1
|
Arteaga GM, Crow S. End organ perfusion and pediatric microcirculation assessment. Front Pediatr 2023; 11:1123405. [PMID: 37842022 PMCID: PMC10576530 DOI: 10.3389/fped.2023.1123405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Cardiovascular instability and reduced oxygenation are regular perioperative critical events associated with anesthesia requiring intervention in neonates and young infants. This review article addresses the current modalities of assessing this population's adequate end-organ perfusion in the perioperative period. Assuring adequate tissue oxygenation in critically ill infants is based on parameters that measure acceptable macrocirculatory hemodynamic parameters such as vital signs (mean arterial blood pressure, heart rate, urinary output) and chemical parameters (lactic acidosis, mixed venous oxygen saturation, base deficit). Microcirculation assessment represents a promising candidate for assessing and improving hemodynamic management strategies in perioperative and critically ill populations. Evaluation of the functional state of the microcirculation can parallel improvement in tissue perfusion, a term coined as "hemodynamic coherence". Less information is available to assess microcirculatory disturbances related to higher mortality risk in critically ill adults and pediatric patients with septic shock. Techniques for measuring microcirculation have substantially improved in the past decade and have evolved from methods that are limited in scope, such as velocity-based laser Doppler and near-infrared spectroscopy, to handheld vital microscopy (HVM), also referred to as videomicroscopy. Available technologies to assess microcirculation include sublingual incident dark field (IDF) and sublingual sidestream dark field (SDF) devices. This chapter addresses (1) the physiological basis of microcirculation and its relevance to the neonatal and pediatric populations, (2) the pathophysiology associated with altered microcirculation and endothelium, and (3) the current literature reviewing modalities to detect and quantify the presence of microcirculatory alterations.
Collapse
Affiliation(s)
- Grace M. Arteaga
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| | - Sheri Crow
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| |
Collapse
|
2
|
A novel non-invasive method of measuring microcirculatory perfusion and blood velocity in infants: a pilot study. Sci Rep 2022; 12:7459. [PMID: 35523975 PMCID: PMC9076848 DOI: 10.1038/s41598-022-10911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Current haemodynamic monitoring is mainly aimed at the macrocirculation. Multiple studies have demonstrated the importance of the microcirculation in relation to the patient’s condition and impact of treatment strategies. However, continuous monitoring of the microcirculation is not yet possible in the neonatal field. A novel dynamic light scattering (DLS) sensor technology for continuous monitoring of the microcirculation was investigated in the neonatal population. Thirty-one haemodynamically stable infants were included. Sequential measurements at the forehead, upper extremity, thorax, abdomen and lower extremity were conducted with the DLS sensor. For analyses stable measurements were selected. The DLS parameters, total blood flow (TBF) and relative blood velocity (RBV), were compared between measurement locations. Changes in relative haemodynamic indices (relHIs), indicating the distribution of blood flow in the microcirculatory blood vessels, were associated with heart rate decelerations. Measurements performed at the forehead had significantly lower TBF levels, compared to measurements at other locations. Early changes in relHIs around a heart rate deceleration were recorded a median (IQR) of 22.0 (13.5–27.0) s before the onset. Measurement of the currently unavailable parameters TBF, RBV and relHIs is possible with DLS technology. Validation of the DLS technology is needed for clinical implementation.
Collapse
|
3
|
Hwang M, Haddad S, Tierradentro-Garcia LO, Alves CA, Taylor GA, Darge K. Current understanding and future potential applications of cerebral microvascular imaging in infants. Br J Radiol 2022; 95:20211051. [PMID: 35143338 PMCID: PMC10993979 DOI: 10.1259/bjr.20211051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 01/09/2023] Open
Abstract
Microvascular imaging is an advanced Doppler ultrasound technique that detects slow flow in microvessels by suppressing clutter signal and motion-related artifacts. The technique has been applied in several conditions to assess organ perfusion and lesion characteristics. In this pictorial review, we aim to describe current knowledge of the technique, particularly its diagnostic utility in the infant brain, and expand on the unexplored but promising clinical applications of microvascular imaging in the brain with case illustrations.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
USA
- Department of Radiology, Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, USA
| | - Sophie Haddad
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
USA
| | | | - Cesar Augusto Alves
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
USA
| | - George A. Taylor
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
USA
- Department of Radiology, Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, USA
- Department of Radiology, Boston Children’s
Hospital, Boston,
USA
| | - Kassa Darge
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
USA
- Department of Radiology, Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, USA
| |
Collapse
|
4
|
Fernández-Sarmiento J, Flórez S, Alarcón-Forero LC, Salazar-Peláez LM, Garcia-Casallas J, Mulett H, Acevedo L, Salamanca C. Case Report: Endothelial Glycocalyx Damage in Critically ill Patients With SARS-CoV-2-Related Multisystem Inflammatory Syndrome (MIS-C). Front Pediatr 2021; 9:726949. [PMID: 34552899 PMCID: PMC8451682 DOI: 10.3389/fped.2021.726949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022] Open
Abstract
Endothelial insult and damage is one of the reported consequences of SARS-CoV-2 infection. It has been associated with severe inflammation, thrombotic phenomena and profound hypoxemia in critically ill patients. Endothelial activation leads to a loss of the endothelium's antithrombotic properties which, under normal conditions, are maintained by the endothelial glycocalyx, a carbohydrate-rich layer that covers the luminal surface of endothelial cells. In children, one of the serious forms of SARS-CoV-2 virus disease (COVID-19) is multisystem inflammatory syndrome (MIS-C). This new disease is characterized by a large inflammatory response and frequent cardiovascular, cutaneous and gastrointestinal disorders. We describe the first two cases of critically ill children with MIS-C who evidenced a large inflammatory response associated with elevated plasma and imaging biomarkers of endothelial activation and endothelial glycocalyx degradation. This microcirculation involvement in MIS-C could, at least partially, explain some of the clinical manifestations and laboratory and imaging alterations found in these patients. These findings contribute to a better understanding of this disease and suggest that medications to modulate the inflammatory response and protect or restore the endothelial glycocalyx should be considered in future studies.
Collapse
Affiliation(s)
- Jaime Fernández-Sarmiento
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de la Sabana, Bogotá, Colombia.,Graduate School, Universidad CES, Medellín, Colombia
| | - Steffanie Flórez
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de la Sabana, Bogotá, Colombia
| | - Laura C Alarcón-Forero
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de la Sabana, Bogotá, Colombia
| | | | - Julio Garcia-Casallas
- Department of Pharmacology and Internal Medicine, Universidad de la Sabana, Chia, Colombia
| | - Hernando Mulett
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de la Sabana, Bogotá, Colombia
| | - Lorena Acevedo
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de la Sabana, Bogotá, Colombia
| | - Carolina Salamanca
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de la Sabana, Bogotá, Colombia
| |
Collapse
|
5
|
Radman M, McGuire J, Zimmerman J. Childhood Obesity, Endothelial Cell Activation, and Critical Illness. Front Pediatr 2020; 8:441. [PMID: 32850554 PMCID: PMC7419464 DOI: 10.3389/fped.2020.00441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Pediatric obesity is increasing in prevalence and is frequently an antecedent to adult obesity and adult obesity-associated morbidities such as atherosclerosis, type II diabetes, and chronic metabolic syndrome. Endothelial cell activation, one aspect of inflammation, is present in the early stages of atherosclerosis, often prior to the onset of symptoms. Endothelial activation is a pathological condition in which vasoconstricting, pro-thrombotic, and proliferative mediators predominate protective vasodilating, anti-thrombogenic, and anti-mitogenic mediators. Many studies report poor outcomes among obese children with systemic endothelial activation. Likewise, the link between childhood obesity and poor outcomes in critical illness is well-established. However, the link between obesity and severity of endothelial activation specifically in the setting of critical illness is largely unstudied. Although endothelial cell activation is believed to worsen disease in critically ill children, the nature and extent of this response is poorly understood due to the difficulty in measuring endothelial cell dysfunction and destruction. Based on the data available for the obese, asymptomatic population and the obese, critically ill population, the authors posit that obesity, and obesity-associated chronic inflammation, including oxidative stress and insulin resistance, may contribute to endothelial activation and associated worse outcomes among critically ill children. A research agenda to examine this hypothesis is suggested.
Collapse
Affiliation(s)
- Monique Radman
- Seattle Children's Hospital, Pediatric Critical Care, University of Washington, Seattle, WA, United States
| | - John McGuire
- Seattle Children's Hospital, Pediatric Critical Care, University of Washington, Seattle, WA, United States
| | - Jerry Zimmerman
- Seattle Children's Hospital, Pediatric Critical Care, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Fortin-Pellerin E, Khoo NS, Coe JY, Mills L, Cheung PY, Hornberger LK. Effects of Early Myocardial Postnatal Maturation on Tolerance to Atrial Tachycardia With Altered Loading Conditions: An in vivo Swine Model. Front Pediatr 2020; 8:346. [PMID: 32671005 PMCID: PMC7330128 DOI: 10.3389/fped.2020.00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
Post-natal maturation of the myocardium starts shortly after birth and could affect how clinicians should provide hemodynamic support during this transition. Our aim was to assess the impact of post-natal maturation on tolerance to tachycardia with altered loading condition in a piglet model. Methods: We report three series of experimentations. Six groups of landrace cross neonatal piglets (NP) (1-3 days) and young piglets (YP) (14-17 days) were assigned to tachycardia (NP, YP), tachycardia and hypervolemia (NPV, YPV) or tachycardia and increased afterload (NPA, YPA) groups (n = 7/group). Under anesthesia, a pressure catheter was placed in the left ventricle and pacing wire in the right atrium. NPV and YPV groups had 60 ml/kg of normal saline infused over 20 min. NPA and YPA had balloon sub-occlusion of the descending aorta. Heart rate was increased by 10 bpm increments to 300 bpm. Left ventricular output was measured by echocardiography. Results: NP maintained left ventricular output throughout the pacing protocol but it decreased in the YP (p < 0.001). With volume loading both NPV and YPV maintained their output with tachycardia. Although increased afterload resulted in reduced output during tachycardia in NPA (p = 0.005), there was no added impact on output in YPA. Interestingly, 4 of 7 NPV had significant desaturation at 300 bpm (baseline 99.7% vs. 300 bpm 87.9%, p = 0.04), associated with a right to left shunt through the patent foramen ovale which resolved immediately on cessation of pacing. Conclusions: Early post-natal maturation is associated with improved myocardial tolerance to increased afterload and poor tolerance of tachycardia, the latter of which may be alleviated by increasing intravascular volume. These data could translate into the development of better strategies to optimize cardiac output at these early development ages.
Collapse
Affiliation(s)
- Etienne Fortin-Pellerin
- Division of Neonatology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nee S Khoo
- Fetal and Neonatal Cardiology Program, University of Alberta, Edmonton, AB, Canada.,Division of Cardiology, University of Alberta, Edmonton, AB, Canada
| | - James Y Coe
- Division of Cardiology, University of Alberta, Edmonton, AB, Canada
| | - Lindsay Mills
- Fetal and Neonatal Cardiology Program, University of Alberta, Edmonton, AB, Canada
| | - Po-Yin Cheung
- Departments of Pediatrics & Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Lisa K Hornberger
- Fetal and Neonatal Cardiology Program, University of Alberta, Edmonton, AB, Canada.,Division of Cardiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|