1
|
Pérez-Peláez B, Jiménez-Cortegana C, de la Cruz-Merino L, Sánchez-Margalet V. Role of Nutrients Regulating Myeloid Derived Suppressor Cells in Cancer: A Scoping Review. Curr Issues Mol Biol 2024; 46:9286-9297. [PMID: 39329901 PMCID: PMC11429620 DOI: 10.3390/cimb46090549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature cells with an immunosuppressive function. MDSCs have been related to inflammation in many settings, including infections, transplantation, obesity, aging, or cancer. In oncological settings, MDSCs participate in tumor immunoescape, growth, and metastasis. Certain nutrients can modify chronic inflammation by their interaction with MDSCs. Therefore, the possible influence of certain nutrients on immune surveillance by their actions on MDSCs and how this may affect the prognosis of cancer patients were evaluated in this scoping review. We identified seven papers, six of which were murine model studies and only one was a human clinical trial. Globally, a significant reduction in cancer growth and progression was observed after achieving a reduction in both MDSCs and their immunosuppressive ability with nutrients such as selected vegetables, icaritin, retinoic acid, curdlan, active vitamin D, soy isoflavones, and green tea. In conclusion, the consumption of certain nutrients may have effects on MDSCs, with beneficial results not only in the prevention of tumor development and growth but also in improving patients' response.
Collapse
Affiliation(s)
- Beatriz Pérez-Peláez
- Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Department of Medicine, School of Medicine, Clinical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, 41013 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medicine, School of Medicine, Clinical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, 41013 Seville, Spain
| |
Collapse
|
2
|
Cody JW, Ellis-Connell AL, O’Connor SL, Pienaar E. Mathematical modeling indicates that regulatory inhibition of CD8+ T cell cytotoxicity can limit efficacy of IL-15 immunotherapy in cases of high pre-treatment SIV viral load. PLoS Comput Biol 2023; 19:e1011425. [PMID: 37616311 PMCID: PMC10482305 DOI: 10.1371/journal.pcbi.1011425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/06/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Immunotherapeutic cytokines can activate immune cells against cancers and chronic infections. N-803 is an IL-15 superagonist that expands CD8+ T cells and increases their cytotoxicity. N-803 also temporarily reduced viral load in a limited subset of non-human primates infected with simian immunodeficiency virus (SIV), a model of HIV. However, viral suppression has not been observed in all SIV cohorts and may depend on pre-treatment viral load and the corresponding effects on CD8+ T cells. Starting from an existing mechanistic mathematical model of N-803 immunotherapy of SIV, we develop a model that includes activation of SIV-specific and non-SIV-specific CD8+ T cells by antigen, inflammation, and N-803. Also included is a regulatory counter-response that inhibits CD8+ T cell proliferation and function, representing the effects of immune checkpoint molecules and immunosuppressive cells. We simultaneously calibrate the model to two separate SIV cohorts. The first cohort had low viral loads prior to treatment (≈3-4 log viral RNA copy equivalents (CEQ)/mL), and N-803 treatment transiently suppressed viral load. The second had higher pre-treatment viral loads (≈5-7 log CEQ/mL) and saw no consistent virus suppression with N-803. The mathematical model can replicate the viral and CD8+ T cell dynamics of both cohorts based on different pre-treatment viral loads and different levels of regulatory inhibition of CD8+ T cells due to those viral loads (i.e. initial conditions of model). Our predictions are validated by additional data from these and other SIV cohorts. While both cohorts had high numbers of activated SIV-specific CD8+ T cells in simulations, viral suppression was precluded in the high viral load cohort due to elevated inhibition of cytotoxicity. Thus, we mathematically demonstrate how the pre-treatment viral load can influence immunotherapeutic efficacy, highlighting the in vivo conditions and combination therapies that could maximize efficacy and improve treatment outcomes.
Collapse
Affiliation(s)
- Jonathan W. Cody
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Amy L. Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
3
|
Jiang W, Hu K, Liu X, Gao J, Zhu L. Single-cell transcriptome analysis reveals the clinical implications of myeloid-derived suppressor cells in head and neck squamous cell carcinoma. Pathol Oncol Res 2023; 29:1611210. [PMID: 37475874 PMCID: PMC10354270 DOI: 10.3389/pore.2023.1611210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
Head and neck squamous cell carcinoma (HNSC) is the most common malignant tumor that arises in the epithelium of the head and neck regions. Myeloid-derived suppressor cells (MDSCs) are one of the tumor-infiltrating immune cell populations, which play a powerful role in inhibiting anti-tumor immune response. Herein, we employed a single-cell RNA sequencing (scRNA-seq) dataset to dissect the heterogeneity of myeloid cells. We found that SPP1 + tumor-associated macrophages (TAMs) and MDSCs were the most abundant myeloid cells in the microenvironment. By cell cluster deconvolution from bulk RNA-seq datasets of larger patient groups, we observed that highly-infiltrated MDSC was a poor prognostic marker for patients' overall survival (OS) probabilities. To better apply the MDSC OS prediction values, we identified a set of six MDSC-related genes (ALDOA, CD52, FTH1, RTN4, SLC2A3, and TNFAIP6) as the prognostic signature. In both training and test cohorts, MDSC-related prognostic signature showed a promising value for predicting patients' prognosis outcomes. Further parsing the ligand-receptor pairs of intercellular communications by CellChat, we found that MDSCs could frequently interact with cytotoxic CD8 + T cells, SPP1 + TAMs, and endothelial cells. These interactions likely contributed to the establishment of an immunosuppressive microenvironment and the promotion of tumor angiogenesis. Our findings suggest that targeting MDSCs may serve as an alternative and promising target for the immunotherapy of HNSC.
Collapse
Affiliation(s)
- Wenru Jiang
- Department of Implant and Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kangyao Hu
- Department of Implant and Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaofei Liu
- Department of Implant and Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jili Gao
- Department of Implant and Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liping Zhu
- Department of Implant and Prosthodontics, Harbin First Hospital, Harbin, China
| |
Collapse
|
4
|
Sabrina S, Takeda Y, Kato T, Naito S, Ito H, Takai Y, Ushijima M, Narisawa T, Kanno H, Sakurai T, Saitoh S, Araki A, Tsuchiya N, Asao H. Initial Myeloid Cell Status Is Associated with Clinical Outcomes of Renal Cell Carcinoma. Biomedicines 2023; 11:biomedicines11051296. [PMID: 37238964 DOI: 10.3390/biomedicines11051296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The therapeutic outcome of immune checkpoint inhibition (ICI) can be improved through combination treatments with ICI therapy. Myeloid-derived suppressor cells (MDSCs) strongly suppress tumor immunity. MDSCs are a heterogeneous cell population, originating from the unusual differentiation of neutrophils/monocytes induced by environmental factors such as inflammation. The myeloid cell population consists of an indistinguishable mixture of various types of MDSCs and activated neutrophils/monocytes. In this study, we investigated whether the clinical outcomes of ICI therapy could be predicted by estimating the status of the myeloid cells, including MDSCs. Several MDSC indexes, such as glycosylphosphatidylinositol-anchored 80 kD protein (GPI-80), CD16, and latency-associated peptide-1 (LAP-1; transforming growth factor-β1 precursor), were analyzed via flow cytometry using peripheral blood derived from patients with advanced renal cell carcinoma (n = 51) immediately before and during the therapy. Elevated CD16 and LAP-1 expressions after the first treatment were associated with a poor response to ICI therapy. Immediately before ICI therapy, GPI-80 expression in neutrophils was significantly higher in patients with a complete response than in those with disease progression. This is the first study to demonstrate a relationship between the status of the myeloid cells during the initial phase of ICI therapy and clinical outcomes.
Collapse
Affiliation(s)
- Saima Sabrina
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Tomoyuki Kato
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Sei Naito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hiromi Ito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuki Takai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Masaki Ushijima
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Takafumi Narisawa
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hidenori Kanno
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Toshihiko Sakurai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
5
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
6
|
He K, Liu X, Hoffman RD, Shi RZ, Lv GY, Gao JL. G-CSF/GM-CSF-induced hematopoietic dysregulation in the progression of solid tumors. FEBS Open Bio 2022; 12:1268-1285. [PMID: 35612789 PMCID: PMC9249339 DOI: 10.1002/2211-5463.13445] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022] Open
Abstract
There are two types of abnormal hematopoiesis in solid tumor occurrence and treatment: pathological hematopoiesis, and myelosuppression induced by radiotherapy and chemotherapy. In this review, we primarily focus on the abnormal pathological hematopoietic differentiation in cancer induced by tumor-released granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF). As key factors in hematopoietic development, G-CSF/GM-CSF are well-known facilitators of myelopoiesis and mobilization of hematopoietic stem cells (HSCs). In addition, these two cytokines can also promote or inhibit tumors, dependent on tumor type. In multiple cancer types, hematopoiesis is greatly enhanced and abnormal lineage differentiation is induced by these two cytokines. Here, dysregulated hematopoiesis induced by G-CSF/GM-CSF in solid tumors and its mechanism are summarized, and the prognostic value of G-CSF/GM-CSF-associated dysregulated hematopoiesis for tumor metastasis is also briefly highlighted.
Collapse
Affiliation(s)
- Kai He
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xi Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Robert D Hoffman
- Yo San University of Traditional Chinese Medicine, Los Angeles, CA, 90066, USA
| | - Rong-Zhen Shi
- Tangqi Branch of Traditional Chinese Medicine Hospital of Yuhang District, Hangzhou, Zhejiang, 311106, China
| | - Gui-Yuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou, Zhejiang, 310053, China
| | - Jian-Li Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou, Zhejiang, 310053, China
| |
Collapse
|
7
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 881] [Impact Index Per Article: 293.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
8
|
Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. J Control Release 2021; 332:109-126. [DOI: 10.1016/j.jconrel.2021.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
|
9
|
Mueller S, Taitt JM, Villanueva-Meyer JE, Bonner ER, Nejo T, Lulla RR, Goldman S, Banerjee A, Chi SN, Whipple NS, Crawford JR, Gauvain K, Nazemi KJ, Watchmaker PB, Almeida ND, Okada K, Salazar AM, Gilbert RD, Nazarian J, Molinaro AM, Butterfield LH, Prados MD, Okada H. Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma. J Clin Invest 2020; 130:6325-6337. [PMID: 32817593 PMCID: PMC7685729 DOI: 10.1172/jci140378] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUNDPatients with diffuse midline gliomas (DMGs), including diffuse intrinsic pontine glioma (DIPG), have dismal outcomes. We previously described the H3.3K27M mutation as a shared neoantigen in HLA-A*02.01+, H3.3K27M+ DMGs. Within the Pacific Pediatric Neuro-Oncology Consortium, we assessed the safety and efficacy of an H3.3K27M-targeted peptide vaccine.METHODSNewly diagnosed patients, aged 3-21 years, with HLA-A*02.01+ and H3.3K27M+ status were enrolled in stratum A (DIPG) or stratum B (nonpontine DMG). Vaccine was administered in combination with polyinosinic-polycytidylic acid-poly-I-lysine carboxymethylcellulose (poly-ICLC) every 3 weeks for 8 cycles, followed by once every 6 weeks. Immunomonitoring and imaging were performed every 3 months. Imaging was centrally reviewed. Immunological responses were assessed in PBMCs using mass cytometry.RESULTSA total of 19 patients were enrolled in stratum A (median age,11 years) and 10 in stratum B (median age, 13 years). There were no grade-4 treatment-related adverse events (TRAEs). Injection site reaction was the most commonly reported TRAE. Overall survival (OS) at 12 months was 40% (95% CI, 22%-73%) for patients in stratum A and 39% (95% CI, 16%-93%) for patients in stratum B. The median OS was 16.1 months for patients who had an expansion of H3.3K27M-reactive CD8+ T cells compared with 9.8 months for their counterparts (P = 0.05). Patients with DIPG with below-median baseline levels of myeloid-derived suppressor cells had prolonged OS compared with their counterparts (P < 0.01). Immediate pretreatment dexamethasone administration was inversely associated with H3.3K27M-reactive CD8+ T cell responses.CONCLUSIONAdministration of the H3.3K27M-specific vaccine was well tolerated. Patients with H3.3K27M-specific CD8+ immunological responses demonstrated prolonged OS compared with nonresponders.TRIAL REGISTRATIONClinicalTrials.gov NCT02960230.FUNDINGThe V Foundation, the Pacific Pediatric Neuro-Oncology Consortium Foundation, the Pediatric Brain Tumor Foundation, the Mithil Prasad Foundation, the MCJ Amelior Foundation, the Anne and Jason Farber Foundation, Will Power Research Fund Inc., the Isabella Kerr Molina Foundation, the Parker Institute for Cancer Immunotherapy, and the National Institute of Neurological Disorders and Stroke (NINDS), NIH (R35NS105068).
Collapse
Affiliation(s)
- Sabine Mueller
- Department of Neurology
- Department of Neurosurgery and
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Children’s University Hospital Zurich, Switzerland
| | | | | | | | | | - Rishi R. Lulla
- Division of Pediatric Hematology/Oncology, Hasbro Children’s Hospital, Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Stewart Goldman
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Anu Banerjee
- Department of Neurosurgery and
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Susan N. Chi
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nicholas S. Whipple
- Division of Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - John R. Crawford
- Department of Neurosciences and Pediatrics, UCSD and Rady Children’s Hospital, San Diego, California, USA
| | - Karen Gauvain
- St. Louis Children’s Hospital, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kellie J. Nazemi
- Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Neil D. Almeida
- The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | | | | | | | - Javad Nazarian
- Children’s University Hospital Zurich, Switzerland
- Children’s National Medical Center, Washington, DC, USA
| | | | - Lisa H. Butterfield
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Michael D. Prados
- Department of Neurosurgery and
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurosurgery and
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| |
Collapse
|
10
|
Chen Q, He Y, Wang Y, Li C, Zhang Y, Guo Q, Zhang Y, Chu Y, Liu P, Chen H, Zhou Z, Zhou W, Zhao Z, Li X, Sun T, Jiang C. Penetrable Nanoplatform for "Cold" Tumor Immune Microenvironment Reeducation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000411. [PMID: 32995118 PMCID: PMC7503208 DOI: 10.1002/advs.202000411] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Lack of tumor-infiltration lymphocytes (TILs) and resistances by overexpressed immunosuppressive cells (principally, myeloid-derived suppressor cells (MDSCs)) in tumor milieu are two major challenges hindering the effectiveness of immunotherapy for "immune-cold" tumors. In addition, the natural physical barrier existing in solid cancer also limits deeper delivery of drugs. Here, a tumor-targeting and light-responsive-penetrable nanoplatform (Apt/PDGs^s@pMOF) is developed to elicit intratumoral infiltration of cytotoxic T cells (CTLs) and reeducate immunosuppressive microenvironment simultaneously. In particular, porphyrinic metal-organic framework (pMOF)-based photodynamic therapy (PDT) induces tumor immunogenic cell death (ICD) to promote CTLs intratumoral infiltration and hot "immune-cold" tumor. Upon being triggered by PDT, the nearly 10 nm adsorbed drug-loaded dendrimer de-shields from the nanoplatform and spreads into the deeper tumor, eliminating MDSCs and reversing immunosuppression, eventually reinforcing immune response. Meanwhile, the designed nanoplatform also has a systemic MDSC inhibition effect and moderate improvement of overall antitumor immune responses, resulting in effective suppression of distal tumors within less significant immune-related adverse effects (irAEs) induced.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yongqing He
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Peixin Liu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Hongyi Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Xiaomin Li
- Department of Chemistry and Laboratory of Advanced MaterialsFudan UniversityShanghai200433P. R. China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| |
Collapse
|
11
|
Myeloid Cells in Circulation and Tumor Microenvironment of Colorectal Cancer Patients with Early and Advanced Disease Stages. J Immunol Res 2020; 2020:9678168. [PMID: 32626789 PMCID: PMC7306094 DOI: 10.1155/2020/9678168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of cells that have been implicated in the development of an immunosuppressive environment, which promotes tumorigenesis and tumor progression. Numerous studies have reported expansion of MDSCs in circulation and the tumor microenvironment (TME) of cancer patients. However, due to the heterogenic nature of MDSCs and the different approaches for their identification, their detailed characterization and impact on disease progression in cancer patients are warranted. In this study, we investigated the levels of different myeloid cell subsets and antigen-presenting cells (APCs) using flow cytometry in unfractionated whole blood (WB), peripheral blood mononuclear cells (PBMCs), tumor tissue (TT), and adjacent normal tissue (NT) of colorectal cancer (CRC) patients. We found high levels of granulocytic myeloid cells (GMCs) in whole blood, but their levels were significantly lower in PBMCs. Importantly, we found significantly higher levels of GMCs in the TME compared to NT. In addition, monocytic myeloid cells (MMCs) showed significantly higher levels in PBMCs of CRC patients, compared to healthy donors (HDs). Notably, patients with advanced disease stages showed significantly higher levels of GMCs compared to early stages in whole blood, but PBMCs and tumor-infiltrating myeloid cells did not show any significant differences. Lastly, we found that levels of GMCs decreased, while IMCs increased in the TME with tumor budding. Our results highlight the importance of investigating the levels of different myeloid cell subsets in PBMCs versus whole blood of cancer patients and improve current knowledge on the potential prognostic significance of myeloid cells in CRC patients.
Collapse
|
12
|
Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020; 9:cells9030561. [PMID: 32121014 PMCID: PMC7140518 DOI: 10.3390/cells9030561] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of immunotherapy has been an astounding breakthrough in cancer treatments. In particular, immune checkpoint inhibitors, targeting PD-1 and CTLA-4, have shown remarkable therapeutic outcomes. However, response rates from immunotherapy have been reported to be varied, with some having pronounced success and others with minimal to no clinical benefit. An important aspect associated with this discrepancy in patient response is the immune-suppressive effects elicited by the tumour microenvironment (TME). Immune suppression plays a pivotal role in regulating cancer progression, metastasis, and reducing immunotherapy success. Most notably, myeloid-derived suppressor cells (MDSC), a heterogeneous population of immature myeloid cells, have potent mechanisms to inhibit T-cell and NK-cell activity to promote tumour growth, development of the pre-metastatic niche, and contribute to resistance to immunotherapy. Accumulating research indicates that MDSC can be a therapeutic target to alleviate their pro-tumourigenic functions and immunosuppressive activities to bolster the efficacy of checkpoint inhibitors. In this review, we provide an overview of the general immunotherapeutic approaches and discuss the characterisation, expansion, and activities of MDSCs with the current treatments used to target them either as a single therapeutic target or synergistically in combination with immunotherapy.
Collapse
Affiliation(s)
- Andrew M. K. Law
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - Fatima Valdes-Mora
- Histone Variants Group, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - David Gallego-Ortega
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| |
Collapse
|
13
|
Pengam S, Durand J, Usal C, Gauttier V, Dilek N, Martinet B, Daguin V, Mary C, Thepenier V, Teppaz G, Renaudin K, Blancho G, Vanhove B, Poirier N. SIRPα/CD47 axis controls the maintenance of transplant tolerance sustained by myeloid-derived suppressor cells. Am J Transplant 2019; 19:3263-3275. [PMID: 31207067 DOI: 10.1111/ajt.15497] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/12/2019] [Accepted: 05/30/2019] [Indexed: 01/25/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature hematopoietic precursors known to suppress immune responses. Interaction of SIRP alpha (SIRPα), expressed by myeloid cells, with the ubiquitous receptor CD47 is an important immune checkpoint of the innate response regulating macrophages and dendritic cells functions. We previously described that MDSC expressing SIRPα accumulated after transplantation and maintained kidney allograft tolerance. However, the role of the SIRPα/CD47 axis on MDSC function remained unknown. Here, we found that blocking SIRPα or CD47 with monoclonal antibodies (mAbs) induced differentiation of MDSC into myeloid cells overexpressing MHC class II, CD86 costimulatory molecule and increased secretion of macrophage-recruiting chemokines (eg, MCP-1). Using a model of long-term kidney allograft tolerance sustained by MDSC, we observed that administration of blocking anti-SIRPα or CD47 mAbs induced graft dysfunction and rejection. Loss of tolerance came along with significant decrease of MDSC and increase in MCP-1 concentration in the periphery. Graft histological and transcriptomic analyses revealed an inflammatory (M1) macrophagic signature at rejection associated with overexpression of MCP-1 mRNA and protein in the graft. These findings indicate that the SIRPα-CD47 axis regulates the immature phenotype and chemokine secretion of MDSC and contributes to the induction and the active maintenance of peripheral acquired immune tolerance.
Collapse
Affiliation(s)
| | - Justine Durand
- OSE Immunotherapeutics, Nantes, France.,Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Claire Usal
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | | | - Nahzli Dilek
- OSE Immunotherapeutics, Nantes, France.,Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Bernard Martinet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Véronique Daguin
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | | | | | | | - Karine Renaudin
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | | |
Collapse
|
14
|
Kato T, Takeda Y, Ito H, Kurota Y, Yamagishi A, Sakurai T, Naito S, Araki A, Nara H, Asao H, Tsuchiya N. GPI-80 as a Useful Index for Myeloid Cell Heterogeneity and a Potential Prognostic Biomarker for Metastatic Renal Cell Carcinoma. TOHOKU J EXP MED 2019; 249:203-212. [PMID: 31776298 DOI: 10.1620/tjem.249.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs), which include neutrophilic MDSCs and monocytic MDSCs, exhibit high immunosuppressive activity. Glycosylphosphatidylinositol-anchored 80 kD protein (GPI-80) is selectively expressed on mature neutrophils in healthy individuals. Increased GPI-80 expression on monocytes and variations in GPI-80 expression on neutrophils indicate the appearance of MDSCs in the peripheral blood of cancer patients. However, it is still unclear whether GPI-80 expression on myeloid cells, neutrophilic MDSCs and monocytic MDSCs, is correlated with the clinical outcomes of patients with cancer. In this study, we investigated the characteristics of myeloid cells expressing GPI-80 and the implication of GPI-80 expression in the clinical outcomes of patients with metastatic renal cell carcinoma (mRCC), in which primary renal cell carcinoma spreads from the kidney to other organs. The study included 20 patients with mRCC (a mean age of 66.0 years) and 16 healthy volunteers (a mean age of 47.8 years). To determine the heterogeneity of myeloid cells in peripheral blood samples, we performed the three-dimensional principal component analysis using the combination of GPI-80, CD16, and latency-associated peptide-1 (LAP), derived from the N-terminal region of transforming growth factor-β1 precursor. The results showed that myeloid cells in mRCC patients were widely distributed and clearly distinguishable from those in the healthy volunteers. The survival analysis revealed that GPI-80 expression on neutrophils and monocytes was correlated with poor prognostic outcomes of patients with mRCC. In conclusion, the expression of GPI-80 on myeloid cells, a useful index for the heterogeneity of MDSCs, serves as a potential prognostic biomarker for mRCC.
Collapse
Affiliation(s)
- Tomoyuki Kato
- Department of Urology, Yamagata University Faculty of Medicine
| | - Yuji Takeda
- Department of Immunology, Yamagata University Faculty of Medicine
| | - Hiromi Ito
- Department of Urology, Yamagata University Faculty of Medicine
| | - Yuta Kurota
- Department of Urology, Yamagata University Faculty of Medicine
| | | | | | - Sei Naito
- Department of Urology, Yamagata University Faculty of Medicine
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine
| | - Hidetoshi Nara
- Department of Immunology, Yamagata University Faculty of Medicine
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine
| | | |
Collapse
|
15
|
Wan D, Yang Y, Liu Y, Cun X, Li M, Xu S, Zhao W, Xiang Y, Qiu Y, Yu Q, Tang X, Zhang Z, He Q. Sequential depletion of myeloid-derived suppressor cells and tumor cells with a dual-pH-sensitive conjugated micelle system for cancer chemoimmunotherapy. J Control Release 2019; 317:43-56. [PMID: 31758970 DOI: 10.1016/j.jconrel.2019.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 02/05/2023]
Abstract
Myeloid-derived suppressor cells(MDSCs)are one of the most important immunosuppressive cells in tumor microenvironment, which also promote the development and progression of tumor cells. Nevertheless, due to the different distribution features of MDSCs and tumor cells, selective elimination of MDSCs and tumor cells in tumor microenvironment remain a great challenge. Here we have designed a dual-pH-sensitivity conjugated micelle system (PAH/RGX-104@PDM/PTX) that could deliver liver-X nuclear receptor (LXR) agonist RGX-104 and paclitaxel (PTX) to the perivascular region and tumor cells, respectively. Upon arrival at the acidic tumor microenvironment, the PAH/RGX-104@PDM/PTX undergo structure disintegration and capacitate coinstantaneous release of RGX-104 in the perivascular regions, leaving the intact PTX containing micelles PDM/PTX for tumor deep penetration. The released RGX-104 can be preferentially taken up by leukocytes, endothelial cells and macrophages which are nicely enriched in perivascular regions to active the LXR, and further reduces immunosuppressive MDSC levels. The remained small micelles carrying PTX enable deep tumor penetration as well as rapid specific drug release in the endosomal/lysosomal to kill tumor cells. PAH/RGX-104@PDM/PTX exhibits superior tumor accumulation as well as tumor penetration, and suppresses 74.88% in vivo tumor growth. More importantly, PAH/RGX-104@PDM/PTX has significantly alleviated tumor immunosuppression by eliminating MDSCs and increasing cytotoxic T lymphocytes infiltration. Our studies suggest that the dual-pH-sensitive codelivery nanocarrier not only cause apoptosis of cancer cells but also regulate the tumor immune environment to ultimately enhance the antitumor effect of CTLs through MDSCs depletion.
Collapse
Affiliation(s)
- Dandan Wan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Yiliang Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Yiyao Liu
- Department of Hematology, Hematology Research Laboratory, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingli Cun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Shanshan Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Wei Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Yangyang Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Yue Qiu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Qianwen Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Xian Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
16
|
Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 2019; 14:141. [PMID: 31395068 PMCID: PMC6688256 DOI: 10.1186/s13014-019-1345-6] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/24/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence. Late detection and a particularly aggressive biology are the major challenges which determine therapeutic failure. In this review, we present the current status and the recent advances in PDAC treatment together with the biological and immunological hallmarks of this cancer entity. On this basis, we discuss new concepts combining distinct treatment modalities in order to improve therapeutic efficacy and clinical outcome - with a specific focus on protocols involving radio(chemo)therapeutic approaches.
Collapse
|
17
|
Slavyanskaya TA, Salnikova SV. Precision oncology: myth or reality? BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer incidence rates are growing at an alarming pace pressing for the development of innovative personalized approaches to treating this disease. The absence of clinical symptoms in the early stages delays the onset of adequate treatment. Traditional therapies are not always as effective as they should be and do not guarantee long-lasting relapse-free survival. Metastatic cancers pose a particular challenge to healthcare professionals. This review touches upon the immunologic mechanisms underlying the development of malignancies, talks about conventional and innovative therapeutic modalities, such as targeted, gene or specific immunotherapies, and analyzes the literature on the use of different approaches that form a basis for precision oncology.
Collapse
|
18
|
Verma P, Verma R, Nair RR, Budhwar S, Khanna A, Agrawal NR, Sinha R, Birendra R, Rajender S, Singh K. Altered crosstalk of estradiol and progesterone with Myeloid-derived suppressor cells and Th1/Th2 cytokines in early miscarriage is associated with early breakdown of maternal-fetal tolerance. Am J Reprod Immunol 2019; 81:e13081. [PMID: 30589483 DOI: 10.1111/aji.13081] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
PROBLEM Decline in myeloid-derived suppressor cells (MDSCs) and Th2 cytokines levels lead to early miscarriage (EM) but how the hormonal milieu of the body regulates MDSCs and Th1/Th2 cytokine balance is still a matter of investigation. METHOD OF STUDY Peripheral blood and decidua samples were collected from 20 EM patients, and 20 healthy pregnant women opted for elective abortion. MDSCs and G-MDSCs levels were analyzed in peripheral blood mononuclear cells, and Th1/Th2 cytokines levels were determined in serum via flow cytometry. Estrogen (E2), Progesterone (P4), and Testosterone levels were measured via ELISA. Further, proliferation and apoptosis in decidual samples were checked via immunoblot/immunohistochemistry of estrogen receptor -α (ER-α), STAT-3/pSTAT-3, and caspase-3, respectively. RESULTS Our results clearly indicate that in EM patients; decline in E2 and P4 significantly correlates with decline in MDSCs, particularly with subtype granulocytic MDSCs (G-MDSCs) and skewness of the Th1/Th2 cytokines balance toward Th1 response. Downregulation of ER- α and increased caspase-3 expression in endometrium decidua signifies poor endometrial receptivity in EM. STAT-3 activation regulates proliferation, differentiation and suppressive potency of MDSCs. In decidua of EM, significantly lower expression of pSTAT-3 indicates that these processes pertaining to MDSCs are compromised. CONCLUSION Altogether, this unfavorable systemic milieu may drive toward early breakdown of maternal-fetal tolerance in EM. Therefore, regulated crosstalk of E2, P4 with MDSCs and balanced Th1/Th2 cytokines is prerequisite for successful pregnancy.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | - Rachna Verma
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | - Rohini R Nair
- Department of Molecular & Human Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Snehil Budhwar
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | - Anuradha Khanna
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nisha Rani Agrawal
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ruchi Sinha
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ruchi Birendra
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| |
Collapse
|
19
|
Nadal C, Béguin J, Benchekroun G, Le Roux D. The myeloid derived suppressor cells: Who are they? Can they be used as a diagnostic tool to investigate metastasis in veterinary medicine? Comp Immunol Microbiol Infect Dis 2018; 61:5-8. [PMID: 30502832 DOI: 10.1016/j.cimid.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/23/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are key players in immunosuppression mechanisms that lead to tumor escape and metastasis formation. Studies on these cells in many cancer types using human patients and murine models, have greatly increased since their discovery in 1980s. MDSCs are now defined as different subpopulations with specific phenotypes in mice and humans with clear immunosuppressive capacities, which are summarized in this review. Current knowledge on these cells have allowed comparative studies and MDSCs have also recently been identified in dogs. As in other species, canine MDSCs have immunosuppressive activities and their number is increased in blood of metastasis-bearing dogs. Circulating MDSCs could therefore represent a new biomarker for cancer progression in both veterinary and human medicine. Further characterization of these cells in other cancer-suffering animal species would also be of great interest.
Collapse
Affiliation(s)
- Clémence Nadal
- Unité de Bactériologie/Immunologie/Virologie, Département des Sciences Biologiques et Pharmaceutiques, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France; Secteur Microbiologie/Immunologie, Biopôle Alfort, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Jérémy Béguin
- Service de Médecine Interne, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Ghita Benchekroun
- Service de Médecine Interne, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Delphine Le Roux
- Unité de Bactériologie/Immunologie/Virologie, Département des Sciences Biologiques et Pharmaceutiques, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France; Secteur Microbiologie/Immunologie, Biopôle Alfort, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France.
| |
Collapse
|
20
|
Yin Z, Li C, Wang J, Xue L. Myeloid-derived suppressor cells: Roles in the tumor microenvironment and tumor radiotherapy. Int J Cancer 2018; 144:933-946. [PMID: 29992569 DOI: 10.1002/ijc.31744] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Zhongnan Yin
- Biobank; Peking University Third Hospital; Beijing China
| | - Chunxiao Li
- Department of Radiation Oncology; Peking University Third Hospital; Beijing China
| | - Junjie Wang
- Department of Radiation Oncology; Peking University Third Hospital; Beijing China
| | - Lixiang Xue
- Biobank; Peking University Third Hospital; Beijing China
- Department of Radiation Oncology; Peking University Third Hospital; Beijing China
| |
Collapse
|
21
|
Lin YC, Hsu CY, Huang SK, Fan YH, Huang CH, Yang CK, Su WT, Chang PC, Dutta A, Liu YJ, Huang CT, Chen TC, Lin CY. Induction of liver-specific intrahepatic myeloid cells aggregation expands CD8 T cell and inhibits growth of murine hepatoma. Oncoimmunology 2018; 7:e1502129. [PMID: 30524897 PMCID: PMC6279338 DOI: 10.1080/2162402x.2018.1502129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/01/2018] [Accepted: 07/14/2018] [Indexed: 02/08/2023] Open
Abstract
Toll-Like Receptor 9 (TLR9) stimulation selectively triggers the formation of a cell cluster termed intrahepatic myeloid aggregation for T cell expansion" (iMATE) in a mouse chronic viral hepatitis model. iMATE expands cytotoxic T cells and controls viral hepatitis infection. The liver-specific immune response prompted this investigation of whether the effect could control tumor growth in the murine hepatic tumor model. Murine hepatic BNL cells were used to establish an orthotropic liver tumor model. We found that intravenous infusion of TLR 9 agonist, CpG oligodeoxynucleotide (ODN) induced iMATE formation in non-tumor parts of liver and suppressed the murine BNL tumor growth. The ratio of intra-tumor CD8+ T cells have increased after CpG ODN. These cells expressed higher levels of effector and checkpoint molecules, and produce more Th1 cytokine upon ex vivo stimulation. The CD11b+Ly6ChiLy6G - subset of CD11b+ myeloid cells in the tumor microenvironment has increased. Both CD11b+Ly6ChiLy6G - and CD11b+Ly6CloLy6G+ subsets expressed higher level of interferon-gamma post CpG ODN treatment, although still presented a suppressive phenotype. Their suppressive ability was decreased, instead, the targeted CD8+ T cell proliferation was promoted at a higher dose of CD11b+Ly6ChiLy6G- cells. The phenomenon was further proven in DEN induced liver tumor model. In conclusion, systemic CpG ODN treatment induced iMATE formation that expanded effector CD8+ T cells to control tumor growth in the mouse hepatic tumor model. This novel strategy provides a new rationale for liver-specific tumor immunotherapy.
Collapse
Affiliation(s)
- Yung-Chang Lin
- Division of Medical Oncology/Hematology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Yu Hsu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sheng-Kai Huang
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Han Fan
- Division of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien-Hao Huang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chan-Keng Yang
- Division of Medical Oncology/Hematology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Division of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wan-Ting Su
- Division of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Chia Chang
- Division of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Avijit Dutta
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Jen Liu
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Tai Huang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tse-Ching Chen
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yen Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
22
|
Seo EH, Namgung JH, Oh CS, Kim SH, Lee SH. Association of Chemokines and Chemokine Receptor Expression with Monocytic-Myeloid-Derived Suppressor Cells during Tumor Progression. Immune Netw 2018; 18:e23. [PMID: 29984041 PMCID: PMC6026688 DOI: 10.4110/in.2018.18.e23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are highly immunosuppressive myeloid cells that show increased expression in cancer patients; however, the molecular mechanisms underlying their generation and function are unclear. Whereas granulocytic-MDSCs correlate with poor overall survival in breast cancer (BC), the presence and relevance of monocytic (Mo)-MDSCs are unknown. Here, we report for the first time increased chemokine and chemokine receptor production by Mo-MDSCs in BC patients. A clear population of Mo-MDSCs with the typical cell surface phenotype (human leukocyte antigen-antigen D related [HLA-DR]low/− CD11b+ CD33+ CD14+) increased significantly during disease progression. In addition, the chemokine receptor expression level on Mo-MDSCs in patients with invasive BC was the highest. Furthermore, different chemokine receptor expression patterns were noted in Mo-MDSCs between healthy controls (HC) and BC patients. Additionally, CD4 T cells proliferations were significantly decreased in the invasive BC groups compared with the HC group. However, the ductal carcinoma in situ (DCIS) group had no significantly compared with the HC group. Our data suggest that monitoring chemokine and chemokine receptor production by Mo-MDSCs may represent a novel and simple biomarker for assessing disease progression in BC patients.
Collapse
Affiliation(s)
- Eun-Hye Seo
- BK21 Plus, Department of Cellular and Molecular Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Ji Hyeon Namgung
- Department of Microbiology, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Chung-Sik Oh
- Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Seong-Hyop Kim
- Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea.,Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul 05030, Korea.,Department of Infection and Immunology, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Seung Hyun Lee
- Department of Microbiology, Konkuk University School of Medicine, Seoul 05030, Korea.,Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul 05030, Korea.,Department of Infection and Immunology, Konkuk University School of Medicine, Seoul 05030, Korea
| |
Collapse
|
23
|
Abstract
The concept that progression of cancer is regulated by interactions of cancer cells with their microenvironment was postulated by Stephen Paget over a century ago. Contemporary tumour microenvironment (TME) research focuses on the identification of tumour-interacting microenvironmental constituents, such as resident or infiltrating non-tumour cells, soluble factors and extracellular matrix components, and the large variety of mechanisms by which these constituents regulate and shape the malignant phenotype of tumour cells. In this Timeline article, we review the developmental phases of the TME paradigm since its initial description. While illuminating controversies, we discuss the importance of interactions between various microenvironmental components and tumour cells and provide an overview and assessment of therapeutic opportunities and modalities by which the TME can be targeted.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Bayik D, Tross D, Klinman DM. Factors Influencing the Differentiation of Human Monocytic Myeloid-Derived Suppressor Cells Into Inflammatory Macrophages. Front Immunol 2018; 9:608. [PMID: 29632539 PMCID: PMC5879147 DOI: 10.3389/fimmu.2018.00608] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 01/25/2023] Open
Abstract
Monocytic myeloid-derived suppressor cells (mMDSC) accumulate within tumors where they create an immunosuppressive milieu that inhibits the activity of cytotoxic T and NK cells thereby allowing cancers to evade immune elimination. The toll-like receptors 7/8 agonist R848 induces human mMDSC to mature into inflammatory macrophage (MACinflam). This work demonstrates that TNFα, IL-6, and IL-10 produced by maturing mMDSC are critical to the generation of MACinflam. Neutralizing any one of these cytokines significantly inhibits R848-dependent mMDSC differentiation. mMDSC cultured in pro-inflammatory cytokine IFNγ or the combination of TNFα plus IL-6 differentiate into MACinflam more efficiently than those treated with R848. These mMDSC-derived macrophages exert anti-tumor activity by killing cancer cells. RNA-Seq analysis of the genes expressed when mMDSC differentiate into MACinflam indicates that TNFα and the transcription factors NF-κB and STAT4 are major hubs regulating this process. These findings support the clinical evaluation of R848, IFNγ, and/or TNFα plus IL-6 for intratumoral therapy of established cancers.
Collapse
Affiliation(s)
- Defne Bayik
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Debra Tross
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Dennis M Klinman
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
25
|
Abstract
Current therapies of renal cell carcinoma (RCC), a highly vascularised tumour, mostly rely on anti-angiogenic treatment options. These include tyrosine kinase inhibitors (TKIs) and anti-VEGF monoclonal antibodies. Although these strategies aim at restraining vascularisation to control tumour growth, the effects of such therapies are much wider, as affecting the vessel structure deeply modifies the microenvironment of the tumour mass. The aim of this review is to provide an overview of current knowledge on the global effects of anti-angiogenic treatment, mostly TKIs, on the shaping of the immune component of the RCC microenvironment. The data supporting the modification of immunity by anti-angiogenic therapies are collected to reveal the potential of angiogenesis modulation as a strategy for the adjuvant anti-cancer approach in immunotherapy.
Collapse
|
26
|
Negorev D, Beier UH, Zhang T, Quatromoni JG, Bhojnagarwala P, Albelda SM, Singhal S, Eruslanov E, Lohoff FW, Levine MH, Diamond JM, Christie JD, Hancock WW, Akimova T. Human neutrophils can mimic myeloid-derived suppressor cells (PMN-MDSC) and suppress microbead or lectin-induced T cell proliferation through artefactual mechanisms. Sci Rep 2018; 8:3135. [PMID: 29453429 PMCID: PMC5816646 DOI: 10.1038/s41598-018-21450-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
We report that human conventional CD15+ neutrophils can be isolated in the peripheral blood mononuclear cell (PBMC) layer during Ficoll gradient separation, and that they can impair T cell proliferation in vitro without concomitant neutrophil activation and killing. This effect was observed in a total of 92 patients with organ transplants, lung cancer or anxiety/depression, and in 18 healthy donors. Although such features are typically associated in the literature with the presence of certain myeloid-derived suppressor cell (PMN-MDSC) populations, we found that commercial centrifuge tubes that contained membranes or gels for PBMC isolation led to up to 70% PBMC contamination by CD15+ neutrophils, with subsequent suppressive effects in certain cellular assays. In particular, the suppressive activity of human MDSC should not be evaluated using lectin or microbead stimulation, whereas assays involving soluble or plate-bound antibodies or MLR are unaffected. We conclude that CD15+ neutrophil contamination, and associated effects on suppressor assays, can lead to significant artefacts in studies of human PMN-MDSC.
Collapse
Affiliation(s)
- Dmitri Negorev
- The Pathology Bioresource, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Tianyi Zhang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Jon G Quatromoni
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Pratik Bhojnagarwala
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Steven M Albelda
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Evgeniy Eruslanov
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, 20892-154, USA
| | - Matthew H Levine
- Department of Surgery, Penn Transplant Institute, Hospital of the University of Pennsylvania and University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joshua M Diamond
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason D Christie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Zöller M. Janus-Faced Myeloid-Derived Suppressor Cell Exosomes for the Good and the Bad in Cancer and Autoimmune Disease. Front Immunol 2018; 9:137. [PMID: 29456536 PMCID: PMC5801414 DOI: 10.3389/fimmu.2018.00137] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells originally described to hamper immune responses in chronic infections. Meanwhile, they are known to be a major obstacle in cancer immunotherapy. On the other hand, MDSC can interfere with allogeneic transplant rejection and may dampen autoreactive T cell activity. Whether MDSC-Exosomes (Exo) can cope with the dangerous and potentially therapeutic activities of MDSC is not yet fully explored. After introducing MDSC and Exo, it will be discussed, whether a blockade of MDSC-Exo could foster the efficacy of immunotherapy in cancer and mitigate tumor progression supporting activities of MDSC. It also will be outlined, whether application of native or tailored MDSC-Exo might prohibit autoimmune disease progression. These considerations are based on the steadily increasing knowledge on Exo composition, their capacity to distribute throughout the organism combined with selectivity of targeting, and the ease to tailor Exo and includes open questions that answers will facilitate optimizing protocols for a MDSC-Exo blockade in cancer as well as for strengthening their therapeutic efficacy in autoimmune disease.
Collapse
Affiliation(s)
- Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Chimeric Antigen Receptor (CAR) T-Cell Therapy for Thoracic Malignancies. J Thorac Oncol 2017; 13:16-26. [PMID: 29107016 DOI: 10.1016/j.jtho.2017.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/16/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023]
Abstract
Chimeric antigen receptor (CAR) T cells are patient T cells that are transduced with genetically engineered synthetic receptors to target a cancer cell surface antigen. The remarkable clinical response rates achieved by adoptive transfer of T cells that target CD19 in patients with leukemia and lymphoma have led to a growing number of clinical trials exploring CAR T-cell therapy for solid tumors. Herein, we review the evolution of adoptive T-cell therapy; highlight advances in CAR T-cell therapy for thoracic malignancies; and summarize the targets being investigated in clinical trials for patients with lung cancer, malignant pleural mesothelioma, and esophageal cancer. We further discuss the barriers to successfully translating CAR T-cell therapy for solid tumors and present strategies that have been investigated to overcome these hurdles.
Collapse
|
29
|
Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, Teijeira Á, Oñate C, González Á, Ponz M, Schalper KA, Pérez-Gracia JL, Melero I. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev 2017; 60:24-31. [PMID: 28866366 DOI: 10.1016/j.ctrv.2017.08.004] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 12/23/2022]
Abstract
Interleukin-8 (CXCL8) was originally described asa chemokine whose main function is the attraction of a polymorphonuclear inflammatory leukocyte infiltrate acting on CXCR1/2. Recently, it has been found that tumors very frequently coopt the production of this chemokine, which in this malignant context exerts different pro-tumoral functions. Reportedly, these include angiogenesis, survival signaling for cancer stem cells and attraction of myeloid cells endowed with the ability to immunosuppress and locally provide growth factors. Given the fact that in cancer patients IL-8 is mainly produced by tumor cells themselves, its serum concentration has been shown to correlate with tumor burden. Thus, IL-8 serum concentrations have been shown to be useful asa pharmacodynamic biomarker to early detect response to immunotherapy. Finally, because of the roles that IL-8 plays in favoring tumor progression, several therapeutic strategies are being developed to interfere with its functions. Such interventions hold promise, especially for therapeutic combinations in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Carlos Alfaro
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain.
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Álvaro Teijeira
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Carmen Oñate
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain
| | - Álvaro González
- CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain; Department of Biochemistry, University Clinic of Navarra, Pamplona, Spain
| | - Mariano Ponz
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - José L Pérez-Gracia
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Ignacio Melero
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain.
| |
Collapse
|
30
|
Rodríguez-Cerdeira C, Carnero Gregorio M, López-Barcenas A, Sánchez-Blanco E, Sánchez-Blanco B, Fabbrocini G, Bardhi B, Sinani A, Guzman RA. Advances in Immunotherapy for Melanoma: A Comprehensive Review. Mediators Inflamm 2017; 2017:3264217. [PMID: 28848246 PMCID: PMC5564072 DOI: 10.1155/2017/3264217] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 12/18/2022] Open
Abstract
Melanomas are tumors originating from melanocytes and tend to show early metastasis secondary to the loss of cellular adhesion in the primary tumor, resulting in high mortality rates. Cancer-specific active immunotherapy is an experimental form of treatment that stimulates the immune system to recognize antigens on the surface of cancer cells. Current experimental approaches in immunotherapy include vaccines, biochemotherapy, and the transfer of adoptive T cells and dendritic cells. Several types of vaccines, including peptide, viral, and dendritic cell vaccines, are currently under investigation for the treatment of melanoma. These treatments have the same goal as drugs that are already used to stimulate the proliferation of T lymphocytes in order to destroy tumor cells; however, immunotherapies aim to selectively attack the tumor cells of each patient. In this comprehensive review, we describe recent advancements in the development of immunotherapies for melanoma, with a specific focus on the identification of neoantigens for the prediction of their elicited immune responses. This review is expected to provide important insights into the future of immunotherapy for melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ardiana Sinani
- Dermatology Service, Military Medical Unit, University Trauma Hospital, Tirana, Albania
| | | |
Collapse
|
31
|
Tamadaho RSE, Hoerauf A, Layland LE. Immunomodulatory effects of myeloid-derived suppressor cells in diseases: Role in cancer and infections. Immunobiology 2017; 223:432-442. [PMID: 29246400 DOI: 10.1016/j.imbio.2017.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 06/05/2017] [Accepted: 07/02/2017] [Indexed: 01/05/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous cells capable of abrogating T and B cells responses and have been identified in numerous cancers. As with other regulatory cell populations, they aim to maintain balance between host-defence-associated inflammation and ensuing tissue pathology. MDSC accumulation and/or activation involve several growth factors and cytokines including Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) and Interleukin (IL)-6 and suppression has been linked to receptors such as IL-4Rα. Other immune pathways, such as Toll-like receptors (TLRs) have also been shown to interfere in MDSC activity adding to the complexity in clarifying their pathways. Monocytic- (Mo-MDSCs) and polymorphonuclear- (PMN-MDSCs) cells are two subsets of MDSCs that have been well characterized and have been shown to function through different mechanisms although both appear to require nitric oxide. In human and murine model settings, MDSCs have been shown to have inhibitory effects on T cell responses during bacterial, parasitic and viral pathologies and an increase of MDSC numbers has been associated with pathological conditions. Interestingly, the environment impacts on MDSC activity and regulatory T cells (Tregs), mast cells and a few cells that may help MDSC in order to regulate immune responses. Since the majority of pioneering data on MDSCs has stemmed from research on malignancies, this review will summarize MDSC biology and function in cancer and highlight current knowledge about these cells during infectious pathologies as well.
Collapse
Affiliation(s)
- Ruth S E Tamadaho
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
32
|
Su Z, Ni P, She P, Liu Y, Richard SA, Xu W, Zhu H, Wang J. Bio-HMGB1 from breast cancer contributes to M-MDSC differentiation from bone marrow progenitor cells and facilitates conversion of monocytes into MDSC-like cells. Cancer Immunol Immunother 2017; 66:391-401. [PMID: 27987020 PMCID: PMC11028758 DOI: 10.1007/s00262-016-1942-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 12/04/2016] [Indexed: 01/08/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) constitute the major cell population that regulates immune responses. They are known to accumulate in tumors, chronic inflammatory and autoimmune diseases. Previous data indicate that high mobility group box 1(HMGB1) facilitates MDSC differentiation from bone marrow, suppresses NK cells, CD4+ and CD8+ T cells and is involved in cancer development. However, it remains unclear what potential mechanisms of HMGB1 facilitate MDSC differentiation. In the present work, we clearly demonstrate that HMGB1 secreted by cancer cells is N-glycosylated at Asn37, which facilitates monocytic (M)-MDSC differentiation from bone marrow via the p38/NFκB/Erk1/2 pathway and also contributes to conversion of monocytes into MDSC-like cells; HMGB1 blockade by a monoclonal antibody against the HMGB1 B box obviously reduced the accumulation of M-MDSC in tumor-bearing mice, delaying tumor growth and development; additionally, MDSC expansion and HMGB1 up-regulation were also found in breast cancer patients. All these data indicate that HMGB1 might be a potential tumor immunotherapy target.
Collapse
Affiliation(s)
- Zhaoliang Su
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Department of Immunology, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Ping Ni
- Department of Immunology, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peng She
- Department of Immunology, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yueqin Liu
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Seidu A Richard
- Department of Immunology, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wenlin Xu
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Haitao Zhu
- The Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jia Wang
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Immunology, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
33
|
Gao Q, Jiang J, Chu Z, Lin H, Zhou X, Liang X. Arsenic trioxide inhibits tumor-induced myeloid-derived suppressor cells and enhances T-cell activity. Oncol Lett 2017; 13:2141-2150. [PMID: 28454374 PMCID: PMC5403453 DOI: 10.3892/ol.2017.5679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/08/2016] [Indexed: 12/21/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), one of the major orchestrators of the immunosuppressive network, are associated with immune suppression and considered a prime target for cancer immunotherapy. At present, various strategies have been explored to deplete and/or inactivate MDSCs in vivo. In this study, we investigated the effect of arsenic trioxide (ATO) on MDSCs derived from tumor-bearing mice. This study examined the in vitro and in vivo effects of ATO administration on MDSCs from C57/j mice bearing either the B16 or H22 tumor. The MDSCs were then characterized for phenotype, gene expression and function. Administration with ATO in vitro significantly induced MDSC differentiation, inhibited their proliferation and triggered apoptosis. Treatment with ATO in these murine tumor models significantly inhibited tumor growth and splenomegaly, decreased the percentages of MDSCs in the spleen, promoted their differentiation, reduced tumor necrosis factor-α and interleukin-10 levels and weakened the immune inhibition activity of MDSCs on T cells. In addition, we observed the underlying mechanism involved in the regulation of MDSCs by ATO, which included a panel of cytokines and signaling pathways. The findings showed the immunoregulatory effects of ATO by inducing apoptosis, promoting differentiation and inhibiting the function of MDSCs, suggesting that ATO has potential clinical benefit as it selectively attenuates MDSC-induced immunosuppression.
Collapse
Affiliation(s)
- Qingmin Gao
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai 200040, P.R. China
| | - Jingwei Jiang
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai 200040, P.R. China
| | - Zhaohui Chu
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai 200040, P.R. China
| | - Hao Lin
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai 200040, P.R. China
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai 200040, P.R. China
| | - Xiaohua Liang
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
34
|
Anani W, Shurin MR. Targeting Myeloid-Derived Suppressor Cells in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:105-128. [PMID: 29275468 DOI: 10.1007/978-3-319-67577-0_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myeloid derived suppressor cells (MDSC) represent only a minor fraction of circulating blood cells but play an important role in tumor formation and progression. They are a heterogeneous group of cells that influence the tumor microenvironment by depletion of amino acids, oxidative stress, decreased trafficking of antitumor effector cells, and increased regulatory T and regulatory dendritic cell responses. Investigational treatment strategies targeting MDSCs have attempted to inhibit MDSC development and expansion (stem cell factor blockade, modulate of cell signaling, and target MDSC migration and recruitment), inhibit MDSC function (nitric oxide inhibition and reactive oxygen and nitrogen species inhibition), differentiate MDSCs into more mature cells (Vitamins A and D, all-trans retinoic acid, interleukin-2, toll-like receptor 9 inhibitors, taxanes, beta-glucan particles, tumor-derived exosome inhibition, and very small size proteoliposomes), and destroy MDSCs (cytotoxic agents, ephrin A2 degradation, anti-interleukin 13, and histamine blockers). To date, there are no Food and Drug Administration approved therapies selectively targeting MDSCs, but such therapies are likely to be implemented in the future, due to the key role of MDSCs in antitumor immunity.
Collapse
Affiliation(s)
- Waseem Anani
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Weston RM, Stover CM. Myeloid derived suppressor cells in breast cancer: A novel therapeutic target? World J Immunol 2016; 6:119-125. [DOI: 10.5411/wji.v6.i3.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/16/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
The relationship of the immune system and tumour cells is complex; although recognised that the immune system can protect the host against tumour development, the immune system also facilitates tumour progression through immune suppression. Pro-inflammatory mediators associated with chronic inflammation are responsible for the expansion and activation of myeloid derived suppressor cells (MDSCs); a heterogeneous group of cells that originates from myeloid progenitor cells but does not complete the final stages of differentiation. A causal relationship between chronic inflammation and tumour progression relies on the accumulation and maintenance of MDSCs as its linchpin; responsible for immunosuppression through the down-regulation of anti-tumour responses. MDSCs cause immunosuppression through a number of mechanisms; inhibiting the proliferation of CD4+ and CD8+ T cells, blocking natural killer cell activation and limiting dendritic cell maturation and function. As well as using various mechanisms to inhibit adaptive and immune responses, MDSCs also have non-immunological functions that aid tumour spread; including directly promoting tumour proliferation and metastasis by having an important role in tumour angiogenesis, secretion of matrix metalloproteinases and induction of epithelial-mesenchymal transition. Breast cancer is the most common cancer among women in the United Kingdom with 44540 new cases of invasive carcinoma in 2013 and results in the second highest cancer mortality rate in women, with 11600 deaths in 2012. Considering this, the need for novel therapeutic interventions is higher than ever. This review summarises the rationale for the targeting of MDSCs in breast cancer as a realistic avenue to increase survival from breast cancer.
Collapse
|
36
|
Huang X, Cui S, Shu Y. Cisplatin selectively downregulated the frequency and immunoinhibitory function of myeloid-derived suppressor cells in a murine B16 melanoma model. Immunol Res 2016; 64:160-70. [PMID: 26590944 DOI: 10.1007/s12026-015-8734-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The objective of this study was to investigate the immunomodulatory effect of cisplatin (DDP) on the frequency, phenotype and function of myeloid-derived suppressor cells (MDSC) in a murine B16 melanoma model. C57BL/6 mice were inoculated with B16 cells to establish the murine melanoma model and randomly received treatment with different doses of DDP. The percentages and phenotype of MDSC after DDP treatment were detected by flow cytometry. The immunoinhibitory function of MDSC was analyzed by assessing the immune responses of cocultured effector cells through CFSE-labeling assay, detection of interferon-γ production and MTT cytotoxic assay, respectively. Tumor growth and mice survival were monitored to evaluate the antitumor effect of combined DDP and adoptive cytokine-induced killer (CIK) cell therapy. DDP treatment selectively decreased the percentages, modulated the surface molecules and attenuated the immunoinhibitory effects of MDSC in murine melanoma model. The combination of DDP treatment and CIK therapy exerted synergistic antitumor effect against B16 melanoma. DDP treatment selectively downregulated the frequency and immunoinhibitory function of MDSC in B16 melanoma model, indicating the potential mechanisms mediating its immunomodulatory effect.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Medical Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Shiyun Cui
- Department of Medical Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yongqian Shu
- Department of Medical Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
37
|
Zhang S, Ma X, Zhu C, Liu L, Wang G, Yuan X. The Role of Myeloid-Derived Suppressor Cells in Patients with Solid Tumors: A Meta-Analysis. PLoS One 2016; 11:e0164514. [PMID: 27780254 PMCID: PMC5079654 DOI: 10.1371/journal.pone.0164514] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/25/2016] [Indexed: 02/05/2023] Open
Abstract
Targeting immune cells or factors are effective for patients with solid tumors. Myeloid-derived suppressor cells (MDSCs) are known to have immunosuppressive functions, and the levels of MDSCs in patients with solid tumor are assumed to have prognostic values. This meta-analysis aimed at evaluating the relationship between MDSCs and the prognosis of patients with solid tumors. We searched articles in PUBMED and EMBASE comprehensively, updated to March 2016. Eight studies with 442 patients were included in the meta-analysis. We analyzed pooled hazard ratios (HRs) for overall survival (OS), disease-free survival (DFS) and progression-free survival (PFS). The results showed that MDSCs were associated with poor OS (HR, 1.94; 95% confidence interval [CI], 1.42-2.66; P < 0.0001) in patients with solid tumors. PFS/RFS (HR, 1.85; 95% CI, 1.16-2.97; P = 0.01) also indicated the association between MDSCs and prognosis. The HRs and 95% CIs for OS in Asian and non-Asian patients were 2.53 (95% CI 1.61-3.42, p < 0.00001) and 1.67 (95% CI 1.14-2.46, p < 0.0001), respectively. We further analyzed the data according to tumor types. The combined HRs and 95% CIs for OS were 1.26 (95% CI 1.10-1.44, p = 0.0003) for gastrointestinal (GI) cancer, 2.59 (95% CI 1.69-3.98, p < 0.0001) for hepatocellular carcinoma (HCC) and 1.86 (95% CI 1.26-2.75, p = 0.002) for other tumor types. In conclusion, MDSCs had a fine prognostic value for OS and PFS/RFS in patients with solid tumors. MDSCs could be used as biomarkers to evaluate prognosis in clinical practice.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xuelei Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Chenjing Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Li Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Guoping Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xia Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
38
|
Korbelik M, Banáth J, Zhang W. Mreg Activity in Tumor Response to Photodynamic Therapy and Photodynamic Therapy-Generated Cancer Vaccines. Cancers (Basel) 2016; 8:cancers8100094. [PMID: 27754452 PMCID: PMC5082384 DOI: 10.3390/cancers8100094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 01/20/2023] Open
Abstract
Myeloid regulatory cells (Mregs) are, together with regulatory T cells (Tregs), a dominant effector population responsible for restriction of the duration and strength of antitumor immune response. Photodynamic therapy (PDT) and cancer vaccines generated by PDT are modalities whose effectiveness in tumor destruction is closely dependent on the associated antitumor immune response. The present study investigated whether the immunodepletion of granulocytic Mregs in host mice by anti-GR1 antibody would improve the response of tumors to PDT or PDT vaccines in these animals. Anti-GR1 administration immediately after Temoporfin-PDT of mouse SCCVII tumors abrogated curative effect of PDT. The opposite effect, increasing PDT-mediated tumor cure-rates was attained by delaying anti-GR1 treatment to 1 h post PDT. With PDT vaccines, multiple anti-GR1 administrations (days 0, 4, and 8 post vaccination) improved the therapy response with SCCVII tumors. The results with PDT suggest that neutrophils (boosting antitumor effect of this therapy) that are engaged immediately after photodynamic light treatment are within one hour replaced with a different myeloid population, presumably Mregs that hampers the therapy-mediated antitumor effect. Anti-GR1 antibody, when used with optimal timing, can improve the efficacy of both PDT of tumors in situ and PDT-generated cancer vaccines.
Collapse
Affiliation(s)
- Mladen Korbelik
- British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada.
| | - Judith Banáth
- British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada.
| | - Wei Zhang
- British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada.
| |
Collapse
|
39
|
Takeda Y, Kato T, Ito H, Kurota Y, Yamagishi A, Sakurai T, Araki A, Nara H, Tsuchiya N, Asao H. The pattern of GPI-80 expression is a useful marker for unusual myeloid maturation in peripheral blood. Clin Exp Immunol 2016; 186:373-386. [PMID: 27569996 DOI: 10.1111/cei.12859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have a wide spectrum of immunosuppressive activity; control of these cells is a new target for improving clinical outcomes in cancer patients. MDSCs originate from unusual differentiation of neutrophils or monocytes induced by inflammatory cytokines, including granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage (GM)-CSF. However, MDSCs are difficult to detect in neutrophil or monocyte populations because they are not uniform cells, resembling both neutrophils and monocytes; thus, they exist in a heterogeneous population. In this study, we investigated GPI-80, a known regulator of Mac-1 (CD11b/CD18) and associated closely with neutrophil maturation, to clarify this unusual differentiation. First, we demonstrated that the mean fluorescence intensity (MFI) of GPI-80 and coefficient of variation (CV) of GPI-80 were increased by treatment with G-CSF and GM-CSF, respectively, using a human promyelocytic leukaemia (HL60) cell differentiation model. To confirm the value of GPI-80 as a marker of unusual differentiation, we measured GPI-80 expression and MDSC functions using peripheral blood cells from metastatic renal cell carcinoma patients. The GPI-80 CV was augmented significantly in the CD16hi neutrophil cell population, and GPI-80 MFI was increased significantly in the CD33hi monocyte cell population. Furthermore, the GPI-80 CV in the CD16hi population was correlated inversely with the proliferative ability of T cells and the GPI-80 MFI of the CD33hi population was correlated with reactive oxygen species production. These results led us to propose that the pattern of GPI-80 expression in these populations is a simple and useful marker for unusual differentiation, which is related to MDSC functions.
Collapse
Affiliation(s)
- Y Takeda
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - T Kato
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - H Ito
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Y Kurota
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - A Yamagishi
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - T Sakurai
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - A Araki
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - H Nara
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - N Tsuchiya
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - H Asao
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
40
|
Gaither KA, Little AA, McBride AA, Garcia SR, Brar KK, Zhu Z, Platt A, Zhang F, Meadows GG, Zhang H. The immunomodulatory, antitumor and antimetastatic responses of melanoma-bearing normal and alcoholic mice to sunitinib and ALT-803: a combinatorial treatment approach. Cancer Immunol Immunother 2016; 65:1123-34. [PMID: 27481107 PMCID: PMC11029158 DOI: 10.1007/s00262-016-1876-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/21/2016] [Indexed: 01/13/2023]
Abstract
ALT-803, a novel IL-15/IL-15 receptor alpha complex, and the tyrosine kinase inhibitor, sunitinib, were examined for their single and combined effects on the growth of subcutaneous B16BL6 melanoma and on lymph node and lung metastasis. The study was conducted in immunocompetent C57BL/6 mice drinking water (Water mice) and in mice that chronically consumed alcohol (Alcohol mice), which are deficient in CD8(+) T cells. Sunitinib inhibited melanoma growth and was more effective in Alcohol mice. ALT-803 did not alter tumor growth or survival in Water or Alcohol mice. Combined ALT-803 and sunitinib inhibited melanoma growth and increased survival, and these effects were greater than sunitinib alone in Water mice. ALT-803 and alcohol independently suppressed lymph node and lung metastasis, whereas sunitinib alone or in combination with ALT-803 increased lymph node and lung metastasis in Water and Alcohol mice. Initially, ALT-803 increased IFN-γ-producing CD8(+)CD44(hi) memory T cells and CD8(+)CD44(hi)CD62L(lo) effector memory T cells and sunitinib decreased immunosuppressive MDSC and T regulatory cells (Treg). However, the impact of these treatments diminished with time. Subcutaneous tumors from Water mice showed increased numbers of CD8(+) T cells, CD8(+)CD44(hi) T cells, NK cells, and MDSC cells and decreased Treg cells after ALT-803 treatment.
Collapse
Affiliation(s)
- Kari A Gaither
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Alexander A Little
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Alisha A McBride
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Savanna R Garcia
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Kiranjot K Brar
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Zhaohui Zhu
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Amity Platt
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Faya Zhang
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA
| | - Gary G Meadows
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA.
| | - Hui Zhang
- Department of Pharmaceutical Sciences and the Pharmaceutical Sciences Graduate Program, College of Pharmacy, Washington State University Spokane, PBS 323, P. O. Box 1495, Spokane, WA, 99210-1495, USA.
| |
Collapse
|
41
|
Dufait I, Van Valckenborgh E, Menu E, Escors D, De Ridder M, Breckpot K. Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget 2016; 7:42698-42715. [PMID: 27029037 PMCID: PMC5173167 DOI: 10.18632/oncotarget.8311] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/23/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer progression is in part determined by interactions between cancer cells and stromal cells in the tumor microenvironment (TME). The identification of cytotoxic tumor-infiltrating lymphocytes has instigated research into immune stimulating cancer therapies. Although a promising direction, immunosuppressive mechanisms exerted at the TME hamper its success. Myeloid-derived suppressor cells (MDSCs) have come to the forefront as stromal cells that orchestrate the immunosuppressive TME. Consequently, this heterogeneous cell population has been the object of investigation. Studies revealed that the transcription factor signal transducer and activator of transcription 3 (STAT3) largely dictates the recruitment, activation and function of MDSCs in the TME. Therefore, this review will focus on the role of this key transcription factor during the MDSC's life cycle and on the therapeutic opportunities it offers.
Collapse
Affiliation(s)
- Inès Dufait
- Department of Radiotherapy, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
- Laboratory of Molecular and Cellular Technology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Laboratory of Hematology and Immunology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - Eline Menu
- Laboratory of Hematology and Immunology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - David Escors
- Immunomodulation Group, Navarrabiomed-Fundaçion, Miguel Servet, IdiSNA, Navarra, Spain
| | - Mark De Ridder
- Department of Radiotherapy, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Technology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| |
Collapse
|
42
|
Hirbod-Mobarakeh A, Mirghorbani M, Hajiju F, Marvi M, Bashiri K, Rezaei N. Myeloid-derived suppressor cells in gastrointestinal cancers: A systematic review. J Gastroenterol Hepatol 2016; 31:1246-56. [PMID: 26729006 DOI: 10.1111/jgh.13284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/19/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Gastrointestinal (GI) cancers are a heterogeneous group of cancers originating from the digestive system. Considering key roles of myeloid-derived suppressor cells (MDSCs) in the immunosuppression network, levels of MDSCs in patients with cancer are assumed to be of prognostic and predictive value. In this systematic review, we aimed to evaluate the clinical relevancy of MDSCs and their relationship with clinical features and prognosis of GI malignancies in patients with GI cancers. METHODS We searched Medline, Scopus, DART, OpenGrey, and ProQuest without applying any language filter up to 1 August 2015. Two of the authors independently reviewed search results for irrelevant and duplicate studies and extracted data from studies. We used tabulation to synthesize the findings of the studies and transformed data into a common rubric and calculated a weighted treatment effect across studies using Review Manager. RESULTS We found 1238 references in five databases, and after exclusion of irrelevant and duplicate studies, 17 studies with a total number of 1115 patients with GI cancers were included. A meta-analysis of three studies showed associations of high MDSC levels with higher mortality during follow-up periods (hazard ratio = 3.35; 95% confidence interval = 1.46-7.68, P = 0.0004). A meta-analysis of four studies showed that patients with higher levels of MDSC had higher odds of having an advanced cancer (odds ratio = 2.64; 95% confidence interval = 1.53-4.53; P = 0.0004). There were also significant associations between MDSC levels and relapse, tumor progression, lymph node involvement, and metastasis. CONCLUSION In conclusion, results of this systematic review based on the available literature suggest that MDSC levels are of clinical relevancy and prognostic and predictive value.
Collapse
Affiliation(s)
- Armin Hirbod-Mobarakeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Mirghorbani
- Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hajiju
- Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahnaz Marvi
- Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiandokht Bashiri
- Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Infection and Immunity, School of Medicine and Biomedical Sciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
43
|
Wang XY, Yi H, Li J. Response to: 'Issues with anti-Gr1 antibody-mediated myeloid-derived suppressor cell depletion' by Xing et al. Ann Rheum Dis 2016; 75:e50. [PMID: 27255418 DOI: 10.1136/annrheumdis-2016-209848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/14/2016] [Indexed: 11/03/2022]
Affiliation(s)
- Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Huanfa Yi
- Institute of Immunology, The First Bethune Hospital Academy of Translational Medicine, Jilin University, Changchun, Jilin, China
| | - Juan Li
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Albeituni SH, Ding C, Liu M, Hu X, Luo F, Kloecker G, Bousamra M, Zhang HG, Yan J. Yeast-Derived Particulate β-Glucan Treatment Subverts the Suppression of Myeloid-Derived Suppressor Cells (MDSC) by Inducing Polymorphonuclear MDSC Apoptosis and Monocytic MDSC Differentiation to APC in Cancer. THE JOURNAL OF IMMUNOLOGY 2016; 196:2167-80. [PMID: 26810222 DOI: 10.4049/jimmunol.1501853] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/02/2016] [Indexed: 12/17/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that promote tumor progression. In this study, we demonstrated that activation of a C-type lectin receptor, dectin-1, in MDSC differentially modulates the function of different MDSC subsets. Yeast-derived whole β-glucan particles (WGP; a ligand to engage and activate dectin-1, oral treatment in vivo) significantly decreased tumor weight and splenomegaly in tumor-bearing mice with reduced accumulation of polymorphonuclear MDSC but not monocytic MDSC (M-MDSC), and decreased polymorphonuclear MDSC suppression in vitro through the induction of respiratory burst and apoptosis. On a different axis, WGP-treated M-MDSC differentiated into F4/80(+)CD11c(+) cells in vitro that served as potent APC to induce Ag-specific CD4(+) and CD8(+) T cell responses in a dectin-1-dependent manner. Additionally, Erk1/2 phosphorylation was required for the acquisition of APC properties in M-MDSC. Moreover, WGP-treated M-MDSC differentiated into CD11c(+) cells in vivo with high MHC class II expression and induced decreased tumor burden when inoculated s.c. with Lewis lung carcinoma cells. This effect was dependent on the dectin-1 receptor. Strikingly, patients with non-small cell lung carcinoma that had received WGP treatment for 10-14 d prior to any other treatment had a decreased frequency of CD14(-)HLA-DR(-)CD11b(+)CD33(+) MDSC in the peripheral blood. Overall, these data indicate that WGP may be a potent immune modulator of MDSC suppressive function and differentiation in cancer.
Collapse
Affiliation(s)
- Sabrin H Albeituni
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202
| | - Chuanlin Ding
- Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Min Liu
- Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Xiaoling Hu
- Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Fengling Luo
- Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Goetz Kloecker
- Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Michael Bousamra
- Division of Thoracic Surgery, Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY 40202
| | - Huang-ge Zhang
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202
| | - Jun Yan
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202; Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| |
Collapse
|
45
|
Soler DC, Young AB, Fiessinger L, Galimberti F, Debanne S, Groft S, McCormick TS, Cooper KD. Increased, but Functionally Impaired, CD14(+) HLA-DR(-/low) Myeloid-Derived Suppressor Cells in Psoriasis: A Mechanism of Dysregulated T Cells. J Invest Dermatol 2016; 136:798-808. [PMID: 26807516 DOI: 10.1016/j.jid.2015.12.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
The clinical extent of psoriasis pathology is regulated in part by defects in immune networks, including a defect in the suppressive actions of regulatory T cells. Recently, CD14(+) HLA-DR(-/low) monocytic myeloid-derived suppressor cells (Mo-MDSCs) have been shown to suppress T-cell activation as one of their suppressive mechanisms. However, little is known about the role of Mo-MDSCs and their functional relationship to T-cell suppression in relation to human chronic immune-mediated inflammatory diseases, including psoriasis. Despite psoriasis being a hyperinflammatory condition, Mo-MDSCs were elevated in psoriatic patient peripheral blood mononuclear cells compared to nonpsoriatic healthy controls (2.6% vs. 0.9%, P < 0.002). Freshly isolated psoriatic Mo-MDSCs directly suppressed CD8 T-cell proliferation less efficiently than healthy control Mo-MDSCs. In addition, psoriatic Mo-MDSCs expressed reduced surface expression of programmed cell death protein 1 compared to healthy controls. Additional in vitro assays also demonstrated that psoriatic and control Mo-MDSCs both induce regulatory T-cell conversion from naïve T effector cells, but, importantly, the regulatory T cells induced by psoriatic Mo-MDSCs displayed decreased suppressive functionality. These results suggest that aberrations in psoriatic Mo-MDSCs prevent proper suppression of effector T-cell expansion and hamper the immune system's ability to correctly self-regulate.
Collapse
Affiliation(s)
- David C Soler
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew B Young
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lori Fiessinger
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fabrizio Galimberti
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sara Debanne
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sarah Groft
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA; The Murdough Family Center for Psoriasis, Cleveland, Ohio, USA
| | - Kevin D Cooper
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA; The Murdough Family Center for Psoriasis, Cleveland, Ohio, USA; University Hospitals Case Medical Center and VA Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
46
|
Melero-Jerez C, Ortega MC, Moliné-Velázquez V, Clemente D. Myeloid derived suppressor cells in inflammatory conditions of the central nervous system. Biochim Biophys Acta Mol Basis Dis 2015; 1862:368-80. [PMID: 26527182 DOI: 10.1016/j.bbadis.2015.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
The knowledge of the immune system elements and their relationship with other tissues, organs and systems are key approximations for the resolution of many immune-related disorders. The control of the immune response and/or its modulation from the pro-inflammatory to the anti-inflammatory response is being deeply studied in the field. In the last years, the study of myeloid-derived suppressor cells (MDSCs), a group of immature myeloid cells with a high suppressive activity on T cells has been extensively addressed in cancer. In contrast, their role in neuroimmune diseases is far from being totally understood. In this review, we will summarize data about MDSCs coming from the study of neuroinflammatory diseases in general and their potential role in multiple sclerosis, in order to introduce the putative use of this extraordinary promising cell type for future cell-based therapies. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Carolina Melero-Jerez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain
| | - María Cristina Ortega
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain; Centro de Biología Molecular Severo Ochoa. Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Verónica Moliné-Velázquez
- Animal Experimental Unit, Scientific Instrumentation Center (CIC), Campus de la Cartuja, Universidad de Granada, Granada, Spain
| | - Diego Clemente
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain.
| |
Collapse
|
47
|
Jiang J, Guo W, Liang X. Phenotypes, accumulation, and functions of myeloid-derived suppressor cells and associated treatment strategies in cancer patients. Hum Immunol 2014; 75:1128-37. [DOI: 10.1016/j.humimm.2014.09.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 02/07/2023]
|
48
|
Visceral leishmaniasis relapse in HIV patients--a role for myeloid-derived suppressor cells? PLoS Negl Trop Dis 2014; 8:e3132. [PMID: 25210932 PMCID: PMC4161322 DOI: 10.1371/journal.pntd.0003132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
49
|
Gantt S, Gervassi A, Jaspan H, Horton H. The role of myeloid-derived suppressor cells in immune ontogeny. Front Immunol 2014; 5:387. [PMID: 25165466 PMCID: PMC4131407 DOI: 10.3389/fimmu.2014.00387] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/29/2014] [Indexed: 01/13/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of granulocytic or monocytic cells that suppress innate as well as adaptive immune responses. In healthy adults, immature myeloid cells differentiate into macrophages, dendritic cells, and granulocytes in the bone marrow and MDSC are rarely detected in peripheral blood. However, in certain pathologies, in particular malignancies and chronic infection, differentiation of these cells is altered resulting in accumulation of circulating suppressive myeloid cells. MDSC express suppressive factors such as arginase-1, reactive oxygen species, and inducible nitric oxide synthase, which have the ability to inhibit T cell proliferation and cytoxicity, induce the expansion of regulatory T cells, and block natural killer cell activation. It is increasingly recognized that MDSC alter the immune response to several cancers, and perhaps chronic viral infections, in clinically important ways. In this review, we outline the potential contribution of MDSC to the generation of feto-maternal tolerance and to the ineffective immune responses to many infections and vaccines observed in early post-natal life. Granulocytic MDSC are present in large numbers in pregnant women and in cord blood, and wane rapidly during infancy. Furthermore, cord blood MDSC suppress in vitro T cell and NK responses, suggesting that they may play a significant role in human immune ontogeny. However, there are currently no data that demonstrate in vivo effects of MDSC on feto-maternal tolerance or immune ontogeny. Studies are ongoing to evaluate the functional importance of MDSC, including their effects on control of infection and response to vaccination in infancy. Importantly, several pharmacologic interventions have the potential to reverse MDSC function. Understanding the role of MDSC in infant ontogeny and their mechanisms of action could lead to interventions that reduce mortality due to early-life infections.
Collapse
Affiliation(s)
- Soren Gantt
- Child and Family Research Institute, University of British Columbia , Vancouver, BC , Canada
| | | | - Heather Jaspan
- Seattle BioMed , Seattle, WA , USA ; Division of Immunology, University of Cape Town , Cape Town , South Africa
| | - Helen Horton
- Seattle BioMed , Seattle, WA , USA ; Janssen ID&V Research and Development , Antwerp , Belgium
| |
Collapse
|