1
|
Hao S, Wang Q, Zhang Y, Miao Y, Shan Y. The effect of different visual feedback interfaces of music training games on speech rehabilitation in hearing-impaired children: An fNIRS study. Neurosci Lett 2024; 843:138010. [PMID: 39395781 DOI: 10.1016/j.neulet.2024.138010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Singing plays a critical role in enhancing musicality, sound discrimination, and attention, and proves advantageous for speech rehabilitation in children with hearing impairments. Computer-based training games are well-suited to the learning behaviors of children, with substantial evidence suggesting that music training augments speech training capabilities in this demographic. Despite this, there is a lack of detailed exploration into the design of interactive online music training interfaces tailored for these needs. This study investigates brain activation changes using two visual feedback singing games, analyzed through functional near-infrared spectroscopy: a serious game (SG) and an entertainment game (EG) with visually enhanced feedback. It also assesses the efficacy of home-based music training software for speech rehabilitation. Methods involved recording oxygenated hemoglobin concentration (Delta [HbO]) signals from the prefrontal cortex, motor cortex, occipital lobe, and temporal lobe in 21 children (average age: 9.3 ± 1.9 years) during two singing interface experiments. Subjects also completed the Intrinsic Motivation Inventory (IMI) questionnaire post-experiment. Main results showed that brain regions, particularly the temporal lobe, exhibited stronger and more pronounced activation signals with the SG interface compared to the EG, suggesting that SG is more effective for speech system rehabilitation. The Intrinsic Motivation Scale results revealed higher acceptability for SG than for EG. This study provides insights into designing online speech rehabilitation products for children with hearing impairment, advocating for better interactive training methods from a neuroscience perspective.
Collapse
Affiliation(s)
- Song Hao
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Qiaoran Wang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Yuhan Zhang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Yibei Miao
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Yuxin Shan
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
2
|
Mei X, Liang M, Zhao Z, Xu T, Wu X, Zhou D, Zheng C. Functional connectivity and cerebral cortex activation during the resting state and verbal fluency tasks for patients with mild cognitive impairment, Lewy body dementia, and Alzheimer's disease: A multi-channel fNIRS study. J Psychiatr Res 2024; 179:379-387. [PMID: 39383643 DOI: 10.1016/j.jpsychires.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE To explore changes in cerebral cortex activation and functional connectivity during resting-state and verbal fluency tasks in patients with different types of dementia. METHODS We recorded oxygenated hemoglobin concentration (HbO) signals detected by functional near-infrared spectroscopy (fNIRS) from the prefrontal cortex, partial parietal cortex, and cortex of the temporal lobe in four groups of participants: mild cognitive impairment (MCI), Lewy body dementia (LBD), Alzheimer's disease (AD), and cognitively normal (CN). RESULTS The study recruited 120 older adults with MCI (n = 30), LBD (n = 28), AD (n = 30), or CN (n = 32). The mean functional connectivity of the frontal and temporal lobe in resting state was significantly less in the AD (0.19 ± 0.11) group than in the MCI (0.23 ± 0.11), LBD (0.29 ± 0.12), and CN (0.40 ± 0.11) groups (p < 0.001). Further, the mean HbO concentrations in the brain regions and channels were significantly lower in the AD group than in the LBD and MCI groups (p < 0.001). Cognitive levels correlated significantly with the mean HbO concentrations in the resting state and verbal fluency task conditions. CONCLUSION The fNIRS HbO signals significantly differed in the cerebral cortex regions in participants with different types of dementia. These findings suggest that fNIRS can effectively enhance the differential diagnosis and assessment of dementia.
Collapse
Affiliation(s)
- Xi Mei
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China
| | - Ming Liang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, The Third People's Hospital of Xiangshan County, Ningbo, 315711, Zhejiang, China
| | - Zheng Zhao
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China
| | - Ting Xu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China
| | - Xiangping Wu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China
| | - Dongsheng Zhou
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China.
| | - Chengying Zheng
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China; Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, 315201, Zhejiang, China.
| |
Collapse
|
3
|
Wu P, Lv Z, Bi Y, Li Y, Chen H, Jiang J, Pang S, Zhao X, Jiang W. Network-based statistics reveals an enhanced subnetwork in prefrontal cortex in mild cognitive impairment: a functional near-infrared spectroscopy study. Front Aging Neurosci 2024; 16:1416816. [PMID: 39554484 PMCID: PMC11565517 DOI: 10.3389/fnagi.2024.1416816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Background Mild cognitive impairment (MCI) is generally considered to have a high risk of progression to Alzheimer's disease. Our study aimed to investigate the abnormal functional connectivity (FC) in prefrontal cortex (PFC) in patients with MCI and explore the relationship between the observed changes and cognitive function. Methods Sixty-seven patients with MCI and 71 healthy individuals were recruited for this study. All participants underwent the Montreal Cognitive Assessment (MoCA) and functional near-infrared spectroscopy (fNIRS) examinations. Results Compared with healthy controls (HC), the patients with MCI exhibited significantly lower MoCA scores (p < 0.001). Through FC analysis, an enhanced subnetwork was observed in the right prefrontal cortex of the MCI group, covering four pairs of channel connections: CH12-CH15, CH12-CH16, CH13-CH15, and CH13-CH16. Moreover, the FC values of these four channel pairs and the education duration were significantly correlated with MoCA scores. Subsequently, a multiple linear regression model was performed to observe the independent factors of cognition decline, serving the education duration and the average FC values of subnetwork as independent variables and the MoCA scores as the dependent variable. The regression model showed a total of 25.7% explanation power (adjusted R2 = 0.257, F = 24.723, p < 0.001). Conclusion Our study suggested that the enhanced subnetwork within the right PFC may be involved in the pathophysiology of MCI and serve as a potential target for the treatment of MCI.
Collapse
Affiliation(s)
- Peirong Wu
- Department of Neurological Rehabilitation, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zeping Lv
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Yinuo Bi
- Cognitive Rehabilitation Center, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yijiang Li
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
| | - Hong Chen
- Cognitive Rehabilitation Center, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianfan Jiang
- Department of Neurological Rehabilitation, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Suyan Pang
- Cognitive Rehabilitation Center, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xin Zhao
- Cognitive Rehabilitation Center, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenyu Jiang
- Department of Neurological Rehabilitation, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
4
|
Wang S, Wang W, Chen J, Yu X. Alterations in brain functional connectivity in patients with mild cognitive impairment: A systematic review and meta-analysis of functional near-infrared spectroscopy studies. Brain Behav 2024; 14:e3414. [PMID: 38616330 PMCID: PMC11016629 DOI: 10.1002/brb3.3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/16/2024] Open
Abstract
Emerging evidences suggest that cognitive deficits in individuals with mild cognitive impairment (MCI) are associated with disruptions in brain functional connectivity (FC). This systematic review and meta-analysis aimed to comprehensively evaluate alterations in FC between MCI individuals and healthy control (HC) using functional near-infrared spectroscopy (fNIRS). Thirteen studies were included in qualitative analysis, with two studies synthesized for quantitative meta-analysis. Overall, MCI patients exhibited reduced resting-state FC, predominantly in the prefrontal, parietal, and occipital cortex. Meta-analysis of two studies revealed a significant reduction in resting-state FC from the right prefrontal to right occipital cortex (standardized mean difference [SMD] = -.56; p < .001), left prefrontal to left occipital cortex (SMD = -.68; p < .001), and right prefrontal to left occipital cortex (SMD = -.53; p < .001) in MCI patients compared to HC. During naming animal-walking task, MCI patients exhibited enhanced FC in the prefrontal, motor, and occipital cortex, whereas a decrease in FC was observed in the right prefrontal to left prefrontal cortex during calculating-walking task. In working memory tasks, MCI predominantly showed increased FC in the medial and left prefrontal cortex. However, a decreased in prefrontal FC and a shifted in distribution from the left to the right prefrontal cortex were noted in MCI patients during a verbal frequency task. In conclusion, fNIRS effectively identified abnormalities in FC between MCI and HC, indicating disrupted FC as potential markers for the early detection of MCI. Future studies should investigate the use of task- and region-specific FC alterations as a sensitive biomarker for MCI.
Collapse
Affiliation(s)
- Shuangyan Wang
- Department of Geriatric Neurology, Guangzhou First People's HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouGuangdongChina
| | - Weijia Wang
- Department of LibrarySun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jinglong Chen
- Department of Geriatric Neurology, Guangzhou First People's HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouGuangdongChina
| | - Xiaoqi Yu
- Department of Geriatric Neurology, Guangzhou First People's HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouGuangdongChina
| |
Collapse
|
5
|
Chen A, Hao S, Han Y, Fang Y, Miao Y. Exploring the effects of different BCI-based attention training games on the brain: A functional near-infrared spectroscopy study. Neurosci Lett 2024; 818:137567. [PMID: 38007085 DOI: 10.1016/j.neulet.2023.137567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
BCI games have been widely employed as non-invasive therapeutic interventions for conditions, but their efficacy remains a subject of debate. This study explores the efficacy of two prevalent forms of Brain-Computer Interface (BCI)-based attention training games: video games (VG) and physical games (PG). The effectiveness of these games has been examined through the lens of neuroscience, using functional Near-Infrared Spectroscopy (fNIRS) to monitor cortical activation. After the fNIRS test, subjects completed an Intrinsic Motivation Inventory (IMI) questionnaire. PG tasks activated six channels (L-PFC, R-PFC and R-TL), while VG tasks activated only one (R-PFC). Furthermore, females exhibited stronger activation during PG tasks, while males had none in either. Our findings suggest that under equivalent game rules and themes, PG may prove more effective for cognitive rehabilitation than VG, with stronger intrinsic motivation. We also found this result may exhibit gender differences. Finally, this research offers valuable insights for the future design of BCI-based games from a neuroscience perspective.
Collapse
Affiliation(s)
- An Chen
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Song Hao
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Yongpeng Han
- Edinburgh College of Art, The University of Edinburgh, Edinburgh EH3 9DF, UK.
| | - Yang Fang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Yibei Miao
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
6
|
Zhang M, Qu Y, Li Q, Gu C, Zhang L, Chen H, Ding M, Zhang T, Zhen R, An H. Correlation Between Prefrontal Functional Connectivity and the Degree of Cognitive Impairment in Alzheimer's Disease: A Functional Near-Infrared Spectroscopy Study. J Alzheimers Dis 2024; 98:1287-1300. [PMID: 38517784 DOI: 10.3233/jad-230648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Background The development of Alzheimer's disease (AD) can be divided into subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia. Early recognition of pre-AD stages may slow the progression of dementia. Objective This study aimed to explore functional connectivity (FC) changes of the brain prefrontal cortex (PFC) in AD continuum using functional near-infrared spectroscopy (fNIRS), and to analyze its correlation with cognitive function. Methods All participants underwent 48-channel fNIRS at resting-state. Based on Brodmann partitioning, the PFC was divided into eight subregions. The NIRSIT Analysis Tool (v3.7.5) was used to analyze mean ΔHbO2 and FC. Spearman correlation analysis was used to examine associations between FC and cognitive function. Results Compared with HC group, the mean ΔHbO2 and FC were different between multiple subregions in the AD continuum. Both mean ΔHbO2 in the left dorsolateral PFC and average FC decreased sequentially from SCD to MCI to AD groups. Additionally, seven pairs of subregions differed in FC among the three groups: the differences between the MCI and SCD groups were in heterotopic connectivity; the differences between the AD and SCD groups were in left intrahemispheric and homotopic connectivity; whereas the MCI and AD groups differed only in homotopic connectivity. Spearman correlation results showed that FCs were positively correlated with cognitive function. Conclusions These results suggest that the left dorsolateral PFC may be the key cortical impairment in AD. Furthermore, there are different resting-state prefrontal network patterns in AD continuum, and the degree of cognitive impairment is positively correlated with reduced FC strength.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanjie Qu
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Traditional Chinese Medicine, Changqiao Street Community Health Service Center of Xuhui District, Shanghai, China
| | - Chao Gu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Limin Zhang
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxu Chen
- Cardiff University Brain Research Imaging Center, Cardiff University, Wales, UK
| | - Minrui Ding
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rongrong Zhen
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongmei An
- Department of Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Wang L, Liang X, Wang J, Zhang Y, Fan Z, Sun T, Yu X, Wu D, Wang H. Cerebral dominance representation of directed connectivity within and between left-right hemispheres and frontal-posterior lobes in mild cognitive impairment. Cereb Cortex 2023; 33:11279-11286. [PMID: 37804252 DOI: 10.1093/cercor/bhad365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023] Open
Abstract
Electroencephalography can assess connectivity between brain hemispheres, potentially influencing cognitive functions. Much of the existing electroencephalography research primarily focuses on undirected connectivity, leaving uncertainties about directed connectivity alterations between left-right brain hemispheres or frontal-posterior lobes in mild cognitive impairment. We analyzed resting-state electroencephalography data from 34 mild cognitive impairment individuals and 23 normal controls using directed transfer function and graph theory for directed network analysis. Concerning the dominance within left-right hemispheres or frontal-posterior lobes, the mild cognitive impairment group exhibited decreased connectivity within the frontal compared with posterior brain regions in the delta and theta bands. Regarding the dominance between the brain hemispheres or lobes, the mild cognitive impairment group showed reduced connectivity from the posterior to the frontal regions versus the reverse direction in the same bands. Among all participants, the intra-lobe frontal-posterior dominance correlated positively with executive function in the delta and alpha bands. Inter-lobe dominance between frontal and posterior regions also positively correlated with executive function, attention, and language in the delta band. Additionally, interhemispheric dominance between the left and right hemispheres positively correlated with attention in delta and theta bands. These findings suggest altered cerebral dominance in mild cognitive impairment, potentially serving as electrophysiological markers for neurocognitive disorders.
Collapse
Affiliation(s)
- Luchun Wang
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
| | - Xixi Liang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Jing Wang
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
| | - Ying Zhang
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
| | - Zili Fan
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
- Beijing Anding Hospital, Capital Medical University, Beijing 100044, China
| | - Tingting Sun
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Xin Yu
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
| | - Dan Wu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Huali Wang
- Beijing Dementia Key Lab, Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University, Sixth Hospital, Beijing 100191, China
| |
Collapse
|
8
|
Zhao L, Zhao Y, Bu L, Sun H, Tang W, Li K, Zhang W, Tang W, Zhang Y. Design Method of a Smart Rehabilitation Product Service System Based on Virtual Scenarios: A Case Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4570-4579. [PMID: 37966937 DOI: 10.1109/tnsre.2023.3333049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The development of artificial intelligence and virtual reality technology has enabled rehabilitation service systems based on virtual scenarios to provide patients with a multi-sensory simulation experience. However, the design methods of most rehabilitation service systems rarely consider the physician-manufacturer synergy in the patient rehabilitation process, as well as the problem of inaccurate quantitative evaluation of rehabilitation efficacy. Thus, this study proposes a design method for a smart rehabilitation product service system based on virtual scenarios. This method is important for upgrading the rehabilitation service system. First, the efficacy of rehabilitation for patients is quantitatively assessed using multimodal data. Then, an optimization mechanism for virtual training scenarios based on rehabilitation efficacy and a rehabilitation plan based on a knowledge graph are established. Finally, a design framework for a full-stage service system that meets user needs and enables physician-manufacturer collaboration is developed by adopting a "cloud-end-human" architecture. This study uses virtual driving for autistic children as a case study to validate the proposed framework and method. Experimental results show that the service system based on the proposed methods can construct an optimal virtual driving system and its rehabilitation program based on the evaluation results of patients' rehabilitation efficacy at the current stage. It also provides guidance for improving rehabilitation efficacy in the subsequent stages of rehabilitation services.
Collapse
|
9
|
Butters E, Srinivasan S, O'Brien JT, Su L, Bale G. A promising tool to explore functional impairment in neurodegeneration: A systematic review of near-infrared spectroscopy in dementia. Ageing Res Rev 2023; 90:101992. [PMID: 37356550 DOI: 10.1016/j.arr.2023.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
This systematic review aimed to evaluate previous studies which used near-infrared spectroscopy (NIRS) in dementia given its suitability as a diagnostic and investigative tool in this population. From 800 identified records which used NIRS in dementia and prodromal stages, 88 studies were evaluated which employed a range of tasks testing memory (29), word retrieval (24), motor (8) and visuo-spatial function (4), and which explored the resting state (32). Across these domains, dementia exhibited blunted haemodynamic responses, often localised to frontal regions of interest, and a lack of task-appropriate frontal lateralisation. Prodromal stages, such as mild cognitive impairment, revealed mixed results. Reduced cognitive performance accompanied by either diminished functional responses or hyperactivity was identified, the latter suggesting a compensatory response not present at the dementia stage. Despite clear evidence of alterations in brain oxygenation in dementia and prodromal stages, a consensus as to the nature of these changes is difficult to reach. This is likely partially due to the lack of standardisation in optical techniques and processing methods for the application of NIRS to dementia. Further studies are required exploring more naturalistic settings and a wider range of dementia subtypes.
Collapse
Affiliation(s)
- Emilia Butters
- Department of Electrical Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK; Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Sruthi Srinivasan
- Department of Electrical Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Department of Neuroscience, University of Sheffield, 385a Glossop Rd, Broomhall, Sheffield S10 2HQ, UK
| | - Gemma Bale
- Department of Physics, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| |
Collapse
|
10
|
Srinivasan S, Butters E, Collins-Jones L, Su L, O’Brien J, Bale G. Illuminating neurodegeneration: a future perspective on near-infrared spectroscopy in dementia research. NEUROPHOTONICS 2023; 10:023514. [PMID: 36788803 PMCID: PMC9917719 DOI: 10.1117/1.nph.10.2.023514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Dementia presents a global healthcare crisis, and neuroimaging is the main method for developing effective diagnoses and treatments. Yet currently, there is a lack of sensitive, portable, and low-cost neuroimaging tools. As dementia is associated with vascular and metabolic dysfunction, near-infrared spectroscopy (NIRS) has the potential to fill this gap. AIM This future perspective aims to briefly review the use of NIRS in dementia to date and identify the challenges involved in realizing the full impact of NIRS for dementia research, including device development, study design, and data analysis approaches. APPROACH We briefly appraised the current literature to assess the challenges, giving a critical analysis of the methods used. To assess the sensitivity of different NIRS device configurations to the brain with atrophy (as is common in most forms of dementia), we performed an optical modeling analysis to compare their cortical sensitivity. RESULTS The first NIRS dementia study was published in 1996, and the number of studies has increased over time. In general, these studies identified diminished hemodynamic responses in the frontal lobe and altered functional connectivity in dementia. Our analysis showed that traditional (low-density) NIRS arrays are sensitive to the brain with atrophy (although we see a mean decrease of 22% in the relative brain sensitivity with respect to the healthy brain), but there is a significant improvement (a factor of 50 sensitivity increase) with high-density arrays. CONCLUSIONS NIRS has a bright future in dementia research. Advances in technology - high-density devices and intelligent data analysis-will allow new, naturalistic task designs that may have more clinical relevance and increased reproducibility for longitudinal studies. The portable and low-cost nature of NIRS provides the potential for use in clinical and screening tests.
Collapse
Affiliation(s)
- Sruthi Srinivasan
- University of Cambridge, Department of Engineering, Electrical Engineering, Cambridge, United Kingdom
| | - Emilia Butters
- University of Cambridge, Department of Engineering, Electrical Engineering, Cambridge, United Kingdom
- University of Cambridge, Department of Psychiatry, Cambridge, United Kingdom
| | - Liam Collins-Jones
- University College London, Department of Medical Physics, London, United Kingdom
| | - Li Su
- University of Cambridge, Department of Psychiatry, Cambridge, United Kingdom
- University of Sheffield, Department of Neuroscience, Sheffield, United Kingdom
| | - John O’Brien
- University of Cambridge, Department of Psychiatry, Cambridge, United Kingdom
| | - Gemma Bale
- University of Cambridge, Department of Engineering, Electrical Engineering, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| |
Collapse
|
11
|
Neuroplasticity Following Stroke from a Functional Laterality Perspective: A fNIRS Study. Brain Topogr 2023; 36:283-293. [PMID: 36856917 DOI: 10.1007/s10548-023-00946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
To explore alterations of resting-state functional connectivity (rsFC) in sensorimotor cortex following strokes with left or right hemiplegia considering the lateralization and neuroplasticity. Seventy-three resting-state functional near-infrared spectroscopy (fNIRS) files were selected, including 26 from left hemiplegia (LH), 21 from right hemiplegia (RH) and 26 from normal controls (NC) group. Whole-brain analyses matching the Pearson correlation were used for rsFC calculations. For right-handed normal controls, rsFC of motor components (M1 and M2) in the left hemisphere displayed a prominent intensity in comparison with the right hemisphere (p < 0.05), while for stroke groups, this asymmetry has disappeared. Additionally, RH rather than LH showed stronger rsFC between left S1 and left M1 in contrast to normal controls (p < 0.05), which correlated inversely with motor function (r = - 0.53, p < 0.05). Regarding M1, rsFC within ipsi-lesioned M1 has a negative correlation with motor function of the affected limb (r = - 0.60 for the RH group and - 0.43 for the LH group, p < 0.05). The rsFC within contra-lesioned M1 that innervates the normal side was weakened compared with that of normal controls (p < 0.05). Stronger rsFC of motor components in left hemisphere was confirmed by rs-fNIRS as the "secret of dominance" for the first time, while post-stroke hemiplegia broke this cortical asymmetry. Meanwhile, a statistically strengthened rsFC between left S1 and M1 only in right-hemiplegia group may act as a compensation for the impairment of the dominant side. This research has implications for brain-computer interfaces synchronizing sensory feedback with motor performance and transcranial magnetic regulation for cortical excitability to induce cortical plasticity.
Collapse
|
12
|
Keles HO, Karakulak EZ, Hanoglu L, Omurtag A. Screening for Alzheimer's disease using prefrontal resting-state functional near-infrared spectroscopy. Front Hum Neurosci 2022; 16:1061668. [PMID: 36518566 PMCID: PMC9742284 DOI: 10.3389/fnhum.2022.1061668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/01/2022] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is neurodegenerative dementia that causes neurovascular dysfunction and cognitive impairment. Currently, 50 million people live with dementia worldwide, and there are nearly 10 million new cases every year. There is a need for relatively less costly and more objective methods of screening and early diagnosis. METHODS Functional near-infrared spectroscopy (fNIRS) systems are a promising solution for the early Detection of AD. For a practical clinically relevant system, a smaller number of optimally placed channels are clearly preferable. In this study, we investigated the number and locations of the best-performing fNIRS channels measuring prefrontal cortex activations. Twenty-one subjects diagnosed with AD and eighteen healthy controls were recruited for the study. RESULTS We have shown that resting-state fNIRS recordings from a small number of prefrontal locations provide a promising methodology for detecting AD and monitoring its progression. A high-density continuous-wave fNIRS system was first used to verify the relatively lower hemodynamic activity in the prefrontal cortical areas observed in patients with AD. By using the episode averaged standard deviation of the oxyhemoglobin concentration changes as features that were fed into a Support Vector Machine; we then showed that the accuracy of subsets of optical channels in predicting the presence and severity of AD was significantly above chance. The results suggest that AD can be detected with a 0.76 sensitivity score and a 0.68 specificity score while the severity of AD could be detected with a 0.75 sensitivity score and a 0.72 specificity score with ≤5 channels. DISCUSSION These scores suggest that fNIRS is a viable technology for conveniently detecting and monitoring AD as well as investigating underlying mechanisms of disease progression.
Collapse
Affiliation(s)
- Hasan Onur Keles
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
| | | | - Lutfu Hanoglu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ahmet Omurtag
- Department of Engineering, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
13
|
Zhang S, Zhu T, Tian Y, Jiang W, Li D, Wang D. Early screening model for mild cognitive impairment based on resting-state functional connectivity: a functional near-infrared spectroscopy study. NEUROPHOTONICS 2022; 9:045010. [PMID: 36483024 PMCID: PMC9722394 DOI: 10.1117/1.nph.9.4.045010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/15/2022] [Indexed: 05/19/2023]
Abstract
SIGNIFICANCE As an early stage of Alzheimer's disease (AD), the diagnosis of amnestic mild cognitive impairment (aMCI) has important clinical value for timely intervention of AD. Functional near-infrared spectroscopy (fNIRS)-based resting-state brain connectivity analysis, which could provide an economic and quick screening strategy for aMCI, remains to be extensively investigated. AIM This study aimed to verify the feasibility of fNIRS-based resting-state brain connectivity for evaluating brain function in patients with aMCI, and to determine an early screening model for auxiliary diagnosis. APPROACH The resting-state fNIRS was utilized for exploring the changes in functional connectivity of 64 patients with aMCI. The region of interest (ROI)-based and channel-based connections with significant inter-group differences have been extracted through the two-sample t -tests and the receiver operating characteristic (ROC). These connections with specificity and sensitivity were then taken as features for classification. RESULTS Compared with healthy controls, connections of the MCI group were significantly reduced between the bilateral prefrontal, parietal, occipital, and right temporal lobes. Specifically, the long-range connections from prefrontal to occipital lobe, and from prefrontal to parietal lobe, exhibited stronger identifiability (area under the ROC curve > 0.65 , ** p < 0.01 ). Subsequently, the optimal classification accuracy of ROI-based connections was 71.59%. Furthermore, the most responsive connections were located between the right dorsolateral prefrontal lobe and the left occipital lobe, concomitant with the highest classification accuracy of 73.86%. CONCLUSION Our findings indicate that fNIRS-based resting-state functional connectivity analysis could support MCI diagnosis. Notably, long-range connections involving the prefrontal and occipital lobes have the potential to be efficient biomarkers.
Collapse
Affiliation(s)
- Shen Zhang
- Beihang University, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
| | - Ting Zhu
- Beihang University, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
| | - Yizhu Tian
- Beihang University, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
| | - Wenyu Jiang
- Guangxi Jiangbin Hospital, Department of Neurological Rehabilitation, Nanning, China
- Address all correspondence to Daifa Wang, ; Deyu Li, ; Wenyu Jiang,
| | - Deyu Li
- Beihang University, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
- Beihang University, State Key Laboratory of Software Development Environment, Beijing, China
- Beihang University, State Key Laboratory of Virtual Reality Technology and System, Beijing, China
- Address all correspondence to Daifa Wang, ; Deyu Li, ; Wenyu Jiang,
| | - Daifa Wang
- Beihang University, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
- Address all correspondence to Daifa Wang, ; Deyu Li, ; Wenyu Jiang,
| |
Collapse
|
14
|
Zhao L, Sun H, Yang F, Wang Z, Zhao Y, Tang W, Bu L. A Multimodal Data Driven Rehabilitation Strategy Auxiliary Feedback Method: A Case Study. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1181-1190. [PMID: 35482695 DOI: 10.1109/tnsre.2022.3170943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In Industry 4.0, medical data present a trend of multisource development. However, in complex information networks, an information gap often exists in data exchange between doctors and patients. In the case of diseases with complex manifestations, doctors often perform qualitative analysis, which is macroscopic and fuzzy, to present treatment recommendations for patients. Improving the reliability of data acquisition and maximizing the potential of data, require attention. To solve these problems, a multimodal data-driven rehabilitation strategy auxiliary feedback method is proposed. In this study, depth sensor and functional near-infrared spectroscopy (fNIRS) were used to obtain ethology and brain function data, and skeleton tracking analysis and ethology discrete statistics were performed to assist the diagnostic feedback of rehabilitation strategies. This study takes rhythm rehabilitation training of autistic children as a case, and results show that the multimodal data-driven rehabilitation strategy auxiliary feedback method can provide effective feedback for individuals or groups. The proposed auxiliary decision method increases the dimension of data analysis and improves the reliability of analysis. Through discrete statistical results, the potential of data are maximized, thereby assisting the proposed rehabilitation strategy diagnostic feedback.
Collapse
|
15
|
Tan HX, Wei QC, Chen Y, Xie YJ, Guo QF, He L, Gao Q. The Immediate Effects of Intermittent Theta Burst Stimulation of the Cerebellar Vermis on Cerebral Cortical Excitability During a Balance Task in Healthy Individuals: A Pilot Study. Front Hum Neurosci 2021; 15:748241. [PMID: 34867241 PMCID: PMC8632863 DOI: 10.3389/fnhum.2021.748241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: This pilot study aimed to investigate the immediate effects of single-session intermittent theta-burst stimulation (iTBS) on the cerebellar vermis during a balance task, which could unveil the changes of cerebral cortical excitability in healthy individuals. Subjects: A total of seven right-handed healthy subjects (26.86 ± 5.30 years) were included in this study. Interventions: Each subject received single-session iTBS on cerebellar vermis in a sitting position. Main Measures: Before and after the intervention, all subjects were asked to repeat the balance task of standing on the left leg three times. Each task consisted of 15 s of standing and 20 s of resting. Real-time changes in cerebral cortex oxygen concentrations were monitored with functional near-infrared spectroscopy (fNIRS). During the task, changes in blood oxygen concentration were recorded and converted into the mean HbO2 for statistical analysis. Results: After stimulation, the mean HbO2 in the left SMA (P = 0.029) and right SMA (P = 0.043) significantly increased compared with baseline. However, no significant changes of mean HbO2 were found in the bilateral dorsolateral prefrontal lobe (P > 0.05). Conclusion: Single-session iTBS on the cerebellar vermis in healthy adults can increase the excitability of the cerebral cortex in the bilateral supplementary motor areas during balance tasks. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [ChiCTR2100048915].
Collapse
Affiliation(s)
- Hui-Xin Tan
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Chuan Wei
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Chen
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Juan Xie
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Fan Guo
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin He
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Gao
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Wang F, Jiang Z, Li X, Bu L, Ji Y. Functional Brain Network Analysis of Knowledge Transfer While Engineering Problem-Solving. Front Hum Neurosci 2021; 15:713692. [PMID: 34759806 PMCID: PMC8573420 DOI: 10.3389/fnhum.2021.713692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
As a complex cognitive activity, knowledge transfer is mostly correlated to cognitive processes such as working memory, behavior control, and decision-making in the human brain while engineering problem-solving. It is crucial to explain how the alteration of the functional brain network occurs and how to express it, which causes the alteration of the cognitive structure of knowledge transfer. However, the neurophysiological mechanisms of knowledge transfer are rarely considered in existing studies. Thus, this study proposed functional connectivity (FC) to describe and evaluate the dynamic brain network of knowledge transfer while engineering problem-solving. In this study, we adopted the modified Wisconsin Card-Sorting Test (M-WCST) reported in the literature. The neural activation of the prefrontal cortex was continuously recorded for 31 participants using functional near-infrared spectroscopy (fNIRS). Concretely, we discussed the prior cognitive level, knowledge transfer distance, and transfer performance impacting the wavelet amplitude and wavelet phase coherence. The paired t-test results showed that the prior cognitive level and transfer distance significantly impact FC. The Pearson correlation coefficient showed that both wavelet amplitude and phase coherence are significantly correlated to the cognitive function of the prefrontal cortex. Therefore, brain FC is an available method to evaluate cognitive structure alteration in knowledge transfer. We also discussed why the dorsolateral prefrontal cortex (DLPFC) and occipital face area (OFA) distinguish themselves from the other brain areas in the M-WCST experiment. As an exploratory study in NeuroManagement, these findings may provide neurophysiological evidence about the functional brain network of knowledge transfer while engineering problem-solving.
Collapse
Affiliation(s)
- Fuhua Wang
- Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai, China
| | - Zuhua Jiang
- Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Li
- College of Mechanical Engineering, Donghua University, Shanghai, China.,School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Lingguo Bu
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China.,School of Software, Shandong University, Jinan, China
| | - Yongjun Ji
- Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Yang D, Hong KS. Quantitative Assessment of Resting-State for Mild Cognitive Impairment Detection: A Functional Near-Infrared Spectroscopy and Deep Learning Approach. J Alzheimers Dis 2021; 80:647-663. [PMID: 33579839 DOI: 10.3233/jad-201163] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is considered a prodromal stage of Alzheimer's disease. Early diagnosis of MCI can allow for treatment to improve cognitive function and reduce modifiable risk factors. OBJECTIVE This study aims to investigate the feasibility of individual MCI detection from healthy control (HC) using a minimum duration of resting-state functional near-infrared spectroscopy (fNIRS) signals. METHODS In this study, nine different measurement durations (i.e., 30, 60, 90, 120, 150, 180, 210, 240, and 270 s) were evaluated for MCI detection via the graph theory analysis and traditional machine learning approach, such as linear discriminant analysis, support vector machine, and K-nearest neighbor algorithms. Moreover, feature representation- and classification-based transfer learning (TL) methods were applied to identify MCI from HC through the input of connectivity maps with 30 and 90 s duration. RESULTS There was no significant difference among the nine various time windows in the machine learning and graph theory analysis. The feature representation-based TL showed improved accuracy in both 30 and 90 s cases (i.e., 30 s: 81.27% and 90 s: 76.73%). Notably, the classification-based TL method achieved the highest accuracy of 95.81% using the pre-trained convolutional neural network (CNN) model with the 30 s interval functional connectivity map input. CONCLUSION The results indicate that a 30 s measurement of the resting-state with fNIRS could be used to detect MCI. Moreover, the combination of neuroimaging (e.g., functional connectivity maps) and deep learning methods (e.g., CNN and TL) can be considered as novel biomarkers for clinical computer-assisted MCI diagnosis.
Collapse
Affiliation(s)
- Dalin Yang
- School of Mechanical Engineering, Pusan National University, Guemjeong-gu, Busan, Republic of Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Guemjeong-gu, Busan, Republic of Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Guemjeong-gu, Busan, Republic of Korea
| |
Collapse
|
18
|
Zhang N, Yuan X, Li Q, Wang Z, Gu X, Zang J, Ge R, Liu H, Fan Z, Bu L. The effects of age on brain cortical activation and functional connectivity during video game-based finger-to-thumb opposition movement: A functional near-infrared spectroscopy study. Neurosci Lett 2021; 746:135668. [PMID: 33497717 DOI: 10.1016/j.neulet.2021.135668] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES This study aims to explore the age-related changes in cerebral cortex activation and functional connectivity (FC) during finger-to-thumb opposition movement based on video games (FTOMBVG). METHODS A electronic fingercot was developed for FTOMBVG. The oxygenated hemoglobin concentration (Delta [HbO]) signals, measured by functional near-infrared spectroscopy (fNIRS), were recorded from prefrontal cortex (PFC), motor cortex (MC) and occipital lobe (OL) of two groups of subjects (old and young). RESULTS The cognitive region of the old group showed bilateral activation, while the young group only showed unilateral activation. Both groups showed a wide range of bilateral activation in the motor region. The FC between cognitive region and motor region of the old group was enhanced considerably. CONCLUSION Changes in cerebral cortex activation and the FC of different brain regions in the old group help explain the decline in cognitive executive and motor control function in the old from the perspective of brain functional structure, and provide a theoretical reference for the prevention of neural diseases caused by aging.
Collapse
Affiliation(s)
- Nieqiang Zhang
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Xin Yuan
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Qinbiao Li
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Zilin Wang
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Xiaosong Gu
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Jiabin Zang
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Ruhong Ge
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Heshan Liu
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
| | - Zhijun Fan
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
| | - Lingguo Bu
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China; School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
19
|
Wang Z, Liao M, Li Q, Zhang Y, Liu H, Fan Z, Bu L. Effects of three different rehabilitation games' interaction on brain activation using functional near-infrared spectroscopy. Physiol Meas 2020; 41:125005. [PMID: 33227728 DOI: 10.1088/1361-6579/abcd1f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study reveals the changes in brain activation due to different game interaction states based on functional near-infrared spectroscopy signals and discusses their significance for stroke rehabilitation. APPROACH The oxygenated hemoglobin concentration (Delta [HbO2]) signals and the deoxygenated hemoglobin (Delta [HbR]) signals were recorded from the prefrontal cortex (PFC), the motor cortex (MC), the occipital lobe (OL) and the temporal lobe of 21 subjects (mean age: 24.6 ± 1.9 years old) in three game interaction states: physical, motion-sensing, and button-push training. The subjects were also asked to complete user-satisfaction survey scales after the experiment. MAIN RESULTS Compared with the button-training state, several channels in the PFC and MC region of the physical-training state were significantly altered as were several channels in the RMC region of the motion-sensing training state (P < 0.05 after adjustment). The motion-sensing state of the PFC had a significant correlation with that of the MC and the OL. The subjective scale results show that the acceptability of the physical and motion-sensing states was greater than the acceptability of the button-push training state. SIGNIFICANCE The results show that the brain regions responded more strongly when activated by the physical and motion-sensing states compared with the button-push training state, and the physical and motion-sensing states are more conducive to the rehabilitation of the nervous system. The design of rehabilitation products for stroke patients is discussed and valuable insights are offered to support the selection of better interactive training methods.
Collapse
Affiliation(s)
- Zilin Wang
- School of Mechanical Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Bu L, Xu N, Wang Y, Liu H. Decreased low-frequency brain effective connectivity in seafarers during voyages: a functional near-infrared spectroscopy study. Physiol Meas 2020; 41:095003. [PMID: 32759489 DOI: 10.1088/1361-6579/abad13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE During voyages, seafarers experience psychological problems that act to decrease operational safety. Psychological problems in seafarers can lead to changes in functional brain networks. This study investigated the low-frequency brain effective connectivity (EC) in seafarers during voyages by using the coupling strength (CS) of functional near-infrared spectroscopy (fNIRS) imaging. APPROACH This study recruited 15 seafarers (seafarer group) working on a container ship and 15 healthy age-matched controls (control group). The EC was assessed using dynamic Bayesian inference (DBI) of the oxygenated hemoglobin concentration (delta HbO2) as measured through a 14-channel fNIRS system. These channels covered the left and right prefrontal cortices (LPFC/RPFC), left and right motor cortices (LMC/RMC), and left and right occipital lobes (LOL/ROL). MAIN RESULTS The EC levels of LPFC to RMC (F = 4.239, p = 0.049), LPFC to ROL (F = 5.385, p = 0.028), LOL to RPFC (F = 11.128, p = 0.002), ROL to RPFC (F = 10.714, p = 0.003) and LMC to ROL (F= 6.136, p = 0.02) were significantly lower in the seafarer group than in the control group. Correlation analysis revealed that the patient health questionnaire-9 (PHQ-9) scores were positively correlated with the systolic blood pressure (SBP) values, delta HbO2 values and EC levels, respectively. Meanwhile, the correlation analysis revealed that the SBP values significantly positively correlated with the CS values. SIGNIFICANCE Decreased EC levels may be a marker of psychological subhealth in seafarers. The approach combines fNIRS and PHQ-9 scores, providing a quantitative method for the assessment of mental health problems and further help with better rehabilitation designs in seafarers during voyages.
Collapse
Affiliation(s)
- Lingguo Bu
- Department of Physical Medicine and Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | | | | | | |
Collapse
|
21
|
Bonilauri A, Sangiuliano Intra F, Pugnetti L, Baselli G, Baglio F. A Systematic Review of Cerebral Functional Near-Infrared Spectroscopy in Chronic Neurological Diseases-Actual Applications and Future Perspectives. Diagnostics (Basel) 2020; 10:E581. [PMID: 32806516 PMCID: PMC7459924 DOI: 10.3390/diagnostics10080581] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The management of people affected by age-related neurological disorders requires the adoption of targeted and cost-effective interventions to cope with chronicity. Therapy adaptation and rehabilitation represent major targets requiring long-term follow-up of neurodegeneration or, conversely, the promotion of neuroplasticity mechanisms. However, affordable and reliable neurophysiological correlates of cerebral activity to be used throughout treatment stages are often lacking. The aim of this systematic review is to highlight actual applications of functional Near-Infrared Spectroscopy (fNIRS) as a versatile optical neuroimaging technology for investigating cortical hemodynamic activity in the most common chronic neurological conditions. METHODS We reviewed studies investigating fNIRS applications in Parkinson's Disease (PD), Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) as those focusing on motor and cognitive impairment in ageing and Multiple Sclerosis (MS) as the most common chronic neurological disease in young adults. The literature search was conducted on NCBI PubMed and Web of Science databases by PRISMA guidelines. RESULTS We identified a total of 63 peer-reviewed articles. The AD spectrum is the most investigated pathology with 40 articles ranging from the traditional monitoring of tissue oxygenation to the analysis of functional resting-state conditions or cognitive functions by means of memory and verbal fluency tasks. Conversely, applications in PD (12 articles) and MS (11 articles) are mainly focused on the characterization of motor functions and their association with dual-task conditions. The most investigated cortical area is the prefrontal cortex, since reported to play an important role in age-related compensatory mechanism and neurofunctional changes associated to these chronic neurological conditions. Interestingly, only 9 articles applied a longitudinal approach. CONCLUSION The results indicate that fNIRS is mainly employed for the cross-sectional characterization of the clinical phenotypes of these pathologies, whereas data on its utility for longitudinal monitoring as surrogate biomarkers of disease progression and rehabilitation effects are promising but still lacking.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (A.B.); (G.B.)
| | - Francesca Sangiuliano Intra
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
- Faculty of Education, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Luigi Pugnetti
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (A.B.); (G.B.)
| | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
| |
Collapse
|
22
|
Yeung MK, Chan AS. Functional near-infrared spectroscopy reveals decreased resting oxygenation levels and task-related oxygenation changes in mild cognitive impairment and dementia: A systematic review. J Psychiatr Res 2020; 124:58-76. [PMID: 32120065 DOI: 10.1016/j.jpsychires.2020.02.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Nuclear medicine and functional magnetic resonance imaging studies have shown that mild cognitive impairment (MCI) and dementia, including Alzheimer's disease (AD), are characterized by changes in cerebral blood flow. This article reviews the application of an alternative method, functional near-infrared spectroscopy (fNIRS), to the study of cerebral oxygenation changes in MCI and dementia. We synthesized 36 fNIRS studies that examined hemodynamic changes during both the resting state and the execution of tasks of word retrieval, memory, motor control, and visuospatial perception in MCI and dementia. This qualitative review reveals that (amnestic) MCI and AD patients have disrupted frontal and long-range connectivity in the resting state compared to individuals with normal cognition (NC). These patients also exhibit reduced frontal oxygenation changes in various cognitive domains. The review also shows that disrupted connectivity and decreased frontal oxygenation levels/changes are more severe in AD than in (amnestic) MCI, confirming that MCI is an intermediate stage between NC and dementia. Thus, there is reduced resting frontal perfusion, which is greater than expected for age, and a lack of frontal compensatory responses to functional decline across cognitive operations (i.e., word retrieval and memory functioning) in MCI and AD. These indices might potentially serve as perfusion- or oxygenation-based biomarkers for MCI/dementia. To expand the utility of fNIRS for MCI and dementia, further studies that measure tissue oxygenation in a wider range of brain regions and cognitive domains, compare different MCI and dementia types, and correlate changes in cerebral oxygenation over time with disease progression are needed.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China; Chanwuyi Research Center for Neuropsychological Well-being, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
23
|
Bu L, Qi L, Yan W, Yan Q, Tang Z, Li F, Liu X, Diao C, Li K, Dong G. Acute kick-boxing exercise alters effective connectivity in the brain of females with methamphetamine dependencies. Neurosci Lett 2020; 720:134780. [PMID: 31978497 DOI: 10.1016/j.neulet.2020.134780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Methamphetamine (METH) dependence, especially among women, is a serious global health problem. Kick-boxing exercise can be used to reduce cue-induced craving and develop a healthy lifestyle for female with METH dependencies. This study aimed to assess acute kick-boxing related changes in effective connectivity (EC) in the brain of females with METH dependencies by using functional near-infrared spectroscopy (fNIRS) signals. METHODS The fNIRS signals were continuously recorded from the left and right prefrontal cortices (LPFC/RPFC) and left and right motor cortices (LMC/RMC) of 30 female subjects with methamphetamine dependencies (METH group) and 30 age-matched controls (control group) during resting and kick-boxing exercise (training) periods. EC was calculated in the frequency range of 0.01-0.08 Hz. RESULTS In both resting and training state, the EC levels of METH group were significantly lower than the control group (p < 0.05). The EC levels of control group showed more significantly increased connection types than that of the METH group. CONCLUSION Acute kick-boxing exercise altered EC in the brain of females with METH dependencies. Furthermore, the efficiency of the information flow between different brain regions in the control group was significantly higher than that in the METH group. This study provides a novel and portable assessment technique for METH rehabilitation in females on the basis of fNIRS signals.
Collapse
Affiliation(s)
- Lingguo Bu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Liping Qi
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wu Yan
- Shandong Sport University, Jinan, 250102, China
| | - Qian Yan
- Shandong Sport University, Jinan, 250102, China
| | - Zekun Tang
- Shandong Sport University, Jinan, 250102, China
| | - Furong Li
- Female Compulsory Isolation Drug Rehabilitation Center of Shandong Province, Zibo, 255311, China
| | - Xin Liu
- Drug Rehabilitation Administration of Shandong Province, Jinan, 250014, China
| | - Chunfeng Diao
- Drug Rehabilitation Administration of Shandong Province, Jinan, 250014, China
| | - Kefeng Li
- Shandong Sport University, Jinan, 250102, China.
| | - Guijun Dong
- Shandong Sport University, Jinan, 250102, China.
| |
Collapse
|
24
|
Li Q, Feng J, Guo J, Wang Z, Li P, Liu H, Fan Z. Effects of the multisensory rehabilitation product for home-based hand training after stroke on cortical activation by using NIRS methods. Neurosci Lett 2020; 717:134682. [DOI: 10.1016/j.neulet.2019.134682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/07/2019] [Accepted: 12/07/2019] [Indexed: 01/19/2023]
|
25
|
Functional Network Alterations in Patients With Amnestic Mild Cognitive Impairment Characterized Using Functional Near-Infrared Spectroscopy. IEEE Trans Neural Syst Rehabil Eng 2020; 28:123-132. [DOI: 10.1109/tnsre.2019.2956464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|