1
|
Zhang Y, Li Z, Wang H, Pei Z, Zhao S. Molecular biomarkers of diffuse axonal injury: recent advances and future perspectives. Expert Rev Mol Diagn 2024; 24:39-47. [PMID: 38183228 DOI: 10.1080/14737159.2024.2303319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as β-Amyloid precursor protein, neurofilaments, S-100β, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.
Collapse
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyong Pei
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Liang Y, Tong F, Zhang L, Zhu L, Li W, Huang W, Zhao S, He G, Zhou Y. iTRAQ-based proteomic analysis discovers potential biomarkers of diffuse axonal injury in rats. Brain Res Bull 2019; 153:289-304. [PMID: 31539556 DOI: 10.1016/j.brainresbull.2019.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/19/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
Diffuse axonal injury (DAI) is one of the most common and severe pathological consequences of traumatic brain injury (TBI). The molecular mechanism of DAI is highly complicated and still elusive, yet a clear understanding is crucial for the diagnosis, treatment, and prognosis of DAI. In our study, we used rats to establish a DAI model and applied isobaric tags for relative and absolute quantitation (iTRAQ) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify differentially expressed proteins (DEPs) in the corpus callosum. As a result, a total of 514 proteins showed differential expression between the injury groups and the control. Among these DEPs, 14 common DEPs were present at all seven time points postinjury (1, 3, 6, 12, 24, 48, and 72 h). Next, bioinformatic analysis was performed to elucidate the pathogenesis of DAI, which was found to possibly involve calcium ion-regulatory proteins (e.g., calsenilin and ryanodine receptor 2), cytoskeleton organization (e.g., peripherin, NFL, NFM, and NFH), apoptotic processes (e.g., calsenilin and protein kinase C delta type), and inflammatory response proteins (e.g., complement C3 and C-reactive protein). Moreover, peripherin and calsenilin were successfully confirmed by western blotting to be significantly upregulated during DAI, and immunohistochemical (IHC) analysis revealed that their expression increased and could be observed in axons after injury, thus indicating their potential as DAI biomarkers. Our experiments not only provide insight into the molecular mechanisms of axonal injury in rats during DAI but also give clinicians and pathologists important reference data for the diagnosis of DAI. Our findings may expand the list of DAI biomarkers and improve the postmortem diagnostic rate of DAI.
Collapse
Affiliation(s)
- Yue Liang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Fang Tong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Lin Zhang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Longlong Zhu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Wenhe Li
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Weisheng Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Shuquan Zhao
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| | - Guanglong He
- Institute of Forensic Science, Ministry of Public Security People's Republic of China, No. 17 Nanli Mulidi, Beijing, 100038, PR China.
| | - Yiwu Zhou
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical College, No. 13 Hangkong Road, Hankou, Wuhan, 430030, PR China.
| |
Collapse
|
3
|
Cameron S, Gillio-Meina C, Ranger A, Choong K, Fraser DD. Collection and Analyses of Cerebrospinal Fluid for Pediatric Translational Research. Pediatr Neurol 2019; 98:3-17. [PMID: 31280949 DOI: 10.1016/j.pediatrneurol.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
Abstract
Cerebrospinal fluid sample collection and analysis is imperative to better elucidate central nervous system injury and disease in children. Sample collection methods are varied and carry with them certain ethical and biologic considerations, complications, and contraindications. Establishing best practices for sample collection, processing, storage, and transport will ensure optimal sample quality. Cerebrospinal fluid samples can be affected by a number of factors including subject age, sampling method, sampling location, volume extracted, fraction, blood contamination, storage methods, and freeze-thaw cycles. Indicators of sample quality can be assessed by matrix-associated laser desorption/ionization time-of-flight mass spectrometry and include cystatin C fragments, oxidized proteins, prostaglandin D synthase, and evidence of blood contamination. Precise documentation of sample collection processes and the establishment of meticulous handling procedures are essential for the creation of clinically relevant biospecimen repositories. In this review we discuss the ethical considerations and best practices for cerebrospinal fluid collection, as well as the influence of preanalytical factors on cerebrospinal fluid analyses. Cerebrospinal fluid biomarkers in highly researched pediatric diseases or disorders are discussed.
Collapse
Affiliation(s)
| | | | - Adrianna Ranger
- Pediatrics, Western University, London, Ontario, Canada; Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Karen Choong
- Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Douglas D Fraser
- Pediatrics, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Clinical Neurological Sciences, Western University, London, Ontario, Canada; Physiology and Pharmacology, Western University, London, Ontario, Canada; Translational Research Centre, London, Ontario, Canada.
| |
Collapse
|
4
|
Håkansson I, Gouveia-Figueira S, Ernerudh J, Vrethem M, Ghafouri N, Ghafouri B, Nording M. Oxylipins in cerebrospinal fluid in clinically isolated syndrome and relapsing remitting multiple sclerosis. Prostaglandins Other Lipid Mediat 2018; 138:41-47. [PMID: 30118859 DOI: 10.1016/j.prostaglandins.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 01/19/2023]
Abstract
Although oxylipins are involved in inflammation, data on these lipid mediators in multiple sclerosis are sparse. In this study, a panel of oxylipins were analysed swith liquid chromatography tandem mass spectrometry in cerebrospinal fluid (CSF) from 41 treatment naïve patients with clinically isolated syndrome (CIS) or relapsing remitting MS (RRMS) and 22 healthy controls. CSF levels of 9-hydroxyoctadecadienoic acid (9-HODE) and 13-hydroxyoctadecadienoic acid (13-HODE) were significantly higher in patients than in healthy controls (9-HODE median 380 nM (interquartile range 330-450 nM) in patients and 290 nM (interquartile range 250-340 nM) in controls, 13-HODE median 930 nM (interquartile range 810-1080 nM) in patients and 690 nM (interquartile range 570-760 nM) in controls, p < 0.001 in Mann-Whitney U tests). 9-HODE and 13-HODE performed well for separation of patients and healthy controls (AUC 0.85 and 0.88, respectively, in ROC curve analysis). However, baseline CSF levels of the oxylipins did not differ between patients with signs of disease activity during one, two and four years of follow-up and patients without. In conclusion, this study indicates that 9-HODE and 13-HODE levels are increased in CSF from CIS and RRMS patients compared with healthy controls, but does not support 9-HODE or 13-HODE as prognostic biomarkers of disease activity in patients during follow-up.
Collapse
Affiliation(s)
- Irene Håkansson
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Magnus Vrethem
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Nazdar Ghafouri
- Pain and Rehabilitation Centre and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Malin Nording
- Department of Chemistry, Umeå University, Umeå, Sweden; Department of Entomology and Nematology, University of California, Davis, USA
| |
Collapse
|
5
|
Kwon BK, Streijger F, Fallah N, Noonan VK, Bélanger LM, Ritchie L, Paquette SJ, Ailon T, Boyd MC, Street J, Fisher CG, Dvorak MF. Cerebrospinal Fluid Biomarkers To Stratify Injury Severity and Predict Outcome in Human Traumatic Spinal Cord Injury. J Neurotrauma 2016; 34:567-580. [PMID: 27349274 DOI: 10.1089/neu.2016.4435] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neurologic impairment after spinal cord injury (SCI) is currently measured and classified by functional examination. Biological markers that objectively classify injury severity and predict outcome would greatly facilitate efforts to evaluate acute SCI therapies. The purpose of this study was to determine how well inflammatory and structural proteins within the cerebrospinal fluid (CSF) of acute traumatic SCI patients predicted American Spinal Injury Association Impairment Scale (AIS) grade conversion and motor score improvement over 6 months. Fifty acute SCI patients (29 AIS A, 9 AIS B, 12 AIS C; 32 cervical, 18 thoracic) were enrolled and CSF obtained through lumbar intrathecal catheters to analyze interleukin (IL)-6, IL-8, monocyte chemotactic protein (MCP)-1, tau, S100β, and glial fibrillary acidic protein (GFAP) at 24 h post-injury. The levels of IL-6, tau, S100β, and GFAP were significantly different between patients with baseline AIS grades of A, B, or C. The levels of all proteins (IL-6, IL-8, MCP-1, tau, S100β, and GFAP) were significantly different between those who improved an AIS grade over 6 months and those who did not improve. Linear discriminant analysis modeling was 83% accurate in predicting AIS conversion. For AIS A patients, the concentrations of proteins such as IL-6 and S100β correlated with conversion to AIS B or C. Motor score improvement also was strongly correlated with the 24-h post-injury CSF levels of all six biomarkers. The analysis of CSF can provide valuable biological information about injury severity and recovery potential after acute SCI. Such biological markers may be valuable tools for stratifying individuals in acute clinical trials where variability in spontaneous recovery requires large recruitment cohorts for sufficient power.
Collapse
Affiliation(s)
- Brian K Kwon
- 1 Department of Orthopedics, Vancouver Spine Surgery Institute , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries , Vancouver, British Columbia, Canada
| | - Femke Streijger
- 2 International Collaboration on Repair Discoveries , Vancouver, British Columbia, Canada
| | - Nader Fallah
- 3 Rick Hansen Institute , Vancouver, British Columbia, Canada .,4 Department of Medicine, University of British Columbia Vancouver , British Columbia, Canada
| | - Vanessa K Noonan
- 1 Department of Orthopedics, Vancouver Spine Surgery Institute , Vancouver, British Columbia, Canada .,3 Rick Hansen Institute , Vancouver, British Columbia, Canada
| | - Lise M Bélanger
- 5 Vancouver Spine Program, Vancouver General Hospital , Vancouver, British Columbia, Canada
| | - Leanna Ritchie
- 5 Vancouver Spine Program, Vancouver General Hospital , Vancouver, British Columbia, Canada
| | - Scott J Paquette
- 6 Department of Surgery, Vancouver Spine Surgery Institute , Vancouver, British Columbia, Canada
| | - Tamir Ailon
- 6 Department of Surgery, Vancouver Spine Surgery Institute , Vancouver, British Columbia, Canada
| | - Michael C Boyd
- 6 Department of Surgery, Vancouver Spine Surgery Institute , Vancouver, British Columbia, Canada
| | - John Street
- 1 Department of Orthopedics, Vancouver Spine Surgery Institute , Vancouver, British Columbia, Canada
| | - Charles G Fisher
- 1 Department of Orthopedics, Vancouver Spine Surgery Institute , Vancouver, British Columbia, Canada
| | - Marcel F Dvorak
- 1 Department of Orthopedics, Vancouver Spine Surgery Institute , Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Abstract
Hydrocephalus is a common disorder of cerebral spinal fluid (CSF) physiology resulting in abnormal expansion of the cerebral ventricles. Infants commonly present with progressive macrocephaly whereas children older than 2 years generally present with signs and symptoms of intracranial hypertension. The classic understanding of hydrocephalus as the result of obstruction to bulk flow of CSF is evolving to models that incorporate dysfunctional cerebral pulsations, brain compliance, and newly characterised water-transport mechanisms. Hydrocephalus has many causes. Congenital hydrocephalus, most commonly involving aqueduct stenosis, has been linked to genes that regulate brain growth and development. Hydrocephalus can also be acquired, mostly from pathological processes that affect ventricular outflow, subarachnoid space function, or cerebral venous compliance. Treatment options include shunt and endoscopic approaches, which should be individualised to the child. The long-term outcome for children that have received treatment for hydrocephalus varies. Advances in brain imaging, technology, and understanding of the pathophysiology should ultimately lead to improved treatment of the disorder.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abhaya V Kulkarni
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - David D Limbrick
- Division of Neurosurgery, St Louis Children's Hospital, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Cengiz P, Zemlan F, Eickhoff JC, Ellenbogen R, Zimmerman JJ. Increased cerebrospinal fluid cleaved tau protein (C-tau) levels suggest axonal damage in pediatric patients with brain tumors. Childs Nerv Syst 2015; 31:1313-9. [PMID: 25899850 DOI: 10.1007/s00381-015-2705-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aims to determine if cerebrospinal fluid/serum cleaved tau protein and CSF 9-hydroxyoctadecadienoic acid levels, reflecting potential biomarkers of overall neuronal injury and lipid peroxidation, respectively, are elevated in brain tumor patients compared with controls. DESIGN This article is a prospective clinical observational study. SETTING This study is conducted at a tertiary-care children's hospital. PATIENTS Our participants are children younger than or equal to 18 years of age undergoing brain tumor surgery. MEASUREMENTS AND MAIN RESULTS During the study period, 26 consecutive patients newly diagnosed with brain tumors who met the inclusion criteria were prospectively enrolled. Baseline cerebrospinal fluid analysis of cleaved tau and 9-hydroxyoctadecadienoic acid were measured in 15 patients. Cerebrospinal fluid cleaved tau and 9-hydroxyoctadecadienoic acid levels were measured in 22 patients for post-surgery days 1 and 3. Serum cleaved tau levels were measured for 20 and 18 patients for post-surgery days 1 and 3, respectively. The presence of a brain tumor significantly increased the baseline cerebrospinal fluid cleaved tau levels but did not affect cerebrospinal fluid 9-hydroxyoctadecadienoic acid levels. Similarly, there was a significant increase in post-surgery day 1 cerebrospinal fluid cleaved tau levels from baseline (p = 0.01) and a trend toward significant decrease in post-surgery day 3 cerebrospinal fluid cleaved tau from day 1 (p = 0.07). 9-Hydroxyoctadecadienoic acid concentrations remained relatively constant over time with no differences noted between the control and brain tumor patients. There was a trend towards a significant association between cerebrospinal fluid cleaved tau levels and duration of symptoms (p = 0.07). CONCLUSIONS Cerebrospinal fluid cleaved tau levels in children with newly diagnosed brain tumors exhibit markedly elevated cerebrospinal fluid cleaved tau levels, suggesting axonal damage. This axonal injury does not seem to correlate with lipid peroxidation at least when as assessed by cerebrospinal fluid 9-hydroxyoctadecadienoic acid levels. There was no association found between the biomarkers and multiple independent variables obtained at pre- and post-tumor resection.
Collapse
Affiliation(s)
- Pelin Cengiz
- Department of Pediatrics, Pediatric Critical Care Medicine, American Family Children's Hospital, University of Wisconsin, Madison, WI, USA,
| | | | | | | | | |
Collapse
|
8
|
Yokobori S, Hosein K, Burks S, Sharma I, Gajavelli S, Bullock R. Biomarkers for the clinical differential diagnosis in traumatic brain injury--a systematic review. CNS Neurosci Ther 2013; 19:556-65. [PMID: 23710877 DOI: 10.1111/cns.12127] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/24/2023] Open
Abstract
Rapid triage and decision-making in the treatment of traumatic brain injury (TBI) present challenging dilemma in "resource poor" environments such as the battlefield and developing areas of the world. There is an urgent need for additional tools to guide treatment of TBI. The aim of this review is to establish the possible use of diagnostic TBI biomarkers in (1) identifying diffuse and focal brain injury and (2) assess their potential for determining outcome, intracranial pressure (ICP), and responses to therapy. At present, there is insufficient literature to support a role for diagnostic biomarkers in distinguishing focal and diffuse injury or for accurate determination of raised ICP. Presently, neurofilament (NF), S100β, glial fibrillary acidic protein (GFAP), and ubiquitin carboxyl terminal hydrolase-L1 (UCH-L1) seemed to have the best potential as diagnostic biomarkers for distinguishing focal and diffuse injury, whereas C-tau, neuron-specific enolase (NSE), S100β, GFAP, and spectrin breakdown products (SBDPs) appear to be candidates for ICP reflective biomarkers. With the combinations of different pathophysiology related to each biomarker, a multibiomarker analysis seems to be effective and would likely increase diagnostic accuracy. There is limited research focusing on the differential diagnostic properties of biomarkers in TBI. This fact warrants the need for greater efforts to innovate sensitive and reliable biomarkers. We advocate awareness and inclusion of the differentiation of injury type and ICP elevation in further studies with brain injury biomarkers.
Collapse
Affiliation(s)
- Shoji Yokobori
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Kochanek PM, Berger RP, Fink EL, Au AK, Bayır H, Bell MJ, Dixon CE, Clark RSB. The potential for bio-mediators and biomarkers in pediatric traumatic brain injury and neurocritical care. Front Neurol 2013; 4:40. [PMID: 23637695 PMCID: PMC3636482 DOI: 10.3389/fneur.2013.00040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/15/2013] [Indexed: 01/13/2023] Open
Abstract
The use of biomarkers of brain injury in pediatric neurocritical care has been explored for at least 15 years. Two general lines of research on biomarkers in pediatric brain injury have been pursued: (1) studies of "bio-mediators" in cerebrospinal fluid (CSF) of children after traumatic brain injury (TBI) to explore the components of the secondary injury cascades in an attempt to identify potential therapeutic targets and (2) studies of the release of structural proteins into the CSF, serum, or urine in order to diagnose, monitor, and/or prognosticate in patients with TBI or other pediatric neurocritical care conditions. Unique age-related differences in brain biology, disease processes, and clinical applications mandate the development and testing of brain injury bio-mediators and biomarkers specifically in pediatric neurocritical care applications. Finally, although much of the early work on biomarkers of brain injury in pediatrics has focused on TBI, new applications are emerging across a wide range of conditions specifically for pediatric neurocritical care including abusive head trauma, cardiopulmonary arrest, septic shock, extracorporeal membrane oxygenation, hydrocephalus, and cardiac surgery. The potential scope of the utility of biomarkers in pediatric neurocritical care is thus also discussed.
Collapse
Affiliation(s)
- Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yokobori S, Zhang Z, Moghieb A, Mondello S, Gajavelli S, Dietrich WD, Bramlett H, Hayes RL, Wang M, Wang KKW, Bullock MR. Acute diagnostic biomarkers for spinal cord injury: review of the literature and preliminary research report. World Neurosurg 2013; 83:867-78. [PMID: 23524031 DOI: 10.1016/j.wneu.2013.03.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/23/2013] [Accepted: 03/08/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Many efforts have been made to create new diagnostic technologies for use in the diagnosis of central nervous system injury. However, there is still no consensus for the use of biomarkers in clinical acute spinal cord injury (SCI). The aims of this review are (1) to evaluate the current status of neurochemical biomarkers and (2) to discuss their potential acute diagnostic role in SCI by reviewing the literature. METHODS PubMed (http://www.ncbi.nlm.nih.gov/pubmed) was searched up to 2012 to identify publications concerning diagnostic biomarkers in SCI. To support more knowledge, we also checked secondary references in the primarily retrieved literature. RESULTS Neurofilaments, cleaved-Tau, microtubule-associated protein 2, myelin basic protein, neuron-specific enolase, S100β, and glial fibrillary acidic protein were identified as structural protein biomarkers in SCI by this review process. We could not find reports relating ubiquitin C-terminal hydrolase-L1 and α-II spectrin breakdown products, which are widely researched in other central nervous system injuries. Therefore, we present our preliminary data relating to these two biomarkers. Some of biomarkers showed promising results for SCI diagnosis and outcome prediction; however, there were unresolved issues relating to accuracy and their accessibility. CONCLUSION Currently, there still are not many reports focused on diagnostic biomarkers in SCI. This fact warranted the need for greater efforts to innovate sensitive and reliable biomarkers for SCI.
Collapse
Affiliation(s)
- Shoji Yokobori
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan.
| | - Zhiqun Zhang
- Departments of Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Ahmed Moghieb
- Departments of Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | | | - Shyam Gajavelli
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W Dalton Dietrich
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Helen Bramlett
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Michael Wang
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kevin K W Wang
- Departments of Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - M Ross Bullock
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
11
|
Biomarkers associated with diffuse traumatic axonal injury: exploring pathogenesis, early diagnosis, and prognosis. ACTA ACUST UNITED AC 2011; 69:1610-8. [PMID: 21150538 DOI: 10.1097/ta.0b013e3181f5a9ed] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diffuse traumatic axonal injury (dTAI) is a significant pathologic feature of traumatic brain injury and is associated with substantial mortality and morbidity. It is still a challenge for clinicians to make an early diagnosis of dTAI and generate accurate prognosis and direct therapeutic decisions because most patients rapidly progress to coma after trauma and because specific neurologic symptoms and focal lesions detectable with current routine imaging techniques are absent. To address these issues, many investigations have sought to identify biomarkers of dTAI. METHODS This article is a review of the pertinent medical literature. RESULTS From the perspective of the pathophysiology of dTAI, we reviewed several biomarkers that are associated with structural damage and biochemical cascades in the secondary injury or repair response to traumatic brain injury. Although some biomarkers are not specific to dTAI, they are nevertheless useful in elucidating its pathogenesis, making early diagnosis possible, predicting outcomes, and providing candidate targets for novel therapeutic strategies. CONCLUSIONS The availability of biomarker data, clinical case histories, and radiologic information can improve our current ability to diagnose and monitor pathogenic conditions and predict outcomes in patients with dTAI.
Collapse
|