation and loss of heterozygosity corresponding to areas of subclonal FH deficiency in her tumor. One patient did not undergo germline testing, but FH mutation was demonstrated in his tumor. We conclude that FH-deficient PCC/PGL are underrecognized but can be identified by IHC. FH-deficient PCC/PGL are strongly associated with germline missense mutations but are infrequently associated with leiomyoma or RCC, suggesting there may be a genotype-phenotype correlation. FH-deficient PCC/PGL may have a higher metastatic risk.
Collapse
|
18
|
Webster BR, Gopal N, Ball MW. Tumorigenesis Mechanisms Found in Hereditary Renal Cell Carcinoma: A Review. Genes (Basel) 2022; 13:2122. [PMID: 36421797 PMCID: PMC9690265 DOI: 10.3390/genes13112122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma is a heterogenous cancer composed of an increasing number of unique subtypes each with their own cellular and tumor behavior. The study of hereditary renal cell carcinoma, which composes just 5% of all types of tumor cases, has allowed for the elucidation of subtype-specific tumorigenesis mechanisms that can also be applied to their sporadic counterparts. This review will focus on the major forms of hereditary renal cell carcinoma and the genetic alterations contributing to their tumorigenesis, including von Hippel Lindau syndrome, Hereditary Papillary Renal Cell Carcinoma, Succinate Dehydrogenase-Deficient Renal Cell Carcinoma, Hereditary Leiomyomatosis and Renal Cell Carcinoma, BRCA Associated Protein 1 Tumor Predisposition Syndrome, Tuberous Sclerosis, Birt-Hogg-Dubé Syndrome and Translocation RCC. The mechanisms for tumorigenesis described in this review are beginning to be exploited via the utilization of novel targets to treat renal cell carcinoma in a subtype-specific fashion.
Collapse
Affiliation(s)
| | | | - Mark W. Ball
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
PIKE-A Modulates Mitochondrial Metabolism through Increasing SDHA Expression Mediated by STAT3/FTO Axis. Int J Mol Sci 2022; 23:ijms231911304. [PMID: 36232604 PMCID: PMC9570435 DOI: 10.3390/ijms231911304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that phosphoinositide 3-kinase enhancer-activating Akt (PIKE-A) is involved in the regulation of several biological processes in cancer. In our previous study, we demonstrated a crucial function of PIKE-A in cancer energy metabolism by regulating pentose phosphate pathway (PPP) flux. However, whether PIKE-A regulates energy metabolism through affecting mitochondrial changes are poorly understood. In the present study, we show that PIKE-A promotes mitochondrial membrane potential, leading to increasing proliferation of glioblastoma cell. Mechanistically, PIKE-A affects the expression of respiratory chain complex Ⅱ succinate dehydrogenase A (SDHA), mediated by regulating the axis of STAT3/FTO. Taken together, these results revealed that inhibition of PIKE-A reduced STAT3/FTO/SDHA expression, leading to the suppression of mitochondrial function. Thus, our findings suggest the PIKE-A/STAT3/FTO/SDHA axis as promising anti-cancer treatment targets.
Collapse
|
20
|
Zhuan Q, Du X, Bai J, Zhou D, Luo Y, Liu H, Sun W, Wan P, Hou Y, Li J, Fu X. Proteomic profile of mouse oocytes after vitrification: A quantitative analysis based on 4D label-free technique. Theriogenology 2022; 187:64-73. [DOI: 10.1016/j.theriogenology.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
21
|
Expanding the clinicopathological spectrum of succinate dehydrogenase-deficient renal cell carcinoma with a focus on variant morphologies: a study of 62 new tumors in 59 patients. Mod Pathol 2022; 35:836-849. [PMID: 34949766 DOI: 10.1038/s41379-021-00998-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Most succinate dehydrogenase (SDH)-deficient renal cell carcinomas (RCCs) demonstrate stereotypical morphology characterized by bland eosinophilic cells with frequent intracytoplasmic inclusions. However, variant morphologic features have been increasingly recognized. We therefore sought to investigate the incidence and characteristics of SDH-deficient RCC with variant morphologies. We studied a multi-institutional cohort of 62 new SDH-deficient RCCs from 59 patients. The median age at presentation was 39 years (range 19-80), with a slight male predominance (M:F = 1.6:1). A relevant family history was reported in 9 patients (15%). Multifocal or bilateral tumors were identified radiologically in 5 patients (8%). Typical morphology was present at least focally in 59 tumors (95%). Variant morphologies were seen in 13 (21%) and included high-grade nuclear features and various combinations of papillary, solid, and tubular architecture. Necrosis was present in 13 tumors, 7 of which showed variant morphology. All 62 tumors demonstrated loss of SDHB expression by immunohistochemistry. None showed loss of SDHA expression. Germline SDH mutations were reported in all 18 patients for whom the results of testing were known. Among patients for whom follow-up data was available, metastatic disease was reported in 9 cases, 8 of whom had necrosis and/or variant morphology in their primary tumor. Three patients died of disease. In conclusion, variant morphologies and high-grade nuclear features occur in a subset of SDH-deficient RCCs and are associated with more aggressive behavior. We therefore recommend grading all SDH-deficient RCCs and emphasize the need for a low threshold for performing SDHB immunohistochemistry in any difficult to classify renal tumor, particularly if occurring at a younger age.
Collapse
|
22
|
Kimura N, Ishikawa M, Shigematsu K. Colorectal paragangliomas with immunohistochemical deficiency of succinate dehydrogenase subunit B. Endocr J 2022; 69:523-528. [PMID: 34853215 DOI: 10.1507/endocrj.ej21-0630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent progress in paraganglioma (PGL) revealed genotype-phenotype relationship, especially succinate dehydrogenase complex subunit B (SDHB) gene mutation-related to the extra-adrenal origin and metastasis. SDHB-immunohistochemistry can detect all types of SDH-subunit mutations, and is a useful tool to detect SDH-mutation tumors. PGLs usually occur along with sympathetic, and parasympathetic chains, however, colorectal paraganglioma is extremely rare. We have experienced one sigmoid colon PGL and one rectal PGL. These colorectal PGLs: a sigmoid colon PGL measuring 25 mm associated with a gastrointestinal stromal tumor (GIST) of the stomach, and a rectal PGL measuring 75 × 45 mm with elevated norepinephrine level were analyzed by immunohistochemistry for INSM1, chromogranin A, synaptophysin, tyrosine hydroxylase, dopamine-beta-hydroxylase, and SDHB and SDHA. The tumors were strongly positive for above markers, however, negative for SDHB. Both PGLs negative for SDHB immunohistochemistry were defined SDHB-deficient PGLs. Histologic grading of the PGLs by GAPP was well differentiated in sigmoid PGL versus poorly differentiated in rectal PGL. Although these PGLs were the same Stage II of TNM classification, the patient with sigmoid colon PGL had neither recurrence nor metastasis for 5 years after the operation, however, the patient with rectal PGL suffered the recurrent multiple metastases and expired 5 years after the operation. Herein, we compared these colorectal PGLs in regard to the patients' prognostic factors. Patient prognosis with these colorectal PGLs was mostly related to the tumor size and histologic grade under the same situation of SDH-deficiency.
Collapse
Affiliation(s)
- Noriko Kimura
- Department of Clinical Research, and Department of Diagnostic Pathology, National Hospital Organization Hakodate Hospital, Hakodate 041-8512, Japan
| | - Misawo Ishikawa
- Department of Diagnostic Pathology, Kainan Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Yatomi 498-8502, Japan
| | - Kazuto Shigematsu
- Department of Pathology, Japanese Red Cross, Nagasaki-Genbaku Hospital, Nagasaki 852-8511, Japan
| |
Collapse
|
23
|
Li Q, Yang Y, Wang H, Jiang Z, Ma H. Genistein accelerates glucose catabolism via activation the GPER-mediated cAMP/PKA-AMPK signaling pathway in broiler chickens. Life Sci 2022; 303:120676. [PMID: 35640778 DOI: 10.1016/j.lfs.2022.120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022]
Abstract
Genistein, the most abundance of phytoestrogens in soybeans, has beneficial effects in regulating metabolism-related disease; however, there is few available literatures about whether genistein regulates glucose metabolism that in turn affects the lipid accumulation in animals or humans. The current study showed that genistein promoted glucose uptake by enhancing glucose transporter-2 (GLUT2) protein level; and it also increased the activity of phosphofructokinase-1 (PFK) and pyruvate dehydrogenase (PDH), and the mRNA level of succinate dehydrogenase (SDH) both in broiler chickens or hepatocytes. Moreover, genistein obviously increased the p-LKB1 and p-AMPKα protein levels both in vivo and in vitro. Furthermore, the enhancement of genistein on glucose uptake and catabolism were reversed in hepatocytes pre-treated with AMPK inhibitor Compound C, and the increasing of genistein on the p-LKB1 and p-AMPKα protein levels were also reversed in hepatocytes pre-treated with PKA inhibitor H89. Importantly, the results showed that genistein simultaneously increased the estrogen receptor β (ERβ) and G protein-coupled estrogen receptor (GPER) protein levels, but the elevation effect of genistein on cAMP content was completely reversed in hepatocytes pre-treated with GPER antagonist G15, rather than ERβ inhibitor PHTPP. Meanwhile, the increasing of p-LKB1 and p-AMPKα protein levels induced by genistein were also reversed in hepatocytes pre-treated with G15. Collectively, our data demonstrated that genistein improves glucose metabolism via activating the GPER-mediated cAMP/PKA-AMPK signaling pathway. These findings provide theoretical basis for genistein as a promising nutritional supplemental to alleviate metabolism disorders and related diseases in animals or even humans.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
24
|
Ding CKC, Chan S, Mak J, Umetsu SE, Simko J, Ruiz-Cordero R, Saunders T, Chan E. An exploration in pitfalls in interpreting SDHB immunohistochemistry. Histopathology 2022; 81:264-269. [PMID: 35546442 DOI: 10.1111/his.14681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
AIMS Mutations and epimutations in genes encoding the succinate dehydrogenase complex (SDHx) are associated with multiple tumor types in which identification of SDH-deficiency has significant management implications. Immunohistochemistry (IHC) for the SDHB subunit can help detect SDH-deficiency, which manifests as complete loss of staining in tumor cells. However, a subset of SDH-deficient tumors can show aberrant cytoplasmic SDHB-IHC staining patterns and be misinterpreted as "retained," a diagnostic pitfall complicating interpretation. Herein, we characterize in detail aberrant SDHB-IHC staining patterns in SDH-deficient tumors. METHODS AND RESULTS We identified 23 tumors from patients with known germline SDHx and/or molecularly confirmed SDHx pathogenic/likely-pathogenic variants in their tumor. Of these, 8 (35%) showed significant SDHB-IHC staining: 1 SDHA-, 1 SDHB-, 3 SDHC- and 3 SDHD-mutated cases. In all 8 cases, closer inspection revealed differences in intensity and intracellular distribution of SDHB-IHC staining in tumor cells compared to adjacent nonneoplastic cells: nonneoplastic cells showed intense cytoplasmic coarse granular staining; tumor cells in 7/8 cases showed weak to focally strong, cytoplasmic blush to fine granular staining, in >80% of cells. The remaining case on initial block showed variably strong nongranular cytoplasmic staining with globular perinuclear accentuation throughout, only subtly distinct from staining pattern of nonneoplastic cells. SDHB-IHC performed on two additional blocks in this latter case revealed significant intratumoral heterogeneity including convincing areas of complete loss. CONCLUSIONS When evaluating SDHB-IHC, care should be taken to distinguish true retained expression from aberrant cytoplasmic expression, which may be difficult to appreciate. Sometimes this may require additional molecular testing.
Collapse
Affiliation(s)
| | - Salina Chan
- Cancer Risk Program, Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco
| | - Julie Mak
- Cancer Risk Program, Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco
| | - Sarah E Umetsu
- Department of Pathology, University of California, San Francisco
| | - Jeffry Simko
- Department of Pathology, University of California, San Francisco
| | | | - Tara Saunders
- Department of Pathology, University of California, San Francisco
| | - Emily Chan
- Department of Pathology, University of California, San Francisco
| |
Collapse
|
25
|
Renal oncocytoma: a challenging diagnosis. Curr Opin Oncol 2022; 34:243-252. [DOI: 10.1097/cco.0000000000000829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Kamai T, Murakami S, Arai K, Nishihara D, Uematsu T, Ishida K, Kijima T. Increased expression of Nrf2 and elevated glucose uptake in pheochromocytoma and paraganglioma with SDHB gene mutation. BMC Cancer 2022; 22:289. [PMID: 35300626 PMCID: PMC8931959 DOI: 10.1186/s12885-022-09415-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background Pheochromocytomas (PCC) and paragangliomas (PGL) are catecholamine-producing neuroendocrine tumors. According to the World Health Organization Classification 2017, all PCC/PGL are considered to have malignant potential. There is growing evidence that PCC/PGL represent a metabolic disease that leads to aerobic glycolysis. Cellular energy metabolism involves both transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and succinate dehydrogenase (SDH) subtypes, but the association of these substances with PCC/PGL is largely unknown. Methods We investigated SDHB gene mutation and protein expressions for SDHB and Nrf2 in surgical specimens from 29 PCC/PGL. We also assessed preoperative maximum standard glucose uptake (SUVmax) on [18F]fluorodeoxy-glucose positron emission tomography and mRNA levels for Nrf2. Results Among 5 PCC/PGL with a PASS Score ≥ 4 or with a moderately to poorly differentiated type in the GAPP Score, 4 were metastatic and found to be SDHB mutants with homogeneous deletion of SDHB protein. SDHB mutants showed a higher expression of Nrf2 protein and a higher preoperative SUVmax than non-SDHB mutants with a PASS < 4 or a well-differentiated GAPP type. Furthermore, protein expression of Nrf2 was positively associated with preoperative SUVmax. The Nrf2 mRNA level positively correlated with malignant phenotype, higher expression for Nrf2 protein and SDHB gene mutant, but negatively correlated with expression for SDHB protein. There was also a positive correlation between Nrf2 mRNA level and SUVmax. Conclusion These results suggest that activation of Nrf2 and elevated metabolism play roles in PCC/PGL with malignant potential that have SDHB gene mutation and SDHB deficiency.
Collapse
Affiliation(s)
- Takao Kamai
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan.
| | - Satoshi Murakami
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Kyoko Arai
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Daisaku Nishihara
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Toshitaka Uematsu
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Toshiki Kijima
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
27
|
Nosé V, Gill A, Teijeiro JMC, Perren A, Erickson L. Overview of the 2022 WHO Classification of Familial Endocrine Tumor Syndromes. Endocr Pathol 2022; 33:197-227. [PMID: 35285003 DOI: 10.1007/s12022-022-09705-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 12/16/2022]
Abstract
This review of the familial tumor syndromes involving the endocrine organs is focused on discussing the main updates on the upcoming fifth edition of the WHO Classification of Endocrine and Neuroendocrine Tumors. This review emphasizes updates on histopathological and molecular genetics aspects of the most important syndromes involving the endocrine organs. We describe the newly defined Familial Cancer Syndromes as MAFA-related, MEN4, and MEN5 as well as the newly reported pathological findings in DICER1 syndrome. We also describe the updates done at the new WHO on the syndromic and non-syndromic familial thyroid diseases. We emphasize the problem of diagnostic criteria, mention the new genes that are possibly involved in this group, and at the same time, touching upon the role of some immunohistochemical studies that could support the diagnosis of some of these conditions. As pathologists play an important role in identifying tumors within a familial cancer syndrome, we highlight the most important clues for raising the suspicious of a syndrome. Finally, we highlight the challenges in defining these entities as well as determining their clinical outcome in comparison with sporadic tumors. Instead of the usual subject review, we present the highlights of the updates on familial cancer syndromes by answering select questions relevant to practicing pathologists.
Collapse
Affiliation(s)
- Vania Nosé
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| | | | - José Manuel Cameselle Teijeiro
- Clinical University Hospital Santiago de Compostela and Medical Faculty, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
28
|
Milionis V, Goutas D, Vlachodimitropoulos D, Katsoulas N, Kyriazis ID, Liatsikos EN, Marinakis N, Joanne T, Lazaris AC, Goutas N. SDH-deficient renal cell carcinoma: A case report associated with a novel germline mutation. Clin Case Rep 2021; 9:e04605. [PMID: 34703596 PMCID: PMC8522490 DOI: 10.1002/ccr3.4605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
The highly syndromic nature of succinate dehydrogenase-deficient RCCs constitutes their active surveillance and molecular profiling the alpha and omega.
Collapse
Affiliation(s)
| | - Dimitrios Goutas
- First Department of PathologySchool of MedicineThe National and Kapodistrian University of Athens–"Laikon" General Hospital of AthensAthenesGreece
| | - Dimitrios Vlachodimitropoulos
- Istomedica S.AAthensGreece
- Laboratory of Forensic Medicine and ToxicologyThe National and Kapodistrian University of AthensAthensGreece
| | - Nikolaos Katsoulas
- First Department of PathologySchool of MedicineThe National and Kapodistrian University of Athens–"Laikon" General Hospital of AthensAthenesGreece
| | | | | | - Nikolaos Marinakis
- Laboratory of Medical GeneticsNational and Kapodistrian University of AthensSt. Sophia Children's HospitalAthensGreece
| | - Traeger‐Synodinos Joanne
- Laboratory of Medical GeneticsNational and Kapodistrian University of AthensSt. Sophia Children's HospitalAthensGreece
| | - Andreas C. Lazaris
- First Department of PathologySchool of MedicineThe National and Kapodistrian University of Athens–"Laikon" General Hospital of AthensAthenesGreece
| | - Nikolaos Goutas
- Istomedica S.AAthensGreece
- Laboratory of Forensic Medicine and ToxicologyThe National and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
29
|
Webster BR, Rompre-Brodeur A, Daneshvar M, Pahwa R, Srinivasan R. Kidney cancer: from genes to therapy. Curr Probl Cancer 2021; 45:100773. [PMID: 34261604 DOI: 10.1016/j.currproblcancer.2021.100773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
Renal cell carcinoma incidence is rising worldwide with increasing subtype stratification by the World Health Organization. Each subtype has unique genetic alterations, cell biology changes and clinical findings. Such genetic alterations offer the potential for individualized therapeutic approaches that are rapidly progressing. This review highlights the most common subtypes of renal cell carcinoma, including both hereditary and sporadic forms, with a focus on genetic changes, clinical findings and ongoing clinical trials.
Collapse
Affiliation(s)
- Bradley R Webster
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Alexis Rompre-Brodeur
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Michael Daneshvar
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Roma Pahwa
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Ramaprasad Srinivasan
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
De Silva M, Rastogi S, Chan D, Angel C, Prall O, Gill A, Guminski A. Succinate dehydrogenase-deficient gastrointestinal stromal tumor: from diagnostic dilemma to novel personalised therapy in 2 case reports. Transl Cancer Res 2021; 10:3588-3599. [PMID: 35116662 PMCID: PMC8797494 DOI: 10.21037/tcr-21-131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022]
Abstract
Succinate dehydrogenase (SDH)-deficient gastrointestinal stromal tumor (GIST) is a unique and distinctive subtype of gastric GIST. The literature on this subtype from developing countries is exceedingly sparse. Patients with SDH-deficient GIST often experience a lack or delay in genomic profiling, despite stereotypical clinicopathologic features, potentially resulting in sub-optimal management. SDH-deficient GISTs are highly syndromic, typically have more indolent behavior, a prognosis not predicted by size and mitotic rate, a tendency to lymph node metastases, and are insensitive to standard tyrosine kinase inhibitors (TKIs). We report two women with SDH-deficient GIST. In the first case, SDH deficiency was identified late due to lack of awareness and poor access to diagnostic facilities. The patient progressed through TKI therapy, but responded to temozolomide, which is under investigation in clinical trials. In the second case, SDH deficiency was identified at diagnosis, and the patient responded well to 177Lutetium peptide radionuclide receptor therapy (PRRT) after progressing through two lines of TKIs. We aim to highlight the need for more awareness and access to genomic diagnostic facilities for GIST patients, temozolomide as a novel therapy for SDH-deficient GIST, and the potential value of DOTATATE positron emission tomography (PET) and PRRT as a novel imaging modality and therapy for TKI insensitive GIST patients.
Collapse
Affiliation(s)
- Madhawa De Silva
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Sameer Rastogi
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - David Chan
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Christopher Angel
- Department of Anatomical Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Owen Prall
- Department of Anatomical Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Anthony Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Alexander Guminski
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
New developments in existing WHO entities and evolving molecular concepts: The Genitourinary Pathology Society (GUPS) update on renal neoplasia. Mod Pathol 2021; 34:1392-1424. [PMID: 33664427 DOI: 10.1038/s41379-021-00779-w] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
The Genitourinary Pathology Society (GUPS) reviewed recent advances in renal neoplasia, particularly post-2016 World Health Organization (WHO) classification, to provide an update on existing entities, including diagnostic criteria, molecular correlates, and updated nomenclature. Key prognostic features for clear cell renal cell carcinoma (RCC) remain WHO/ISUP grade, AJCC/pTNM stage, coagulative necrosis, and rhabdoid and sarcomatoid differentiation. Accrual of subclonal genetic alterations in clear cell RCC including SETD2, PBRM1, BAP1, loss of chromosome 14q and 9p are associated with variable prognosis, patterns of metastasis, and vulnerability to therapies. Recent National Comprehensive Cancer Network (NCCN) guidelines increasingly adopt immunotherapeutic agents in advanced RCC, including RCC with rhabdoid and sarcomatoid changes. Papillary RCC subtyping is no longer recommended, as WHO/ISUP grade and tumor architecture better predict outcome. New papillary RCC variants/patterns include biphasic, solid, Warthin-like, and papillary renal neoplasm with reverse polarity. For tumors with 'borderline' features between oncocytoma and chromophobe RCC, a term "oncocytic renal neoplasm of low malignant potential, not further classified" is proposed. Clear cell papillary RCC may warrant reclassification as a tumor of low malignant potential. Tubulocystic RCC should only be diagnosed when morphologically pure. MiTF family translocation RCCs exhibit varied morphologic patterns and fusion partners. TFEB-amplified RCC occurs in older patients and is associated with more aggressive behavior. Acquired cystic disease (ACD) RCC-like cysts are likely precursors of ACD-RCC. The diagnosis of renal medullary carcinoma requires a negative SMARCB1 (INI-1) expression and sickle cell trait/disease. Mucinous tubular and spindle cell carcinoma (MTSCC) can be distinguished from papillary RCC with overlapping morphology by losses of chromosomes 1, 4, 6, 8, 9, 13, 14, 15, and 22. MTSCC with adverse histologic features shows frequent CDKN2A/2B (9p) deletions. BRAF mutations unify the metanephric family of tumors. The term "fumarate hydratase deficient RCC" ("FH-deficient RCC") is preferred over "hereditary leiomyomatosis and RCC syndrome-associated RCC". A low threshold for FH, 2SC, and SDHB immunohistochemistry is recommended in difficult to classify RCCs, particularly those with eosinophilic morphology, occurring in younger patients. Current evidence does not support existence of a unique tumor subtype occurring after chemotherapy/radiation in early childhood.
Collapse
|
32
|
Kamai T, Higashi S, Murakami S, Arai K, Namatame T, Kijima T, Abe H, Jamiyan T, Ishida K, Shirataki H, Yoshida KI. Single nucleotide variants of succinate dehydrogenase A gene in renal cell carcinoma. Cancer Sci 2021; 112:3375-3387. [PMID: 34014604 PMCID: PMC8353944 DOI: 10.1111/cas.14977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 01/16/2023] Open
Abstract
Succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC) is mainly associated with a mutation in the SDHB gene and sometimes with mutations in the SDHC or SDHD genes. However, only three cases of succinate dehydrogenase A (SDHA)-deficient RCC have been reported, and the relation between SDHA mutations and RCC has not been clarified. This study assessed the role of SDHA gene mutations in human RCC. We investigated SDHA/B/C/D gene mutations in 129 human RCCs. Targeted next-generation sequencing and direct Sanger sequencing revealed single nucleotide variants (SNVs) of the SDHA gene with amino acid sequence variations in 11/129 tumors, while no SDHB/C/D gene mutations were found. Tumor cells with SNVs of the SDHA gene were characterized by eosinophilic cytoplasm and various patterns of proliferation. Immunohistochemistry examination found that the 11 tumors with SNVs of the SDHA gene showed significant reduction of SDHA protein and SDHB protein expression compared to the 19 tumors without SDHA or SDHB mutations (both P < .0001). Western blotting showed a greater decrease in the expression of SDHA and SDHB proteins in the 11 tumors with SNVs of the SDHA gene than in the 19 tumors without (both P < .0001). There was a positive correlation between SDHA and SDHB protein levels (P < .0001). On immunohistochemistry and Western blotting, the 11 tumors with SNVs of the SDHA gene had higher protein expression for nuclear factor E2-related factor 2 (Nrf2) compared to the 19 tumors without the mutation (P < .01). These observations suggest that SDHA gene mutations might be associated with a subset of RCC.
Collapse
Affiliation(s)
- Takao Kamai
- Department of Urology, Dokkyo Medical University, Mibu, Japan
| | - Satoru Higashi
- Department of Molecular and Cell Biology, Dokkyo Medical University, Mibu, Japan
| | - Satoshi Murakami
- Department of Urology, Dokkyo Medical University, Mibu, Japan.,Diagnostic Division, Abbott Japan, Mita, Japan
| | - Kyoko Arai
- Department of Urology, Dokkyo Medical University, Mibu, Japan
| | - Takashi Namatame
- Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Toshiki Kijima
- Department of Urology, Dokkyo Medical University, Mibu, Japan
| | - Hideyuki Abe
- Department of Urology, Dokkyo Medical University, Mibu, Japan
| | - Tsengelmaa Jamiyan
- Department of Diagnostic Pathology, Dokkyo Medical University, Mibu, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Dokkyo Medical University, Mibu, Japan
| | - Hiromichi Shirataki
- Department of Molecular and Cell Biology, Dokkyo Medical University, Mibu, Japan
| | | |
Collapse
|
33
|
Siddiqui N, Seedat F, Bulbulia S, Mtshali NZ, Botha A, Krause A, Daya R, Bayat Z. SDHB-Associated Paraganglioma Syndrome in Africa-A Need for Greater Genetic Testing. J Endocr Soc 2021; 5:bvab111. [PMID: 34377882 PMCID: PMC8348940 DOI: 10.1210/jendso/bvab111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/19/2022] Open
Abstract
A germline mutation is identified in almost 40% of pheochromocytoma/paraganglioma (PPGL) syndromes. Genetic testing and counseling are essential for the management of index cases as well as presymptomatic identification and preemptive management of affected family members. Mutations in the genes encoding the mitochondrial enzyme succinate dehydrogenase (SDH) are well described in patients with hereditary PPGL. Among patients of African ancestry, the prevalence, phenotype, germline mutation spectrum, and penetrance of SDH mutations is poorly characterized. We describe a multifocal paraganglioma in a young African male with an underlying missense succinate dehydrogenase subunit B (SDHB) mutation and a history of 3 first-degree relatives who died at young ages from suspected cardiovascular causes. The same SDHB mutation, Class V variant c.724C>A p.(Arg242Ser), was detected in one of his asymptomatic siblings. As there are limited data describing hereditary PPGL syndromes in Africa, this report of an SDHB-associated PPGL is a notable contribution to the literature in this growing field. Due to the noteworthy clinical implications of PPGL mutations, this work highlights the existing need for broader genetic screening among African patients with PPGL despite the limited healthcare resources available in this region.
Collapse
Affiliation(s)
- Nida Siddiqui
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Helen Joseph Hospital, Johannesburg, 2092, South Africa
| | - Faheem Seedat
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Helen Joseph Hospital, Johannesburg, 2092, South Africa.,Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Saajidah Bulbulia
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Helen Joseph Hospital, Johannesburg, 2092, South Africa.,Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Nompumelelo Z Mtshali
- Division of Anatomical Pathology, Department of Pathology, National Health Laboratory Services & University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Adam Botha
- Division of Anatomical Pathology, Department of Pathology, National Health Laboratory Services & University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Services & School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Reyna Daya
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Helen Joseph Hospital, Johannesburg, 2092, South Africa.,Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Zaheer Bayat
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Helen Joseph Hospital, Johannesburg, 2092, South Africa.,Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| |
Collapse
|
34
|
Abstract
Abdominal paragangliomas and pheochromocytomas (PPGLs) are rare neuroendocrine tumors of the infradiaphragmatic paraganglia and adrenal medulla, respectively. Although few pathologists outside of endocrine tertiary centers will ever diagnose such a lesion, the tumors are well known through the medical community-possible due to a combination of the sheer rarity, their often-spectacular presentation due to excess catecholamine secretion as well as their unrivaled coupling to constitutional susceptibility gene mutations and hereditary syndromes. All PPGLs are thought to harbor malignant potential, and therefore pose several challenges to the practicing pathologist. Specifically, a responsible diagnostician should recognize both the capacity and limitations of histological, immunohistochemical, and molecular algorithms to pinpoint high risk for future metastatic disease. This focused review aims to provide the surgical pathologist with a condensed update regarding the current strategies available in order to deliver an accurate prognostication of these enigmatic lesions.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
35
|
Hirose R, Tsurutani Y, Sugisawa C, Inoue K, Suematsu S, Nagata M, Hasegawa N, Kakuta Y, Yonamine M, Takekoshi K, Kimura N, Saito J, Nishikawa T. Hereditary pheochromocytoma/paraganglioma syndrome with a novel mutation in the succinate dehydrogenase subunit B gene in a Japanese family: two case reports. J Med Case Rep 2021; 15:282. [PMID: 34020699 PMCID: PMC8140422 DOI: 10.1186/s13256-021-02852-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pheochromocytoma and paraganglioma caused by succinate dehydrogenase gene mutations is called hereditary pheochromocytoma/paraganglioma syndrome. In particular, succinate dehydrogenase subunit B mutations are important because they are strongly associated with the malignant behavior of pheochromocytoma and paraganglioma . This is a case report of a family of hereditary pheochromocytoma/paraganglioma syndrome carrying a novel mutation in succinate dehydrogenase subunit B. CASE PRESENTATION A 19-year-old Japanese woman, whose father died of metastatic paraganglioma, was diagnosed with abdominal paraganglioma, and underwent total resection. Succinate dehydrogenase subunit B genetic testing detected a splice-site mutation, c.424-2delA, in her germline and paraganglioma tissue. Afterwards, the same succinate dehydrogenase subunit B mutation was detected in her father's paraganglioma tissues. In silico analysis predicted the mutation as "disease causing." She is under close follow-up, and no recurrence or metastasis has been observed for 4 years since surgery. CONCLUSIONS We detected a novel succinate dehydrogenase subunit B mutation, c.424-2delA, in a Japanese family afflicted with hereditary pheochromocytoma/paraganglioma syndrome and found the mutation to be responsible for hereditary pheochromocytoma/paraganglioma syndrome. This case emphasizes the importance of performing genetic testing for patients with pheochromocytoma and paraganglioma suspected of harboring the succinate dehydrogenase subunit B mutation (that is, metastatic, extra-adrenal, multiple, early onset, and family history of pheochromocytoma and paraganglioma) and offer surveillance screening to mutation carriers.
Collapse
Affiliation(s)
- Rei Hirose
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kouhoku-ku, Yokohama, Kanagawa, 222-0036, Japan
| | - Yuya Tsurutani
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kouhoku-ku, Yokohama, Kanagawa, 222-0036, Japan.
| | - Chiho Sugisawa
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kouhoku-ku, Yokohama, Kanagawa, 222-0036, Japan
| | - Kosuke Inoue
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kouhoku-ku, Yokohama, Kanagawa, 222-0036, Japan.,Department of Epidemiology, UCLA Fielding School of Public Health, 650 Charles E. Young Dr. South, 16-035 Center for Health Sciences, Los Angeles, CA, USA
| | - Sachiko Suematsu
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kouhoku-ku, Yokohama, Kanagawa, 222-0036, Japan
| | - Maki Nagata
- Department of Urology, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kouhoku-ku, Yokohama, Kanagawa, 222-0036, Japan
| | - Naoki Hasegawa
- Department of Pathology, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kouhoku-ku, Yokohama, Kanagawa, 222-0036, Japan
| | - Yukio Kakuta
- Department of Pathology, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kouhoku-ku, Yokohama, Kanagawa, 222-0036, Japan
| | - Masato Yonamine
- Laboratory of Laboratory/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kazuhiro Takekoshi
- Laboratory of Laboratory/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Noriko Kimura
- Department of Diagnostic Pathology, National Hospital Organization Hakodate Hospital, 18-16 Kawahara-cho, Hakodate, Hokkaido, 041-8512, Japan
| | - Jun Saito
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kouhoku-ku, Yokohama, Kanagawa, 222-0036, Japan
| | - Tetsuo Nishikawa
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, 3211 Kozukue-cho, Kouhoku-ku, Yokohama, Kanagawa, 222-0036, Japan
| |
Collapse
|
36
|
Xu X, Zhang N, Gao R, Wang J, Dai Z, Bi J. Upregulation of SDHA inhibited proliferation, migration, and invasion of clear cell renal cell carcinoma cells via inactivation of the Wnt/β-catenin pathway. J Recept Signal Transduct Res 2021; 42:180-188. [PMID: 33602019 DOI: 10.1080/10799893.2021.1883060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common genitourinary malignancy with high mortality. Recent findings suggest that the succinate dehydrogenase complex subunit A (SDHA) is lowly expressed in many types of cancers and involved in tumorigenesis. However, the potential regulatory roles and molecular mechanisms by which SDHA affects the development and progression of ccRCC remain largely unknown. In this study, our results showed that there was significant downregulation of SDHA in ccRCC tissue relative to corresponding non-cancerous tissue, and low expression of SDHA was associated with Fuhrman pathological grade, tumor size, TNM stage, metastasis, and poor prognosis in ccRCC patients. Moreover, overexpression of SDHA inhibited the proliferation, invasion, and migration capacities of ccRCC cells. Mechanistically, SDHA impeded the proliferation and metastasis of ccRCC cells by inactivation of the Wnt/β-catenin pathway. In vivo experiments, SDHA suppressed ccRCC growth in a nude mouse model. In conclusion, our study results indicated that SDHA may act as a new molecular marker for judging the occurrence and development of ccRCC and serve as a therapeutic target for the treatment of human ccRCC.
Collapse
Affiliation(s)
- Xiaolong Xu
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, China.,Department of Urology, Institute of Urology, The First Hospital of China Medical University, Liaoning, China
| | - Naiwei Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Liaoning, China
| | - Ruxu Gao
- Department of Urology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Liaoning, China
| | - Jianfeng Wang
- Department of Urology, Institute of Urology, The First Hospital of China Medical University, Liaoning, China
| | - Zhihong Dai
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jianbin Bi
- Department of Urology, Institute of Urology, The First Hospital of China Medical University, Liaoning, China
| |
Collapse
|
37
|
Brčić I, Argyropoulos A, Liegl-Atzwanger B. Update on Molecular Genetics of Gastrointestinal Stromal Tumors. Diagnostics (Basel) 2021; 11:diagnostics11020194. [PMID: 33525726 PMCID: PMC7912114 DOI: 10.3390/diagnostics11020194] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. The majority are sporadic, solitary tumors that harbor mutually exclusive KIT or PDGFRA gain-of-function mutations. The type of mutation in addition to risk stratification corresponds to the biological behavior of GIST and response to treatment. Up to 85% of pediatric GISTs and 10–15% of adult GISTs are devoid of these (KIT/PDGFRA) mutations and are referred to as wild-type GISTs (wt-GIST). It has been shown that these wt-GISTs are a heterogeneous tumor group with regard to their clinical behavior and molecular profile. Recent advances in molecular pathology helped to further sub-classify the so-called “wt-GISTs”. Based on their significant clinical and molecular heterogeneity, wt-GISTs are divided into a syndromic and a non-syndromic (sporadic) subgroup. Recently, the use of succinate dehydrogenase B (SDHB) by immunohistochemistry has been used to stratify GIST into an SDHB-retained and an SDHB-deficient group. In this review, we focus on GIST sub-classification based on clinicopathologic, and molecular findings and discuss the known and yet emerging prognostic and predictive genetic alterations. We also give insights into the limitations of targeted therapy and highlight the mechanisms of secondary resistance.
Collapse
|
38
|
Ranganayaki S, Jamshidi N, Aiyaz M, Rashmi SK, Gayathri N, Harsha PK, Padmanabhan B, Srinivas Bharath MM. Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration. Sci Rep 2021; 11:1483. [PMID: 33452321 PMCID: PMC7810707 DOI: 10.1038/s41598-020-79339-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1-methyl-4-phenylpyridinium (MPP+) and 3-nitropropionic acid (3-NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down-stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome-wide transcriptomics of N27 neuronal cells exposed to 3-NPA, compared with MPP+ and Mn revealed varied transcriptomic profile. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway differentially regulated in the 3-NPA model with implications for neuronal survival. This pathway was unique to 3-NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3-NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor (BDNF), which was elevated in the 3-NPA model could confer neuroprotection against 3-NPA. We propose that, different downstream events are activated upon neurotoxin-dependent CII inhibition compared to other neurotoxins, with implications for movement disorders and regulation of autophagy could potentially offer neuroprotection.
Collapse
Affiliation(s)
- Sathyanarayanan Ranganayaki
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Neema Jamshidi
- Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095, USA
| | - Mohamad Aiyaz
- Genotypic Technology Pvt. Ltd., 2/13, Balaji Complex, 80 feet Road, RMV 2nd Stage, Bangalore, Karnataka, 560094, India
| | - Santhosh-Kumar Rashmi
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Narayanappa Gayathri
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Pulleri Kandi Harsha
- Department of Neurovirology, NIMHANS, No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | | | - Muchukunte Mukunda Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
39
|
Liang L, Li X, Li D, Liu P, Nong L, Dong Y, Liu J, Huang S, Li T. Mutational characteristics of gastrointestinal stromal tumors: A single-center analysis of 302 patients. Oncol Lett 2021; 21:174. [PMID: 33552291 PMCID: PMC7798044 DOI: 10.3892/ol.2021.12435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/20/2020] [Indexed: 11/05/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) represent a spectrum of tumors characterized by variable behaviors and activating mutations in KIT proto-oncogene, receptor tyrosine kinase (KIT) or platelet derived growth factor receptor α (PDGFRA) genes. However, whether genotype analysis should be regarded as a prognostic indicator remains unclear. In the present study, clinicopathological data and the mutation phenotypes of KIT and PDGFRA genes were assessed in a series of 302 patients with GISTs at a single center. Univariate and multivariate Cox regression analyses were performed to identify the clinicopathological and mutational factors associated with relapse-free survival (RFS) in patients who had undergone complete primary GIST resection. KIT and PDGFRA mutations were identified in 233 (77.2%) and 30 (9.9%) cases, respectively. The following clinicopathological parameters were significantly associated with a shorter RFS: Male, non-gastric tumor origin, larger tumor size (>5 cm), high mitotic activity (>5/50 high-power fields), necrosis and epithelioid morphology. Tumors at non-gastric sites, with high National Institutes of Health risk classification, high World Health Organization (WHO) grade and KIT deletion involving codons 557/558/559 exhibited a significantly higher risk of progression. In the Cox regression model, KIT deletion involving codons 557/558/559, non-gastric origin and high WHO grade were independent indicators of RFS. The adverse prognosis associated with KIT deletions involving codons 557/558/559 was also observed for gastric GISTs. Conversely, spindle morphology, KIT exon 11 substitution and PDGFRA exon 18 mutation were associated with a longer RFS and lower rate of relapse. Furthermore, the coexistence of KIT exon 11 deletion and exon 13 duplication was observed in one tumor, with adverse prognostic features. Heterogeneity affecting morphology, immunostaining and genotype was identified in 4 cases. In addition, the presence of succinate dehydrogenase-deficient GIST was found in 5 cases (3.6%). In conclusion, the tumor genotype with regard to KIT and PDGFRA mutations exhibited prognostic significance for the risk of GIST progression and may be helpful for the optimization of tailored adjuvant therapy.
Collapse
Affiliation(s)
- Li Liang
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xin Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Dong Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Ping Liu
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lin Nong
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Ying Dong
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jumei Liu
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Sixia Huang
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Ting Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
40
|
Pitsava G, Settas N, Faucz FR, Stratakis CA. Carney Triad, Carney-Stratakis Syndrome, 3PAS and Other Tumors Due to SDH Deficiency. Front Endocrinol (Lausanne) 2021; 12:680609. [PMID: 34012423 PMCID: PMC8126684 DOI: 10.3389/fendo.2021.680609] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Succinate dehydrogenase (SDH) is a key respiratory enzyme that links Krebs cycle and electron transport chain and is comprised of four subunits SDHA, SDHB, SDHC and SDHD. All SDH-deficient tumors are caused by or secondary to loss of SDH activity. As many as half of the familial cases of paragangliomas (PGLs) and pheochromocytomas (PHEOs) are due to mutations of the SDHx subunits. Gastrointestinal stromal tumors (GISTs) associated with SDH deficiency are negative for KIT/PDGFRA mutations and present with distinctive clinical features such as early onset (usually childhood or adolescence) and almost exclusively gastric location. SDH-deficient GISTs may be part of distinct clinical syndromes, Carney-Stratakis syndrome (CSS) or dyad and Carney triad (CT). CSS is also known as the dyad of GIST and PGL; it affects both genders equally and is inherited in an autosomal dominant manner with incomplete penetrance. CT is a very rare disease; PGL, GIST and pulmonary chondromas constitute CT which shows female predilection and may be a mosaic disorder. Even though there is some overlap between CT and CSS, as both are due to SDH deficiency, CSS is caused by inactivating germline mutations in genes encoding for the SDH subunits, while CT is mostly caused by a specific pattern of methylation of the SDHC gene and may be due to germline mosaicism of the responsible genetic defect.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nikolaos Settas
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Fabio R. Faucz,
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
41
|
Hsu MY, Mina E, Roetto A, Porporato PE. Iron: An Essential Element of Cancer Metabolism. Cells 2020; 9:cells9122591. [PMID: 33287315 PMCID: PMC7761773 DOI: 10.3390/cells9122591] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells undergo considerable metabolic changes to foster uncontrolled proliferation in a hostile environment characterized by nutrient deprivation, poor vascularization and immune infiltration. While metabolic reprogramming has been recognized as a hallmark of cancer, the role of micronutrients in shaping these adaptations remains scarcely investigated. In particular, the broad electron-transferring abilities of iron make it a versatile cofactor that is involved in a myriad of biochemical reactions vital to cellular homeostasis, including cell respiration and DNA replication. In cancer patients, systemic iron metabolism is commonly altered. Moreover, cancer cells deploy diverse mechanisms to increase iron bioavailability to fuel tumor growth. Although iron itself can readily participate in redox reactions enabling vital processes, its reactivity also gives rise to reactive oxygen species (ROS). Hence, cancer cells further rely on antioxidant mechanisms to withstand such stress. The present review provides an overview of the common alterations of iron metabolism occurring in cancer and the mechanisms through which iron promotes tumor growth.
Collapse
Affiliation(s)
- Myriam Y. Hsu
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Erica Mina
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy
- Correspondence: (A.R.); (P.E.P.)
| | - Paolo E. Porporato
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
- Correspondence: (A.R.); (P.E.P.)
| |
Collapse
|
42
|
MacFarlane J, Seong KC, Bisambar C, Madhu B, Allinson K, Marker A, Warren A, Park SM, Giger O, Challis BG, Maher ER, Casey RT. A review of the tumour spectrum of germline succinate dehydrogenase gene mutations: Beyond phaeochromocytoma and paraganglioma. Clin Endocrinol (Oxf) 2020; 93:528-538. [PMID: 32686200 DOI: 10.1111/cen.14289] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
The citric acid cycle, also known as the Krebs cycle, plays an integral role in cellular metabolism and aerobic respiration. Mutations in genes encoding the citric acid cycle enzymes succinate dehydrogenase, fumarate hydratase and malate dehydrogenase all predispose to hereditary tumour syndromes. The succinate dehydrogenase enzyme complex (SDH) couples the oxidation of succinate to fumarate in the citric acid cycle and the reduction of ubiquinone to ubiquinol in the electron transport chain. A loss of function in the succinate dehydrogenase (SDH) enzyme complex is most commonly caused by an inherited mutation in one of the four SDHx genes (SDHA, SDHB, SDHC and SDHD). This mechanism was first implicated in familial phaeochromocytoma and paraganglioma. However, over the past two decades the spectrum of tumours associated with SDH deficiency has been extended to include gastrointestinal stromal tumours (GIST), renal cell carcinoma (RCC) and pituitary adenomas. The aim of this review is to describe the extended tumour spectrum associated with SDHx gene mutations and to consider how functional tests may help to establish the role of SDHx mutations in new or unexpected tumour phenotypes.
Collapse
Affiliation(s)
- James MacFarlane
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Keat Cheah Seong
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Chad Bisambar
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Basetti Madhu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Alison Marker
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Anne Warren
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Olivier Giger
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Pathology, Cambridge University, Cambridge, UK
| | - Benjamin G Challis
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| |
Collapse
|
43
|
Weng X, Zheng S, Shui H, Lin G, Zhou Y. TUFM-knockdown inhibits the migration and proliferation of gastrointestinal stromal tumor cells. Oncol Lett 2020; 20:250. [PMID: 32994813 PMCID: PMC7509754 DOI: 10.3892/ol.2020.12113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common pathologic type of mesenchymal tumor in the digestive tract. Patients with GIST face the risk of metastasis, postoperative recurrence and imatinib mesylate (IM) resistance. Mitochondrial Tu translation elongation factor (TUFM) is highly expressed in GISTs, and is associated with oncogenesis, progression and prognosis. There is evidence that TUFM is involved in tumor invasion and metastasis. However, the effect of TUFM on GIST-T1 cells and the IM-resistant GIST-IR cell line remains unclear. The present study aimed to evaluate the effects of TUFM on the proliferation, migration and apoptosis of GIST cells in vitro. TUFM short hairpin (sh)RNA expression plasmids were transfected into GIST-T1 and GIST-IR cells by electroporation. The expression levels of enhanced green fluorescent protein were observed by fluorescence microscopy to evaluate the electroporation efficiency. The expression levels of TUFM were detected by western blot analysis and reverse transcription-quantitative PCR. Cell proliferation was assessed by counting cells and using a Cell Counting Kit-8 assay. Cell migration was analyzed using wound healing and Transwell migration assays. Cell cycle distribution and late apoptosis were assessed by flow cytometry. TUFM shRNA expression plasmids were successfully transfected into the GIST cell line by electroporation. The transfection efficiency was >75%, and the TUFM gene silencing efficiency was 73.2±1.4%. TUFM-knockdown decreased the proliferation and migration capacity of GIST-T1 and GIST-IR cells. The proportion of cells in the pre-G1 stage was increased without change in the proportions of cells in the G1, S and G2/M stages after TUFM silencing in GIST-T1 and GIST-IR cells. TUFM may be related to GIST infiltration and metastatic recurrence, suggesting that TUFM may be an effective target for preventing the progression and metastasis of GISTs.
Collapse
Affiliation(s)
- Xiaoyuan Weng
- Department of Surgery, Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, Fujian 362010, P.R. China
| | - Song Zheng
- Department of Medical Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang Chinese Medical University Affiliated Hangzhou First Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Hanli Shui
- Department of Gastric Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Guosheng Lin
- Department of Gastric Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yongjian Zhou
- Department of Gastric Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
44
|
Ranganayaki S, Govindaraj P, Gayathri N, Srinivas Bharath MM. Exposure to the neurotoxin 3-nitropropionic acid in neuronal cells induces unique histone acetylation pattern: Implications for neurodegeneration. Neurochem Int 2020; 140:104846. [PMID: 32927024 DOI: 10.1016/j.neuint.2020.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Mitochondrial dysfunction is critical for neurodegeneration in movement disorders. Neurotoxicological models recapitulating movement disorder involve mitochondrial damage including inhibition of mitochondrial complexes. Previously, we demonstrated that neurotoxic models of Parkinson's disease and Manganism showed distinct morphological, electrophysiological and molecular profile indicating disease-specific characteristics. In a recent study, we demonstrated that the transcriptomic changes triggered by the neurotoxic mitochondrial complex II inhibitor 3-nitropropionic acid (3-NPA), was significantly different from the profile induced by the neurotoxic mitochondrial complex I inhibitor 1-methyl-4- phenylpyridinium (MPP+) and mitochondrial toxin Manganese (Mn). Among the plausible pathways, we surmised that epigenetic mechanisms could contribute to 3-NPA specific transcriptomic profile. To address this, we assessed global and individual lys-specific acetylation profile of Histone H3 and H4 in the 3-NPA neuronal cell model. Our data revealed histone acetylation profile unique to the 3-NPA model that was not noted in the MPP+ and Mn models. Among the individual lys, Histone H3K56 showed robust dose and time-dependent hyperacetylation in the 3-NPA model. Chromatin Immunoprecipitation-sequencing (ChIP-seq) revealed that acetylated H3K56 was associated with 13072 chromatin sites, which showed increased occupancy in the transcription start site-promoter site. Acetylated histone H3K56 was associated with 1747 up-regulated and 263 down-regulated genes in the 3-NPA model, which included many up-regulated autophagy and mitophagy genes. Western analysis validated the involvement of PINK1-Parkin dependent mitophagy in the 3-NPA model. We propose that 3-NPA specific chromatin dynamics could contribute to the unique transcriptomic profile with implications for movement disorders.
Collapse
Affiliation(s)
- S Ranganayaki
- Department of Neurochemistry, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - N Gayathri
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
45
|
Tretiakova MS. Renal Cell Tumors: Molecular Findings Reshaping Clinico-pathological Practice. Arch Med Res 2020; 51:799-816. [PMID: 32839003 DOI: 10.1016/j.arcmed.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, the number of subtypes of renal epithelial cell neoplasia has grown. This growth has resulted from detailed histological and immunohistochemical characterization of these tumors and their correlation with clinical outcomes. Distinctive molecular phenotypes have validated the unique nature of many of these tumors. This growth of unique renal neoplasms has continued after the 2016 World Health Organization (WHO) Classification of Tumours. A consequence is that both the pathologists who diagnose the tumors and the clinicians who care for these patients are confronted with a bewildering array of renal cell carcinoma variants. Many of these variants have important clinical features, i.e. familial or syndromic associations, genomics alterations that can be targeted with systemic therapy, and benignancy of tumors previously classified as carcinomas. Our goal in the review is to provide a practical guide to help recognize these variants, based on small and distinct sets of histological features and limited numbers of immunohistochemical stains, supplemented, as necessary, with molecular features.
Collapse
Affiliation(s)
- Maria S Tretiakova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
46
|
Williamson SR, Gill AJ, Argani P, Chen YB, Egevad L, Kristiansen G, Grignon DJ, Hes O. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: III: Molecular Pathology of Kidney Cancer. Am J Surg Pathol 2020; 44:e47-e65. [PMID: 32251007 PMCID: PMC7289677 DOI: 10.1097/pas.0000000000001476] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) subtypes are increasingly being discerned via their molecular underpinnings. Frequently this can be correlated to histologic and immunohistochemical surrogates, such that only simple targeted molecular assays, or none at all, are needed for diagnostic confirmation. In clear cell RCC, VHL mutation and 3p loss are well known; however, other genes with emerging important roles include SETD2, BAP1, and PBRM1, among others. Papillary RCC type 2 is now known to include likely several different molecular entities, such as fumarate hydratase (FH) deficient RCC. In MIT family translocation RCC, an increasing number of gene fusions are now described. Some TFE3 fusion partners, such as NONO, GRIPAP1, RBMX, and RBM10 may show a deceptive fluorescence in situ hybridization result due to the proximity of the genes on the same chromosome. FH and succinate dehydrogenase deficient RCC have implications for patient counseling due to heritable syndromes and the aggressiveness of FH-deficient RCC. Immunohistochemistry is increasingly available and helpful for recognizing both. Emerging tumor types with strong evidence for distinct diagnostic entities include eosinophilic solid and cystic RCC and TFEB/VEGFA/6p21 amplified RCC. Other emerging entities that are less clearly understood include TCEB1 mutated RCC, RCC with ALK rearrangement, renal neoplasms with mutations of TSC2 or MTOR, and RCC with fibromuscular stroma. In metastatic RCC, the role of molecular studies is not entirely defined at present, although there may be an increasing role for genomic analysis related to specific therapy pathways, such as for tyrosine kinase or MTOR inhibitors.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/diagnosis
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Kidney Neoplasms/diagnosis
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mutation
- Neoplasm Metastasis
- Neoplastic Syndromes, Hereditary/diagnosis
- Neoplastic Syndromes, Hereditary/genetics
- Neoplastic Syndromes, Hereditary/metabolism
- Neoplastic Syndromes, Hereditary/pathology
- Pathology, Clinical
- Pathology, Molecular
- Prognosis
- Societies, Medical
- Urology
Collapse
Affiliation(s)
- Sean R Williamson
- Department of Pathology and Laboratory Medicine and Henry Ford Cancer Institute, Henry Ford Health System
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI
| | - Anthony J Gill
- NSW Health Pathology, Department of Anatomical Pathology
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - David J Grignon
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Ondrej Hes
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Pilsen, Czechia
| |
Collapse
|
47
|
Wallace PW, Conrad C, Brückmann S, Pang Y, Caleiras E, Murakami M, Korpershoek E, Zhuang Z, Rapizzi E, Kroiss M, Gudziol V, Timmers HJ, Mannelli M, Pietzsch J, Beuschlein F, Pacak K, Robledo M, Klink B, Peitzsch M, Gill AJ, Tischler AS, de Krijger RR, Papathomas T, Aust D, Eisenhofer G, Richter S. Metabolomics, machine learning and immunohistochemistry to predict succinate dehydrogenase mutational status in phaeochromocytomas and paragangliomas. J Pathol 2020; 251:378-387. [PMID: 32462735 DOI: 10.1002/path.5472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/28/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022]
Abstract
Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours with a hereditary background in over one-third of patients. Mutations in succinate dehydrogenase (SDH) genes increase the risk for PPGLs and several other tumours. Mutations in subunit B (SDHB) in particular are a risk factor for metastatic disease, further highlighting the importance of identifying SDHx mutations for patient management. Genetic variants of unknown significance, where implications for the patient and family members are unclear, are a problem for interpretation. For such cases, reliable methods for evaluating protein functionality are required. Immunohistochemistry for SDHB (SDHB-IHC) is the method of choice but does not assess functionality at the enzymatic level. Liquid chromatography-mass spectrometry-based measurements of metabolite precursors and products of enzymatic reactions provide an alternative method. Here, we compare SDHB-IHC with metabolite profiling in 189 tumours from 187 PPGL patients. Besides evaluating succinate:fumarate ratios (SFRs), machine learning algorithms were developed to establish predictive models for interpreting metabolite data. Metabolite profiling showed higher diagnostic specificity compared to SDHB-IHC (99.2% versus 92.5%, p = 0.021), whereas sensitivity was comparable. Application of machine learning algorithms to metabolite profiles improved predictive ability over that of the SFR, in particular for hard-to-interpret cases of head and neck paragangliomas (AUC 0.9821 versus 0.9613, p = 0.044). Importantly, the combination of metabolite profiling with SDHB-IHC has complementary utility, as SDHB-IHC correctly classified all but one of the false negatives from metabolite profiling strategies, while metabolite profiling correctly classified all but one of the false negatives/positives from SDHB-IHC. From 186 tumours with confirmed status of SDHx variant pathogenicity, the combination of the two methods resulted in 185 correct predictions, highlighting the benefits of both strategies for patient management. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Paal W Wallace
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Catleen Conrad
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sascha Brückmann
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ying Pang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo Caleiras
- Histopathology Core Unit, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro, Madrid, Spain
| | - Masanori Murakami
- Medizinische Klinik and Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Esther Korpershoek
- Department of Pathology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matthias Kroiss
- Department of Internal Medicine, Division of Endocrinology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Volker Gudziol
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Hals-Chirurgie, Plastische Operationen, Städtisches Klinikum Dresden, Akademisches Lehrkrankenhaus der Technischen Universität Dresden, Dresden, Germany.,Departments of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Henri Jlm Timmers
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Massimo Mannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Felix Beuschlein
- Medizinische Klinik and Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany.,Department for Endocrinology, Diabetology and Clinical Nutrition, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, CNIO, Madrid, Spain and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Barbara Klink
- Institute for Clinical Genetics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anthony J Gill
- Royal North Shore Hospital, Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Sydney, Australia.,School of Medicine, University of Sydney, Sydney, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Australia
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Daniela Aust
- Institute of Pathology, Tumor and Normal Tissue Bank of the UCC/NCT Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Medicine III, University Hospital Dresden, Dresden, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
48
|
Martins RG, Cunha N, Simões H, Matos MJ, Silva J, Torres I, Rodrigues F, Leite V, Teixeira MR, Bugalho MJ. Surveillance of succinate dehydrogenase gene mutation carriers: Insights from a nationwide cohort. Clin Endocrinol (Oxf) 2020; 92:545-553. [PMID: 32181896 DOI: 10.1111/cen.14184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Mutations in the genes coding for succinate dehydrogenase (SDHx) are the most frequent germline alterations in pheochromocytomas and paragangliomas. Evidence for the advantages associated with presymptomatic screening for SDHx mutation carriers is scarce. This study describes a nationwide cohort of these mutation carriers and aims to compare patients with clinical manifestations of the disease and those diagnosed through genetic screening. DESIGN Cross-sectional study. PATIENTS SDHx mutation carriers (n = 118) followed through the Portuguese Oncology referral centres: 41 probands and 77 nonprobands. MEASUREMENTS All participants were subjected to biochemical and body imaging examinations for a complete assessment of the extent and spread of disease. Clinical data obtained this way were further analysed. RESULTS The mean age of this cohort was 44.5 ± 17.4 years, and more than half carried the same founder SDHB mutation. About 50.8% of the mutation carriers developed pheochromocytomas or paragangliomas. Compared to patients diagnosed through genetic screening, those diagnosed clinically were characterized by larger tumours (P < .001), more frequent metastases (P = .024), were more frequently subjected to surgery (P = .011) and radiotherapy (P = .013), and had worse outcomes, such as macroscopic positive margins (P = .034). Persistent and/or unresectable disease and disease-related mortality were also more frequent in symptomatic patients compared to those diagnosed through genetic screening (P = .014). CONCLUSIONS In this nationwide cohort study, a large proportion of mutation carriers were found to develop SDHx-related neoplasia. Genetic testing and subsequent follow-up resulted in the diagnosis of smaller and nonmetastatic tumours, fewer treatment procedures, fewer complications and greater number of disease-free patients.
Collapse
Affiliation(s)
- Raquel G Martins
- Endocrinology Department, Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
- Medical Psychology Unit, Department of Clinical Neurosciences and Mental Health, School of Medicine, University of Porto, Porto, Portugal
- Research Centre, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Nuno Cunha
- Clinical Laboratory Department, Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
| | - Helder Simões
- Endocrinology Department, Portuguese Oncology Institute of Lisbon, Lisbon, Portugal
- Faculty of Medical Sciences, Nova Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Maria João Matos
- Endocrinology Department, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - João Silva
- Genetics Department and Research Centre, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Isabel Torres
- Endocrinology Department, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Fernando Rodrigues
- Endocrinology Department, Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
| | - Valeriano Leite
- Endocrinology Department, Portuguese Oncology Institute of Lisbon, Lisbon, Portugal
- Faculty of Medical Sciences, Nova Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Manuel R Teixeira
- Genetics Department and Research Centre, Portuguese Oncology Institute of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Maria João Bugalho
- Endocrinology, Diabetes and Metabolism Department, CHULN-Hospital Santa Maria, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
49
|
Chen H, Yao W, He Q, Yu X, Bian B. Identification of a novel SDHB c.563 T > C mutation responsible for Paraganglioma syndrome and genetic analysis of the SDHB gene in China: a case report. BMC MEDICAL GENETICS 2020; 21:116. [PMID: 32460727 PMCID: PMC7254674 DOI: 10.1186/s12881-020-01049-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/11/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Pheochromocytoma/paraganglioma (PPGL) is a rare neuroendocrine tumor. Succinate dehydrogenase (SDH) deficiency has been confirmed to be associated with PPGL in various studies. SDHB mutations play an important role in PPGL. However, genetic screening of PPGL patients has not been widely carried out in clinics in China, and only a few related studies have been reported. CASE PRESENTATION We report a case of a 23-year-old woman with paraganglioma (PGL) caused by a novel missense SDHB mutation, c.563 T > C (p.Leu188Pro), who presented with paroxysmal hypertension. Computed tomography (CT) and magnetic resonance imaging (MRI) revealed a PGL in the right retroperitoneum and no metastasis. The patient was treated with surgical excision and did not have postsurgerical paroxysmal hypertension. In addition, we searched the literature related to variations in SDHB genes in Chinese patients with PPGL using multiple online databases, including PubMed, China Hospital Knowledge Database and Wanfang Data. Ultimately, 14 studies (published between 2006 and 2019) comprising 34 cases of SDHB-related PGL or pheochromocytoma (PCC) were found. In total, 35 patients were enrolled in this study, and 25 mutations were identified. The common genetic alterations of SDHB in China were c.136C > T (11.4%), c.18C > A (11.4%) and c.725G > A (8.5%). Some carriers of SDHB mutations (28.1%) developed metastatic PPGL, and a high frequency of head and neck PGLs (HNPGLs) (59.4%) was reported. CONCLUSIONS We describe a classic case with a novel SDHB c.563 T > C mutation. Based on our literature review, common SDHB gene mutations in Chinese PPGL patients are c.136C > T, c.18C > A and c.725G > A.
Collapse
Affiliation(s)
- Heye Chen
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Wei Yao
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Xuefang Yu
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Bo Bian
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, 300070, China.
| |
Collapse
|
50
|
Ozcan A, Erdogan S, Truong LD. Hereditary Syndromes Associated with Kidney Tumors. KIDNEY CANCER 2020. [DOI: 10.1007/978-3-030-28333-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|