1
|
Butler SE, Ackerman ME. Challenges and future perspectives for high-throughput chimeric antigen receptor T cell discovery. Curr Opin Biotechnol 2024; 90:103216. [PMID: 39437676 PMCID: PMC11627592 DOI: 10.1016/j.copbio.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Novel chimeric antigen receptor (CAR) T cell designs are being developed to overcome challenges with tumor recognition, trafficking, on-target but off-tumor binding, cytotoxicity, persistence, and immune suppression within the tumor microenvironment. Whereas traditional CAR engineering is an iterative, hypothesis-driven process in which novel designs are rationally constructed and tested for in vivo efficacy, drawing from the fields of small-molecule and protein-based therapeutic discovery, we consider how high-throughput, functional screening technologies are beginning to be applied for the development of promising CAR candidates. We review how the development of high-throughput screening methods has the potential to streamline the CAR discovery process, ultimately improving efficiency and clinical efficacy.
Collapse
Affiliation(s)
- Savannah E Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
2
|
Mai Q, He B, Deng S, Zeng Q, Xu Y, Wang C, Pang Y, Zhang S, Li J, Zeng J, Huang L, Fu Y, Li C, Li T, Xu X, Zhang L. Efficacy of NKG2D CAR-T cells with IL-15/IL-15Rα signaling for treating Epstein-Barr virus-associated lymphoproliferative disorder. Exp Hematol Oncol 2024; 13:85. [PMID: 39160631 PMCID: PMC11334566 DOI: 10.1186/s40164-024-00553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
Epstein-Barr virus (EBV) related post-transplant lymphoproliferative disorder (EBV-PTLD) is a life-threatening complication after hematopoietic stem cell transplantation (HSCT) or solid organ transplantation (SOT), for which no standard therapeutic means have been developed. Significant increase expression of natural killer group 2 member D ligands (NKG2DLs) was observed on B-lymphoblastoid cells of EBV-PTLD, indicating NKG2DLs as potential therapeutic targets for treatment of EBV-PTLD. In this study, the recombinant constructs of NKG2D CAR and IL-15/IL-15Rα-NKG2D CAR were generated with a retroviral vector and then transduced to human T cells to produce NKG2D CAR-T and IL-15/IL-15Rα-NKG2D CAR-T cells, respectively. B-lymphoblastoid cell lines (B-LCLs) and the xenografted mouse models were established to evaluate the efficacy of these CAR-T cells. IL-15/IL-15Rα-NKG2D CAR-T cells exhibited superior proliferation and antigen-specific cytotoxic effect compared to NKG2D CAR-T, as IL-15/IL-15Rα signaling promoted the expansion of less differentiated central memory T cells (TCM) and increased expression of CD107a and IFN-γ. Moreover, EBV DNA load was dramatically reduced, and 80% B-LCL cells were eliminated by IL-15/IL-15Rα-NKG2D CAR-T cells after co-culturing. In-vivo study confirmed that IL-15/IL-15Rα-NKG2D CAR-T cell therapy significantly enhanced antiviral efficacy in mice, as the serum load of EBV after IL-15/IL-15Rα-NKG2D CAR-T cell infusion was 1500 times lower than the untreated control (P < 0.001). The enhanced efficacy of IL-15/IL-15Rα-NKG2D CAR T cells was probably due to the IL-15/IL-15Rα signaling improved homing and persistence of NKG2D CAR-T cells in vivo, and increased the production of IFN-γ, Perforin, and Granulysin. In conclusion, NKG2D CAR-T cells co-expressing IL-15/IL-15Rα promoted the central memory CAR T cell proliferation and improved the homing and persistence of CAR T cells in vivo, resulting in enhanced anti-tumor and anti-viral effects in treating EBV-PTLD.
Collapse
Affiliation(s)
- Qiusui Mai
- Department of Blood Transfusion, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Bailin He
- Department of Hematology, Nanfang Hospital, Southern Medical Universit, Guangzhou, 510515, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Qing Zeng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yanwen Xu
- Department of Obstetrics, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, 511402, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou, 510555, China
| | - Yunyi Pang
- Department of Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Zhang
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China
| | - Jinfeng Li
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China
| | | | - Liqin Huang
- Shenzhen Blood Center, Shenzhen, 518035, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, 510095, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou, 510555, China.
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China.
| | - Xiaojun Xu
- Department of Blood Transfusion, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Chen B, Liu J. Prospects and challenges of CAR-T in the treatment of ovarian cancer. Int Immunopharmacol 2024; 133:112112. [PMID: 38640714 DOI: 10.1016/j.intimp.2024.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Ovarian cancer ranks as the seventh most prevalent cancer among women and is considered the most lethal gynecological malignancy on a global scale. The absence of reliable screening techniques, coupled with the insidious onset of nonspecific symptoms, often results in a delayed diagnosis, typically at an advanced stage characterized by peritoneal involvement. Management of advanced tumors typically involves a combination of chemotherapy and cytoreductive surgery. However, the therapeutic arsenal for ovarian cancer patients remains limited, highlighting the unmet need for precise, targeted, and sustained-release pharmacological agents. Genetically engineered T cells expressing chimeric antigen receptors (CARs) represent a promising novel therapeutic modality that selectively targets specific antigens, demonstrating robust and enduring antitumor responses in numerous patients. CAR T cell therapy has exhibited notable efficacy in hematological malignancies and is currently under investigation for its potential in treating various solid tumors, including ovarian cancer. Currently, numerous researchers are engaged in the development of novel CAR-T cells designed to target ovarian cancer, with subsequent evaluation of these candidate cells in preclinical studies. Given the ability of chimeric antigen receptor (CAR) expressing T cells to elicit potent and long-lasting anti-tumor effects, this therapeutic approach holds significant promise for the treatment of ovarian cancer. This review article examines the utilization of CAR-T cells in the context of ovarian cancer therapy.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | | |
Collapse
|
4
|
Damiani D, Tiribelli M. CAR-T Cells in Acute Myeloid Leukemia: Where Do We Stand? Biomedicines 2024; 12:1194. [PMID: 38927401 PMCID: PMC11200794 DOI: 10.3390/biomedicines12061194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Despite recent advances, the prognosis of acute myeloid leukemia (AML) remains unsatisfactory due to disease recurrence and the development of resistance to both conventional and novel therapies. Engineered T cells expressing chimeric antigen receptors (CARs) on their cellular surface represent one of the most promising anticancer agents. CAR-T cells are increasingly used in patients with B cell malignancies, with remarkable clinical results despite some immune-related toxicities. However, at present, the role of CAR-T cells in myeloid neoplasms, including AML, is extremely limited, as specific molecular targets for immune cells are generally lacking on AML blasts. Besides the paucity of dispensable targets, as myeloid antigens are often co-expressed on normal hematopoietic stem and progenitor cells with potentially intolerable myeloablation, the AML microenvironment is hostile to T cell proliferation due to inhibitory soluble factors. In addition, the rapidly progressive nature of the disease further complicates the use of CAR-T in AML. This review discusses the current state of CAR-T cell therapy in AML, including the still scanty clinical evidence and the potential approaches to overcome its limitations, including genetic modifications and combinatorial strategies, to make CAR-T cell therapy an effective option for AML patients.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| |
Collapse
|
5
|
Zhang H, Yao J, Ajmal I, Farooq MA, Jiang W. shRNA-mediated gene silencing of HDAC11 empowers CAR-T cells against prostate cancer. Front Immunol 2024; 15:1369406. [PMID: 38835760 PMCID: PMC11148219 DOI: 10.3389/fimmu.2024.1369406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Epigenetic mechanisms are involved in several cellular functions, and their role in the immune system is of prime importance. Histone deacetylases (HDACs) are an important set of enzymes that regulate and catalyze the deacetylation process. HDACs have been proven beneficial targets for improving the efficacy of immunotherapies. HDAC11 is an enzyme involved in the negative regulation of T cell functions. Here, we investigated the potential of HDAC11 downregulation using RNA interference in CAR-T cells to improve immunotherapeutic outcomes against prostate cancer. We designed and tested four distinct short hairpin RNA (shRNA) sequences targeting HDAC11 to identify the most effective one for subsequent analyses. HDAC11-deficient CAR-T cells (shD-NKG2D-CAR-T) displayed better cytotoxicity than wild-type CAR-T cells against prostate cancer cell lines. This effect was attributed to enhanced activation, degranulation, and cytokine release ability of shD-NKG2D-CAR-T when co-cultured with prostate cancer cell lines. Our findings reveal that HDAC11 interference significantly enhances CAR-T cell proliferation, diminishes exhaustion markers PD-1 and TIM3, and promotes the formation of T central memory TCM populations. Further exploration into the underlying molecular mechanisms reveals increased expression of transcription factor Eomes, providing insight into the regulation of CAR-T cell differentiation. Finally, the shD-NKG2D-CAR-T cells provided efficient tumor control leading to improved survival of tumor-bearing mice in vivo as compared to their wild-type counterparts. The current study highlights the potential of HDAC11 downregulation in improving CAR-T cell therapy. The study will pave the way for further investigations focused on understanding and exploiting epigenetic mechanisms for immunotherapeutic outcomes.
Collapse
|
6
|
Montoya M, Gallus M, Phyu S, Haegelin J, de Groot J, Okada H. A Roadmap of CAR-T-Cell Therapy in Glioblastoma: Challenges and Future Perspectives. Cells 2024; 13:726. [PMID: 38727262 PMCID: PMC11083543 DOI: 10.3390/cells13090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.
Collapse
Affiliation(s)
- Megan Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Marco Gallus
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Su Phyu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Jeffrey Haegelin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - John de Groot
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
7
|
Rojas-Quintero J, Díaz MP, Palmar J, Galan-Freyle NJ, Morillo V, Escalona D, González-Torres HJ, Torres W, Navarro-Quiroz E, Rivera-Porras D, Bermúdez V. Car T Cells in Solid Tumors: Overcoming Obstacles. Int J Mol Sci 2024; 25:4170. [PMID: 38673757 PMCID: PMC11050550 DOI: 10.3390/ijms25084170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy has emerged as a prominent adoptive cell therapy and a therapeutic approach of great interest in the fight against cancer. This approach has shown notorious efficacy in refractory hematological neoplasm, which has bolstered its exploration in the field of solid cancers. However, successfully managing solid tumors presents considerable intrinsic challenges, which include the necessity of guiding the modified cells toward the tumoral region, assuring their penetration and survival in adverse microenvironments, and addressing the complexity of identifying the specific antigens for each type of cancer. This review focuses on outlining the challenges faced by CAR T cell therapy when used in the treatment of solid tumors, as well as presenting optimizations and emergent approaches directed at improving its efficacy in this particular context. From precise localization to the modulation of the tumoral microenvironment and the adaptation of antigen recognition strategies, diverse pathways will be examined to overcome the current limitations and buttress the therapeutic potential of CAR T cells in the fight against solid tumors.
Collapse
Affiliation(s)
- Joselyn Rojas-Quintero
- Medicine, Pulmonary, Critical Care, and Sleep Medicine Department, Baylor College of Medicine, Houston, TX 77030, USA;
| | - María P. Díaz
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Jim Palmar
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Nataly J. Galan-Freyle
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
| | - Valery Morillo
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Daniel Escalona
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | | | - Wheeler Torres
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Elkin Navarro-Quiroz
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias Básicas y Biomédicas, Barranquilla 080002, Colombia
| | - Diego Rivera-Porras
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540001, Colombia;
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
| |
Collapse
|
8
|
Liu Z, Wang H, Liu H, Ding K, Shen H, Zhao X, Fu R. Targeting NKG2D/NKG2DL axis in multiple myeloma therapy. Cytokine Growth Factor Rev 2024; 76:1-11. [PMID: 38378397 DOI: 10.1016/j.cytogfr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Immune effector cells in patients with multiple myeloma (MM) are at the forefront of many immunotherapy treatments, and several methods have been developed to fully utilise the antitumour potential of immune cells. T and NK cell-derived immune lymphocytes both expressed activating NK receptor group 2 member D(NKG2D). This receptor can identify eight distinct NKG2D ligands (NKG2DL), including major histocompatibility complex class I (MHC) chain-related protein A and B (MICA and MICB). Their binding to NKG2D triggers effector roles in T and NK cells. NKG2DL is polymorphic in MM cells. The decreased expression of NKG2DL on the cell surface is explained by multiple mechanisms of tumour immune escape. In this review, we discuss the mechanisms by which the NKG2D/NKG2DL axis regulates immune effector cells and strategies for promoting NKG2DL expression and inhibiting its release in multiple myeloma and propose therapeutic strategies that increase the expression of NKG2DL in MM cells while enhancing the activation and killing function of NK cells.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China.
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China.
| |
Collapse
|
9
|
Lutz S, Klausz K, Albici AM, Ebinger L, Sellmer L, Teipel H, Frenzel A, Langner A, Winterberg D, Krohn S, Hust M, Schirrmann T, Dübel S, Scherließ R, Humpe A, Gramatzki M, Kellner C, Peipp M. Novel NKG2D-directed bispecific antibodies enhance antibody-mediated killing of malignant B cells by NK cells and T cells. Front Immunol 2023; 14:1227572. [PMID: 37965326 PMCID: PMC10641740 DOI: 10.3389/fimmu.2023.1227572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
The activating receptor natural killer group 2, member D (NKG2D) represents an attractive target for immunotherapy as it exerts a crucial role in cancer immunosurveillance by regulating the activity of cytotoxic lymphocytes. In this study, a panel of novel NKG2D-specific single-chain fragments variable (scFv) were isolated from naïve human antibody gene libraries and fused to the fragment antigen binding (Fab) of rituximab to obtain [CD20×NKG2D] bibodies with the aim to recruit cytotoxic lymphocytes to lymphoma cells. All bispecific antibodies bound both antigens simultaneously. Two bibody constructs, [CD20×NKG2D#3] and [CD20×NKG2D#32], efficiently activated natural killer (NK) cells in co-cultures with CD20+ lymphoma cells. Both bibodies triggered NK cell-mediated lysis of lymphoma cells and especially enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by CD38 or CD19 specific monoclonal antibodies suggesting a synergistic effect between NKG2D and FcγRIIIA signaling pathways in NK cell activation. The [CD20×NKG2D] bibodies were not effective in redirecting CD8+ T cells as single agents, but enhanced cytotoxicity when combined with a bispecific [CD19×CD3] T cell engager, indicating that NKG2D signaling also supports CD3-mediated T cell activation. In conclusion, engagement of NKG2D with bispecific antibodies is attractive to directly activate cytotoxic lymphocytes or to support their activation by monoclonal antibodies or bispecific T cell engagers. As a perspective, co-targeting of two tumor antigens may allow fine-tuning of antibody cancer therapies. Our proposed combinatorial approach is potentially applicable for many existing immunotherapies but further testing in different preclinical models is necessary to explore the full potential.
Collapse
Affiliation(s)
- Sebastian Lutz
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Anca-Maria Albici
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Lea Ebinger
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Lea Sellmer
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Hannah Teipel
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | | | - Anna Langner
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Dorothee Winterberg
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Steffen Krohn
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Michael Hust
- YUMAB GmbH, Braunschweig, Germany
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Martin Gramatzki
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University, Kiel, Germany
| |
Collapse
|
10
|
Zarei M, Abdoli S, Farazmandfar T, Shahbazi M. Lenalidomide improves NKG2D-based CAR-T cell activity against colorectal cancer cells invitro. Heliyon 2023; 9:e20460. [PMID: 37790973 PMCID: PMC10543764 DOI: 10.1016/j.heliyon.2023.e20460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Although CAR-based immunotherapy is viewed as a promising treatment for tumors, particularly hematological malignancies, solid tumors can pose challenges. It has been suggested that the immunomodulatory medication Lenalidomide (LEN) may increase the effectiveness of CAR T cells in the treatment of solid tumors. The purpose of our study was to investigate the effect of NKG2D-based CAR T cell therapy on colorectal cancer cell lines, and then we assessed combinatorial therapy using NKG2D CAR T cells and lenalidomide in vitro. Methods and results To prepare NKG2D CAR T cells, a second-generation NKG2D-CAR construct was designed and transfected into the T cells using a lentiviral system. The NKG2D CAR T cells showed significantly higher cytotoxic activity against colorectal cancer cell lines, HCT116 and SW480, compared to untransduced T cells. In addition, our data demonstrated that the cytotoxicity and cytokine secretion of NKG2D CAR T cells significantly increased in the presence of higher doses of lenalidomide. Conclusions The study findings suggest that combinational therapy, utilizing NKG2D-based CAR T cells and lenalidomide, has a high potential for effectively eliminating tumor cells in vitro.
Collapse
Affiliation(s)
- Mahdi Zarei
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahriyar Abdoli
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Touraj Farazmandfar
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- AryaTina Gene (ATG) Biopharmaceutical Company Gorgan, Iran
| |
Collapse
|
11
|
Rudd CE. CD8 + T cell killing of MHC class I-deficient tumors. NATURE CANCER 2023; 4:1214-1216. [PMID: 37537302 DOI: 10.1038/s43018-023-00606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Affiliation(s)
- Christopher E Rudd
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada.
- Division of Immunology Oncology, Centre de Recherche-Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Sun L, Jiang G, Ng YY, Xiao L, Du Z, Wang S, Zhu J. T cells with split CARs specific for NKG2D ligands and PD-L1 exhibit improved selectivity towards monocyte-derived cells while effective in eliminating acute myeloid leukaemia in vivo. J Cancer Res Clin Oncol 2023; 149:10189-10201. [PMID: 37270461 DOI: 10.1007/s00432-023-04865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE The expression of NKG2D ligands and PD-L1 has been detected on acute myeloid leukaemia (AML) cells, as well as normal cells of the myeloid lineage. To target leukemic cells while minimizing collateral damage to normal cells, we constructed a split dual CAR system based on the AND-gate logic. METHODS The NKG2D extracellular domain linked with DAP12 without a co-stimulatory signal was used for the basal activation of T cells, and used together with the PD-L1-specific chimeric costimulatory receptor containing the 4-1BB activating domain for co-stimulatory signal 2 input. This dual CAR displayed cell-type specificity and activity similar as a 2nd generation NKG2D ligand-specific CAR. RESULTS When compared to CD64 and PD-L1-specific 2nd generation CARs, we observed that the split dual CAR offered an improved myeloid cell type selectivity. For example, PD-L1-specific CAR-T cells lysed all tested myeloid cell types that expressed PD-L1, including M0 macrophages (Mø0), LPS-polarized Mø1, IFN-γ polarized Mø1, IL-4 polarized Mø2, monocytes, immature dendritic cells (imDCs), mature DCs, as well as KG-1 AML cells, while the dual CAR-T cells displaying killing activity only towards LPS polarized Mø1, mature DCs and KG-1 cells that expressed both NKG2D ligands and PD-L1. In a mouse liquid tumor model, the dual CAR-T cells were effective in eradicating established KG-1 AML xenografts. CONCLUSION The improved cell type specificity offered by our split dual CAR-T cell system targeting paired antigens would favour the reduction of the on-target off-tumor toxicity towards normal myeloid cells during the treatment of myeloid leukaemia.
Collapse
Affiliation(s)
- Lu Sun
- Department of Gynaecologic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Guangyi Jiang
- Department of Gynaecologic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Yu Yang Ng
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Lin Xiao
- CNK Cell Therapeutics, #501, No 2 Avenue, Hangzhou, 310018, Zhejiang, China
| | - Zhicheng Du
- CNK Cell Therapeutics, #501, No 2 Avenue, Hangzhou, 310018, Zhejiang, China
| | - Shu Wang
- Department of Gynaecologic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
- CNK Cell Therapeutics, #501, No 2 Avenue, Hangzhou, 310018, Zhejiang, China.
| | - Jianqing Zhu
- Department of Gynaecologic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China.
| |
Collapse
|
13
|
Christodoulou I, Solomou EE. A Panorama of Immune Fighters Armored with CARs in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15113054. [PMID: 37297016 DOI: 10.3390/cancers15113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a devastating disease. Intensive chemotherapy is the mainstay of treatment but results in debilitating toxicities. Moreover, many treated patients will eventually require hematopoietic stem cell transplantation (HSCT) for disease control, which is the only potentially curative but challenging option. Ultimately, a subset of patients will relapse or have refractory disease, posing a huge challenge to further therapeutic decisions. Targeted immunotherapies hold promise for relapsed/refractory (r/r) malignancies by directing the immune system against cancer. Chimeric antigen receptors (CARs) are important components of targeted immunotherapy. Indeed, CAR-T cells have achieved unprecedented success against r/r CD19+ malignancies. However, CAR-T cells have only achieved modest outcomes in clinical studies on r/r AML. Natural killer (NK) cells have innate anti-AML functionality and can be engineered with CARs to improve their antitumor response. CAR-NKs are associated with lower toxicities than CAR-T cells; however, their clinical efficacy against AML has not been extensively investigated. In this review, we cite the results from clinical studies of CAR-T cells in AML and describe their limitations and safety concerns. Moreover, we depict the clinical and preclinical landscape of CAR used in alternative immune cell platforms with a specific focus on CAR-NKs, providing insight into the future optimization of AML.
Collapse
Affiliation(s)
- Ilias Christodoulou
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| | - Elena E Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
14
|
Abstract
INTRODUCTION New methods in cancer immunotherapy, such as chimeric antigen receptor (CAR)-T cells, have shown promising results in destroying malignant cells. However, limitations and side effects of CAR-T cell therapy, such as graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome, have motivated researchers to investigate safer alternative cells like natural killer (NK) cells. AREA COVERED NK cells can effectively recognize hematologic malignant cells and destroy them. Many clinical and preclinical studies investigate the efficacy of CAR-NK cells in treating lymphoma and other hematologic malignancies. The results of published clinical trials and preclinical studies have shown that CAR-NK cells could be an appropriate choice for treating lymphoma. In this review, we discuss the characteristics of CAR-NK cells, their role in treating B-cell and T-cell lymphoma, and the challenges faced by using them. We also highlight clinical trials using CAR-NK cells for treating lymphoma. EXPERT OPINION CAR-NK cells have shown promising results in cancer therapy, especially B-cell lymphoma, with a much lower risk for GVHD, cytokine release syndrome, and neurotoxicity than CAR-T cells. Further investigations are required to overcome the obstacles of CAR-NK cell therapy, both generally, and in cancers like T-cell lymphoma.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Jiang G, Ng YY, Tay JCK, Du Z, Xiao L, Wang S, Zhu J. Dual CAR-T cells to treat cancers co-expressing NKG2D and PD1 ligands in xenograft models of peritoneal metastasis. Cancer Immunol Immunother 2023; 72:223-234. [PMID: 35809118 DOI: 10.1007/s00262-022-03247-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
While the expression of either NKG2D ligands or PD-1 ligands has been reported in various types of cancers, the co-expression of the two sets of ligands in the same tumour tissues is still un-investigated. After examining 68 primary ovarian cancer samples, we observed around 80% of the co-expression in low grade serous and endometrioid ovarian cancer samples. We then constructed a dual CAR system that splits the conventional single-input of a 2nd generation CAR into two independent chimeric receptors, one composed of the NKG2D extracellular domain linked with DAP12 for T cell activation and another using the PD-1 extracellular domain linked with 4-1BB for costimulatory signal 2 input. Given the limitation of the low-affinity PD-1 receptor in recognizing cancer cells with low levels of PD-1 ligands, we also used a high-affinity scFv specific to PD-L1 in our combinatorial approach to expand the range of target cancer cells with different expression levels of PD-L1. The two types of dual CAR-T cells were generated through electroporation of non-viral piggyBac transposon plasmids and were effective in eliminating the target cancer cells. Especially, the dual CAR-T cells with anti-PD-L1 scFv were capable of eradicating established tumors in mouse models of peritoneal metastasis of colorectal cancer and ovarian cancer. Since both NKG2D ligands and PD-1 ligands have been marked as favourable cancer therapeutic targets, the new dual CAR-T cells developed in this study hold attractive application potential in treating metastatic peritoneal carcinoma.
Collapse
Affiliation(s)
- Guangyi Jiang
- Department of Gynecological Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, People's Republic of China
| | - Yu Yang Ng
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Johan C K Tay
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Zhicheng Du
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Lin Xiao
- Cheetah Cell Therapeutics, #501, No 2 Avenue, Hangzhou, 310018, People's Republic of China
| | - Shu Wang
- Department of Gynecological Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, People's Republic of China.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jianqing Zhu
- Department of Gynecological Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, People's Republic of China.
| |
Collapse
|
16
|
Koski J, Jahan F, Luostarinen A, Schenkwein D, Ylä-Herttuala S, Göös H, Monzo H, Ojala PM, Maliniemi P, Korhonen M. Novel modular chimeric antigen receptor spacer for T cells derived from signal regulatory protein alpha Ig-like domains. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1049580. [PMID: 39086976 PMCID: PMC11285650 DOI: 10.3389/fmmed.2022.1049580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 08/02/2024]
Abstract
Background: T cells equipped with chimeric antigen receptors (CAR) have shown remarkable efficacy in targeting B lineage malignancies. Improvement of the CAR structure is needed, however, with a view to developing flexibly modifiable spacers that are inert in interactions with unwanted cells. Specifically, binding to cells carrying receptors for IgG's crystallizable fragment (FcR), that recognize IgG-derived domains in CARs is to be avoided. Methods: Two novel CARs targeting the CD19 antigen where the IgG1-CH2 and -CH3 domains were replaced with Ig-like domains from signal-regulatory protein α (SIRPα) were designed in silico. An IgG1-based CAR and a CAR lacking both SIRPα and IgG1 domains were used as comparators. The phenotype and memory phenotype of the expanded cells were analyzed by flow cytometry, and CAR T cell activation and cytotoxic efficacy were assessed in co-culture experiments in response to CD19+ target cells. Unwanted interactions with FcR-expressing myeloid cells were interrogated in co-culture assays with THP-1 monocytic cells. Results: T cells carrying the novel SIRPα-based CARs enacted potent in vitro cytotoxicity against CD19 positive B-lineage leukemia cells, comparable to traditional IgG1-based CAR T cells. Co-culture of IgG1-based CAR T cells with FcR-expressing THP-1 monocytic cells led to prominent cell surface expression of CD69 on T cells together with production of Interleukin (IL)-2 and Interferon-γ, and production of IL-1β, indicating activation of the T cells and monocytes, respectively. Longer co-culture led to killing of the monocytes. No signs of T cell nor monocyte activation were detected in co-cultures of SIRPα-based CAR T cells with THP-1 cells. Arming T cells with the SIRPα-based CARs favored differentiation towards CD4+ phenotype during expansion, while the effects on memory phenotype of the T cells were equivalent between the SIRPα- and IgG1-based CARs. In a pilot experiment, T cells modified with one of the SIRPα-based CARs showed dose dependent leukemia cell control. Conclusion: The novel SIRPα based spacers offer a suitable backbone for developing chimeric antigen receptors that evade the off-target binding to FcR while the cells retain a favorable memory phenotype and efficient cytotoxicity, establishing a promising candidate for future in vivo and clinical testing.
Collapse
Affiliation(s)
- Jan Koski
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Farhana Jahan
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | | | - Diana Schenkwein
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Helka Göös
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Hector Monzo
- Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| | - Päivi M. Ojala
- Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
17
|
Chatterjee A, Asija S, Yadav S, Purwar R, Goda JS. Clinical utility of CAR T cell therapy in brain tumors: Lessons learned from the past, current evidence and the future stakes. Int Rev Immunol 2022; 41:606-624. [PMID: 36191126 DOI: 10.1080/08830185.2022.2125963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The unprecedented clinical success of Chimeric Antigen Receptor (CAR) T cell therapy in hematological malignancies has led researchers to study its role in solid tumors. Although, its utility in solid tumors especially in neuroblastoma has begun to emerge, preclinical studies of its efficacy in other solid tumors like osteosarcomas or gliomas has caught the attention of oncologist to be tried in clinical trials. Malignant high-grade brain tumors like glioblastomas or midline gliomas in children represent some of the most difficult malignancies to be managed with conventionally available therapeutics, while relapsed gliomas continue to have the most dismal prognosis due to limited therapeutic options. Innovative therapies such as CAR T cells could give an additional leverage to the treating oncologists by potentially improving outcomes and ameliorating the toxicity of the currently available therapies. Moreover, CAR T cell therapy has the potential to be integrated into the therapeutic paradigm for aggressive gliomas in the near future. In this review we discuss the challenges in using CAR T cell therapy in brain tumors, enumerate the completed and ongoing clinical trials of different types of CAR T cell therapy for different brain tumors with special emphasis on glioblastoma and also discuss the future role of CAR T cells in Brain tumors.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Sandhya Yadav
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
18
|
Li S, Zhao R, Zheng D, Qin L, Cui Y, Li Y, Jiang Z, Zhong M, Shi J, Li M, Wang X, Tang Z, Wu Q, Long Y, Hu D, Wang S, Yao Y, Liu S, Yang LH, Zhang Z, Tang Q, Liu P, Li Y, Li P. DAP10 integration in CAR-T cells enhances the killing of heterogeneous tumors by harnessing endogenous NKG2D. Mol Ther Oncolytics 2022; 26:15-26. [PMID: 35784403 PMCID: PMC9218287 DOI: 10.1016/j.omto.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Although chimeric antigen receptor T (CAR-T) cells have achieved remarkable successes in hematological malignancies, the efficacies of CAR-T cells against solid tumors remains unsatisfactory. Heterogeneous antigen expression is one of the obstacles on its effective elimination of solid cancer cells. DNAX-activating protein 10 (DAP10) interacts with natural killer group 2D (NKG2D), acting as an adaptor that targets various malignant cells for surveillance. Here, we designed a DAP10 chimeric receptor that utilized native NKG2D on T cells to target NKG2D ligand-expressing cancer cells. We then tandemly incorporated it with anti-glypican 3 (GPC3) single-chain variable fragment (scFv) to construct a dual-antigen-targeting system. T cells expressing DAP10 chimeric receptor (DAP10-T cells) displayed with an enhancement on both cytotoxicity and cytokine secretion against solid cancer cell lines, and its tandem connection with anti-GPC3 scFv (CAR GPC3-DAP10-T cells) exhibited a dual-antigen-targeting capacity on eliminating heterogeneous cancer cells in vitro and suppressing the growth of heterogeneous cancer in vivo. Thus, this novel dual-targeting system enabled a high efficacy on killing cancer cells and extended the recognition profile of CAR-T cells toward tumors, which providing a potential strategy on treatment of solid cancer clinically.
Collapse
Affiliation(s)
- Shanglin Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruocong Zhao
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Le Qin
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanbin Cui
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yao Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwu Jiang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mengjun Zhong
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Jingxuan Shi
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ming Li
- Anhui University, Hefei, China
| | - Xindong Wang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Zhaoyang Tang
- Guangdong Zhaotai InVivo Biomedicine Co., Ltd., Guangzhou, China.,Guangdong Zhaotai Cell Biology Technology, Ltd., Foshan, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duo Hu
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Suna Wang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Li-Hua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immmunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiannan Tang
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
19
|
Corti C, Venetis K, Sajjadi E, Zattoni L, Curigliano G, Fusco N. CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress. Expert Opin Investig Drugs 2022; 31:593-605. [PMID: 35311430 DOI: 10.1080/13543784.2022.2054326] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Most breast cancer-related deaths arise from triple-negative breast cancer (TNBC). Molecular heterogeneity, aggressiveness and the lack of effective therapies are major hurdles to therapeutic progress. Chimeric antigen receptor (CAR)-T cells have emerged as a promising immunotherapeutic strategy in TNBC. This approach combines the antigen specificity of an antibody with the effector function of T cells. AREAS COVERED This review examines the opportunities provided by CAR-T cell therapies in solid tumors. Emerging targets, ongoing clinical trials, and prospective clinical implications in TNBC are considered later. An emphasis is placed on the key challenges and possible solutions for this therapeutic approach. EXPERT OPINION A challenge for CAR-T cell therapy is the selection of the optimal targets to minimize on-target/off-tumor toxicity. Tumor escape via antigen loss and intrinsic heterogeneity is a further hurdle. TROP2, GD2, ROR1, MUC1 and EpCAM are promising targets. Persistence and trafficking to tumor cells may be enhanced by the implementation of CARs with a chemokine receptor and/or constitutively activated interleukin receptors. Fourth-generation CARs (TRUCKs) may redirect T-cells for universal cytokine-mediated killing. Combinatorial approaches and the application of CARs to other immune cells could revert the suppressive immune environment that characterizes solid neoplasms.
Collapse
Affiliation(s)
- Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Zattoni
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
20
|
Campos-Silva C, López-Borrego S, Felgueres MJ, Esteso G, Vales-Gomez M. NKG2D Ligands in Liquid Biopsy: The Importance of Soluble and Vesicle-Bound Proteins for Immune Modulation. Crit Rev Immunol 2022; 42:21-40. [PMID: 36374819 DOI: 10.1615/critrevimmunol.2022045263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The identification of biomarkers allowing diagnostics, prognostics and patient classification is still a challenge in oncological research for patient management. Improvements in patient survival achieved with immunotherapies substantiate that biomarker studies rely not only on cellular pathways contributing to the pathology, but also on the immune competence of the patient. If these immune molecules can be studied in a non-invasive manner, the benefit for patients and clinicians is obvious. The immune receptor Natural Killer Group 2 Member D (NKG2D) represents one of the main systems involved in direct recognition of tumor cells by effector lymphocytes (T and Natural Killer cells), and in immune evasion. The biology of NKG2D and its ligands comprises a complex network of cellular pathways leading to the expression of these tumor-associated ligands on the cell surface or to their release either as soluble proteins, or in extracellular vesicles that potently inhibit NKG2D-mediated responses. Increased levels of NKG2D-ligands in patient serum correlate with tumor progression and poor prognosis; however, most studies did not test the biochemical form of these molecules. Here we review the biology of the NKG2D receptor and ligands, their role in cancer and in patient response to immunotherapies, as well as the changes provoked in this system by non-immune cancer therapies. Further, we discuss the use of NKG2D-L in liquid biopsy, including methods to analyse vesicle-associated proteins. We propose that the evaluation in cancer patients of the whole NKG2D system can provide crucial information about patient immune competence and risk of tumor progression.
Collapse
Affiliation(s)
- Carmen Campos-Silva
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Silvia López-Borrego
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - María José Felgueres
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| |
Collapse
|
21
|
Du Z, Ng YY, Zha S, Wang S. piggyBac system to co-express NKG2D CAR and IL-15 to augment the in vivo persistence and anti-AML activity of human peripheral blood NK cells. Mol Ther Methods Clin Dev 2021; 23:582-596. [PMID: 34853803 PMCID: PMC8609108 DOI: 10.1016/j.omtm.2021.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Promising progress has been made in adoptive transfer of allogeneic natural killer (NK) cells to treat relapsed or refractory acute myeloid leukemia (AML). In this regard, chimeric antigen receptor (CAR)-modification of NK cells is considered as a compelling approach to augment the specificity and cytotoxicity of NK cells against AML. Using a non-viral piggyBac transposon technology and human peripheral blood-derived primary NK cells, we generated CAR-NK cells to target NKG2D ligands and demonstrated their in vitro activity in lysing cancer cells expressing the ligands and in vivo efficacy in inhibiting tumor growth in a xenograft KG-1 AML model. We further generated CAR-NK cells co-expressing transgenes for the NKG2D CAR and interleukin-15 (IL-15). The ectopic expression of IL-15 improved the in vitro and in vivo persistence of NKG2D CAR-NK cells, leading to enhanced in vivo tumor control and significant prolongation of mouse survival in the KG-1 AML model. Collectively, our findings demonstrate the ectopic expression of IL-15 as an important means to improve the antileukemic activity of NKG2D CAR-NK cells. Our study further illustrates the feasibility of using the piggyBac non-viral platform as an efficient and cost-effective way for CAR-NK cell manufacturing.
Collapse
Affiliation(s)
- Zhicheng Du
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Yu Yang Ng
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Shijun Zha
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| |
Collapse
|
22
|
Chimeric Antigen Receptor-Engineered Natural Killer (CAR NK) Cells in Cancer Treatment; Recent Advances and Future Prospects. Stem Cell Rev Rep 2021; 17:2081-2106. [PMID: 34472037 PMCID: PMC8410173 DOI: 10.1007/s12015-021-10246-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
Natural Killer (NK) cells are critical members of the innate immunity lymphocytes and have a critical role in host defense against malignant cells. Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR) redirects the specificity of the immune cell against a target-specific antigen. ACT has recently created an outstanding opportunity for cancer treatment. Unlike CAR-armored T cells which hadnsome shortcomings as the CAR-receiving construct, Major histocompatibility complex (MHC)-independency, shorter lifespan, the potential to produce an off-the-shelf immune product, and potent anti-tumor properties of the NK cells has introduced NK cells as a potent alternative target for expression of CAR. Here, we aim to provide an updated overview on the current improvements in CAR NK design and immunobiology and describe the potential of CAR-modified NK cells as an alternative “off-the-shelf” carrier of CAR. We also provide lists for the sources of NK cells in the process of CAR NK cell production, different methods for transduction of the CAR genetic sequence to NK cells, the differences between CAR T and CAR NK, and CAR NK-targeted tumor antigens in current studies. Additionally, we provide data on recently published preclinical and clinical studies of CAR NK therapy and a list of finished and ongoing clinical trials. For achieving CAR NK products with higher efficacy and safety, we discuss current challenges in transduction and expansion of CAR NK cells, CAR NK therapy side effects, and challenges that limit the optimal efficacy of CAR NK cells and recommend possible solutions to enhance the persistence, function, safety, and efficacy of CAR NK cells with a special focus on solid tumors.
Collapse
|
23
|
Leivas A, Valeri A, Córdoba L, García-Ortiz A, Ortiz A, Sánchez-Vega L, Graña-Castro O, Fernández L, Carreño-Tarragona G, Pérez M, Megías D, Paciello ML, Sánchez-Pina J, Pérez-Martínez A, Lee DA, Powell DJ, Río P, Martínez-López J. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J 2021; 11:146. [PMID: 34392311 PMCID: PMC8364555 DOI: 10.1038/s41408-021-00537-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
CAR-T-cell therapy against MM currently shows promising results, but usually with serious toxicities. CAR-NK cells may exert less toxicity when redirected against resistant myeloma cells. CARs can be designed through the use of receptors, such as NKG2D, which recognizes a wide range of ligands to provide broad target specificity. Here, we test this approach by analyzing the antitumor activity of activated and expanded NK cells (NKAE) and CD45RA- T cells from MM patients that were engineered to express an NKG2D-based CAR. NKAE cells were cultured with irradiated Clone9.mbIL21 cells. Then, cells were transduced with an NKG2D-4-1BB-CD3z-CAR. CAR-NKAE cells exhibited no evidence of genetic abnormalities. Although memory T cells were more stably transduced, CAR-NKAE cells exhibited greater in vitro cytotoxicity against MM cells, while showing minimal activity against healthy cells. In vivo, CAR-NKAE cells mediated highly efficient abrogation of MM growth, and 25% of the treated mice remained disease free. Overall, these results demonstrate that it is feasible to modify autologous NKAE cells from MM patients to safely express a NKG2D-CAR. Additionally, autologous CAR-NKAE cells display enhanced antimyeloma activity demonstrating that they could be an effective strategy against MM supporting the development of NKG2D-CAR-NK-cell therapy for MM.
Collapse
Affiliation(s)
- Alejandra Leivas
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Valeri
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Ortiz
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Sánchez-Vega
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Lucía Fernández
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Gonzalo Carreño-Tarragona
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Manuel Pérez
- Confocal Microscopy Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - María Liz Paciello
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jose Sánchez-Pina
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Dean A Lee
- Cellular Therapy and Cancer Immunology Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, 28040, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, 28040, Spain
| | - Joaquín Martínez-López
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain.
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
24
|
Tay JC, Wang J, Du Z, Ng YY, Li Z, Ren Y, Zhang C, Zhu J, Xu XH, Wang S. Manufacturing NKG2D CAR-T cells with piggyBac transposon vectors and K562 artificial antigen-presenting cells. Mol Ther Methods Clin Dev 2021; 21:107-120. [PMID: 33816644 PMCID: PMC8005737 DOI: 10.1016/j.omtm.2021.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/26/2021] [Indexed: 12/03/2022]
Abstract
Non-viral platforms can be applied rapidly and cost-effectively for chimeric antigen receptor (CAR)-T cell manufacturing. In the present paper, we describe in detail a clinically relevant manufacturing process for NKG2D CAR-T cells through electroporation of CAR-encoding piggyBac transposon plasmids and in vitro expansion with K562 artificial antigen-presenting cells. With an optimized protocol, we generated the final cell therapy products with 89.2% ± 10.2% NKG2D CAR-positive cells and achieved the corresponding antigen-dependent expansion between 50,000 and 60,000 folds within 4 weeks. To facilitate repeated CAR-T cell infusions, we evaluated the practicality of cryopreservation followed by post-thaw expansion and an extended manufacturing process for up to 9 rounds of weekly K562 cell stimulation. We found that neither compromised the in vitro anti-tumor activity of NKG2D CAR-T cells. Interestingly, the expression of T cell exhaustion markers TIGIT, TIM3, and LAG3 was reduced with extended manufacturing. To enhance the safety profile of the NKG2D CAR-T cells, we incorporated a full-length CD20 transgene in tandem with the CAR construct and demonstrated that autologous NK cells could mediate efficient antibody-dependent cell-mediated cytotoxicity to remove these CAR-T cells. Collectively, our study illustrates a protocol that generates large numbers of efficacious NKG2D CAR-T cells suitable for multiple rounds of infusions.
Collapse
Affiliation(s)
- Johan C.K. Tay
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Junjian Wang
- Department of Gynaecologic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, P.R. China
| | - Zhicheng Du
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yu Yang Ng
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Zhendong Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yuefang Ren
- Department of Gynaecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Chang Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P.R. China
| | - Jianqing Zhu
- Department of Gynaecologic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, P.R. China
| | - Xue Hu Xu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P.R. China
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
25
|
Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Front Neurosci 2021; 15:662064. [PMID: 34113233 PMCID: PMC8185049 DOI: 10.3389/fnins.2021.662064] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in adults. Current treatment options typically consist of surgery followed by chemotherapy or more frequently radiotherapy, however, median patient survival remains at just over 1 year. Therefore, the need for novel curative therapies for GBM is vital. Characterization of GBM cells has contributed to identify several molecules as targets for immunotherapy-based treatments such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and CSPG4. Cytotoxic T lymphocytes collected from a patient can be genetically modified to express a chimeric antigen receptor (CAR) specific for an identified tumor antigen (TA). These CAR T cells can then be re-administered to the patient to identify and eliminate cancer cells. The impressive clinical responses to TA-specific CAR T cell-based therapies in patients with hematological malignancies have generated a lot of interest in the application of this strategy with solid tumors including GBM. Several clinical trials are evaluating TA-specific CAR T cells to treat GBM. Unfortunately, the efficacy of CAR T cells against solid tumors has been limited due to several factors. These include the immunosuppressive tumor microenvironment, inadequate trafficking and infiltration of CAR T cells and their lack of persistence and activity. In particular, GBM has specific limitations to overcome including acquired resistance to therapy, limited diffusion across the blood brain barrier and risks of central nervous system toxicity. Here we review current CAR T cell-based approaches for the treatment of GBM and summarize the mechanisms being explored in pre-clinical, as well as clinical studies to improve their anti-tumor activity.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Hartnett EG, Knight J, Radolec M, Buckanovich RJ, Edwards RP, Vlad AM. Immunotherapy Advances for Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12123733. [PMID: 33322601 PMCID: PMC7764119 DOI: 10.3390/cancers12123733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The overall five-year survival rate in epithelial ovarian cancer is 44% and has only marginally improved in the past two decades. Despite an initial response to standard treatment consisting of chemotherapy and surgical removal of tumor, the lesions invariably recur, and patients ultimately die of chemotherapy resistant disease. New treatment modalities are needed in order to improve the prognosis of women diagnosed with ovarian cancer. One such modality is immunotherapy, which aims to boost the capacity of the patient’s immune system to recognize and attack the tumor cells. We performed a retrospective study to identify some of the most promising immune therapies for epithelial ovarian cancer. Special emphasis was given to immuno-oncology clinical trials. Abstract New treatment modalities are needed in order to improve the prognosis of women diagnosed with epithelial ovarian cancer (EOC), the most aggressive gynecologic cancer type. Most ovarian tumors are infiltrated by immune effector cells, providing the rationale for targeted approaches that boost the existing or trigger new anti-tumor immune mechanisms. The field of immuno-oncology has experienced remarkable progress in recent years, although the results seen with single agent immunotherapies in several categories of solid tumors have yet to extend to ovarian cancer. The challenge remains to determine what treatment combinations are most suitable for this disease and which patients are likely to benefit and to identify how immunotherapy should be incorporated into EOC standard of care. We review here some of the most promising immune therapies for EOC and focus on those currently tested in clinical trials.
Collapse
Affiliation(s)
- Erin G. Hartnett
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Julia Knight
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Mackenzy Radolec
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Ronald J. Buckanovich
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Robert P. Edwards
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Anda M. Vlad
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
- Correspondence:
| |
Collapse
|
27
|
Xie Y, Hu Y, Zhou N, Yao C, Wu L, Liu L, Chen F. CAR T-cell therapy for triple-negative breast cancer: Where we are. Cancer Lett 2020; 491:121-131. [PMID: 32795486 DOI: 10.1016/j.canlet.2020.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most complex and challenging breast cancer subtype to treat, and chemotherapy remains the standard of care. Clinically, TNBC has a relatively high rate of recurrence and poor prognosis, which leads to a significant effort to discover novel strategies to treat patients with these tumors. Currently, chimeric antigen receptor (CAR) T cell-based immunotherapy redirects the patient's immune system directly to recognize and eradicate tumor-associated antigens (TAAs) expressing tumor cells being explored as a treatment for TNBC. A steadily increasing research in CAR T-cell therapy targeting different TAAs in TNBC has reported. In this review, we introduce the CAR technology and summarize the potential TAAs, available CARs, the antitumor activity, and the related toxicity of CARs currently under investigation for TNBC. We also highlight the potential strategies to prevent/reduce potential "on target, off tumor" toxicity induced by CAR T-cell therapy. This review will help to explore proper targets to expand further the CAR T-cell therapy for TNBCs in the clinic.
Collapse
Affiliation(s)
- Yuetao Xie
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Yi Hu
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Nawu Zhou
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Cuicui Yao
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Lixin Wu
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Lin Liu
- Everest Medical Care, 2010 West Chester Pike, Havertown, PA, 19083, USA
| | - Fang Chen
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China.
| |
Collapse
|
28
|
T Cells Expressing NKG2D CAR with a DAP12 Signaling Domain Stimulate Lower Cytokine Production While Effective in Tumor Eradication. Mol Ther 2020; 29:75-85. [PMID: 32956627 DOI: 10.1016/j.ymthe.2020.08.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/08/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cytokine-related toxicity associated with the use of highly active chimeric antigen receptor T cells (CAR-T cells) is a significant clinical problem. By fusing the natural killer group 2D (NKG2D) ectodomain to 4-1BB and the DAP12 cytoplasmic domain containing only one immunoreceptor tyrosine-based activation motif, we have developed a 2nd-generation (2nd-Gen) NKG2D CAR for stable expression in human T cells. When compared to T cells modified with NKG2D CAR containing the commonly used CD3ζ activation domain, T cells expressing the NKG2D-DAP12 CAR stimulated lower level release of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin (IL)-2 during tumor cell lysis and their proliferative activity was lower upon repeated antigen stimulation, although no difference between the two CARs was observed in mediating in vitro tumor cell lysis. In tumor-bearing NSG mice, both types of CAR-T cells displayed similar anti-tumor activity, being able to completely eradicate established solid tumor xenografts. However, treatment with the NKG2D-CD3ζ CAR-T cells led to the death of most mice from xenogeneic graft versus host disease starting 30 days post-CAR-T cell injection, which was associated with a higher level of cytokine release, whereas all the mice treated with the NKG2D-DAP12 CAR-T cells survived well. Thus, the incorporation of the DAP12 activation domain in a CAR design may possibly provide a potential clinical advantage in mitigating the risk of cytokine release syndrome (CRS).
Collapse
|
29
|
Zajc CU, Salzer B, Taft JM, Reddy ST, Lehner M, Traxlmayr MW. Driving CARs with alternative navigation tools - the potential of engineered binding scaffolds. FEBS J 2020; 288:2103-2118. [PMID: 32794303 PMCID: PMC8048499 DOI: 10.1111/febs.15523] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
T cells that are genetically engineered to express chimeric antigen receptors (CAR T cells) have shown impressive clinical efficacy against B‐cell malignancies. In contrast to these highly potent CD19‐targeting CAR T cells, many of those directed against other tumor entities and antigens currently suffer from several limitations. For example, it has been demonstrated that many scFvs used as antigen‐binding domains in CARs show some degree of oligomerization, which leads to tonic signaling, T cell exhaustion, and poor performance in vivo. Therefore, in many cases alternatives to scFvs would be beneficial. Fortunately, due to the development of powerful protein engineering technologies, also non‐immunoglobulin‐based scaffolds can be engineered to specifically recognize antigens, thus eliminating the historical dependence on antibody‐based binding domains. Here, we discuss the advantages and disadvantages of such engineered binding scaffolds, in particular with respect to their application in CARs. We review recent studies, collectively showing that there is no functional or biochemical aspect that necessitates the use of scFvs in CARs. Instead, antigen recognition can also be mediated efficiently by engineered binding scaffolds, as well as natural ligands or receptors fused to the CAR backbone. Finally, we critically discuss the risk of immunogenicity and show that the extent of nonhuman amino acid stretches in engineered scaffolds—even in those based on nonhuman proteins—is more similar to humanized scFvs than might be anticipated. Together, we expect that engineered binding scaffolds and natural ligands and receptors will be increasingly used for the design of CAR T cells.
Collapse
Affiliation(s)
- Charlotte U Zajc
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,Department of Chemistry, Institute of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Salzer
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Manfred Lehner
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria.,Department of Pediatrics, St. Anna Kinderspital, Medical University of Vienna, Austria
| | - Michael W Traxlmayr
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,Department of Chemistry, Institute of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
30
|
Jayaraman J, Mellody MP, Hou AJ, Desai RP, Fung AW, Pham AHT, Chen YY, Zhao W. CAR-T design: Elements and their synergistic function. EBioMedicine 2020; 58:102931. [PMID: 32739874 PMCID: PMC7393540 DOI: 10.1016/j.ebiom.2020.102931] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells use re-engineered cell surface receptors to specifically bind to and lyse oncogenic cells. Two clinically approved CAR-T–cell therapies have significant clinical efficacy in treating CD19-positive B cell cancers. With widespread interest to deploy this immunotherapy to other cancers, there has been great research activity to design new CAR structures to increase the range of targeted cancers and anti-tumor efficacy. However, several obstacles must be addressed before CAR-T–cell therapies can be more widely deployed. These include limiting the frequency of lethal cytokine storms, enhancing T-cell persistence and signaling, and improving target antigen specificity. We provide a comprehensive review of recent research on CAR design and systematically evaluate design aspects of the four major modules of CAR structure: the ligand-binding, spacer, transmembrane, and cytoplasmic domains, elucidating design strategies and principles to guide future immunotherapeutic discovery.
Collapse
Affiliation(s)
- Jayapriya Jayaraman
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States
| | - Michael P Mellody
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States
| | - Andrew J Hou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Ruchi P Desai
- School of Medicine, University of California, Irvine, Irvine, CA, 92697
| | - Audrey W Fung
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - An Huynh Thuy Pham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, 90095; Parker Institute for Cancer Immunotherapy Center, University of California, Los Angeles, Los Angeles, Los Angeles, 90095
| | - Weian Zhao
- Department of Biomedical Engineering, University of California, Irvine, Irvine,CA,92697, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, United States; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, United States; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, United States; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
31
|
Obajdin J, Davies DM, Maher J. Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer. Clin Exp Immunol 2020; 202:11-27. [PMID: 32544282 PMCID: PMC7488126 DOI: 10.1111/cei.13478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors which play a crucial role in recognizing and eliminating virally infected and cancerous cells. They effectively distinguish between healthy and distressed self through the integration of signals delivered by germline‐encoded activating and inhibitory cell surface receptors. The frequent up‐regulation of stress markers on genetically unstable cancer cells has prompted the development of novel immunotherapies that exploit such innate receptors. One prominent example entails the development of chimeric antigen receptors (CAR) that detect cell surface ligands bound by NK receptors, coupling this engagement to the delivery of tailored immune activating signals. Here, we review strategies to engineer CARs in which specificity is conferred by natural killer group 2D (NKG2D) or other NK receptor types. Multiple preclinical studies have demonstrated the remarkable ability of chimeric NK receptor‐targeted T cells and NK cells to effectively and specifically eliminate cancer cells and to reject established tumour burdens. Importantly, such systems act not only acutely but, in some cases, they also incite immunological memory. Moreover, CARs targeted with the NKG2D ligand binding domain have also been shown to disrupt the tumour microenvironment, through the targeting of suppressive T regulatory cells, myeloid‐derived suppressor cells and tumour vasculature. Collectively, these findings have led to the initiation of early‐phase clinical trials evaluating both autologous and allogeneic NKG2D‐targeted CAR T cells in the haematological and solid tumour settings.
Collapse
Affiliation(s)
- J Obajdin
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - D M Davies
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - J Maher
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, UK.,Department of Immunology, Eastbourne Hospital, Eastbourne, UK.,Leucid Bio Ltd, Guy's Hospital, London, UK
| |
Collapse
|
32
|
Co-Expression of IL-7 Improves NKG2D-Based CAR T Cell Therapy on Prostate Cancer by Enhancing the Expansion and Inhibiting the Apoptosis and Exhaustion. Cancers (Basel) 2020; 12:cancers12071969. [PMID: 32698361 PMCID: PMC7409228 DOI: 10.3390/cancers12071969] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising approach in treating solid tumors but the therapeutic effect is limited. Prostate cancer is a typical solid malignancy with invasive property and a highly immunosuppressive microenvironment. Ligands for the NKG2D receptor are primarily expressed on many cancer cells, including prostate cancer. In this study, we utilized NKG2D-based CAR to treat prostate cancer, and improved the therapeutic effect by co-expression of IL-7. The results showed that NKG2D-CAR T cells performed significantly increased cytotoxicity against prostate cancer compared to non-transduced T cells in vitro and in vivo. Moreover, the introduction of the IL-7 gene into the NKG2D-CAR backbone enhanced the production of IL-7 in an antigen-dependent manner. NKG2DIL7-CAR T cells exhibited better antitumor efficacy at 16 h and 72 h in vitro, and inhibited tumor growth in xenograft models more effectively. In mechanism, enhanced proliferation and Bcl-2 expression in CD8+ T cells, decreased apoptosis and exhaustion, and increased less-differentiated cell phenotype may be the reasons for the improved persistence and survival of NKG2DIL7-CAR T cells. In conclusion, these findings demonstrated that NKG2D is a promising option for CAR T-cell therapy on prostate cancer, and IL-7 has enhanced effect on NKG2D-based CAR T-cell immunotherapy, providing a novel adoptive cell therapy for prostate cancer either alone or in combination with IL-7.
Collapse
|
33
|
Roussine Codo G, Khennas S. [NKG2D CAR-T cells as an immunotherapy in hepatocellular carcinoma]. Med Sci (Paris) 2020; 36:662-664. [PMID: 32614319 DOI: 10.1051/medsci/2020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gilles Roussine Codo
- Master 2 Immunologie Intégrative et Systémique, Mention BMC, Sorbonne Université, Paris, France
| | - Sarra Khennas
- Master 2 Immunologie Intégrative et Systémique, Mention BMC, Sorbonne Université, Paris, France
| |
Collapse
|
34
|
Checkpoint Inhibitors and Engineered Cells: New Weapons for Natural Killer Cell Arsenal Against Hematological Malignancies. Cells 2020; 9:cells9071578. [PMID: 32610578 PMCID: PMC7407972 DOI: 10.3390/cells9071578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells represent one of the first lines of defense against malignant cells. NK cell activation and recognition are regulated by a balance between activating and inhibitory receptors, whose specific ligands can be upregulated on tumor cells surface and tumor microenvironment (TME). Hematological malignancies set up an extensive network of suppressive factors with the purpose to induce NK cell dysfunction and impaired immune-surveillance ability. Over the years, several strategies have been developed to enhance NK cells-mediated anti-tumor killing, while other approaches have arisen to restore the NK cell recognition impaired by tumor cells and other cellular components of the TME. In this review, we summarize and discuss the strategies applied in hematological malignancies to block the immune check-points and trigger NK cells anti-tumor effects through engineered chimeric antigen receptors.
Collapse
|
35
|
Li Z, Chi Z, Ang WX, Chen C, Tay JC, Ng YY, Xu X, Wang J, Zhu J, Wang S. Experimental treatment of colorectal cancer in mice with human T cells electroporated with NKG2D RNA CAR. Immunotherapy 2020; 12:733-748. [PMID: 32571133 DOI: 10.2217/imt-2019-0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: Peritoneal metastasis is often present in end-stage neoplastic diseases, including recurrent colorectal cancer and is associated with decreased overall survival. Novel methods are needed. Materials & methods: We constructed first-, second- and third-generation chimeric antigen receptors (CARs) specific for NKG2D ligands and modified human T cells with mRNA electroporation. Results: NKG2D CAR expression was detectable for at least 6 days postelectroporation and mediated efficient cytotoxicity against NKG2DL+ tumor cells, but not NKG2DL-cells. Multiple infusions of the first-generation CAR-T cells into immunodeficient mice bearing established peritoneal colorectal xenografts led to significantly reduced tumor burden. Conclusion: mRNA CAR is an economical way to test new CARs and potentiates controlling on-target/off-tumor toxicity and cytokine storms. The use of NKG2D RNA CARs to treat colorectal peritoneal metastasis warrants further investigation.
Collapse
Affiliation(s)
- Zhendong Li
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Zhixia Chi
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Wei-Xia Ang
- Department of Biological Sciences, National University of Singapore, 117543 Singapore.,Institute of Bioengineering & Nanotechnology, 138669 Singapore
| | - Can Chen
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Johan Ck Tay
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Yu-Yang Ng
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Xuehu Xu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Junjian Wang
- Department of Gynaecological Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou 310022, PR China
| | - Jianqing Zhu
- Department of Gynaecological Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou 310022, PR China
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, 117543 Singapore.,Institute of Bioengineering & Nanotechnology, 138669 Singapore
| |
Collapse
|
36
|
Ang WX, Ng YY, Xiao L, Chen C, Li Z, Chi Z, Tay JCK, Tan WK, Zeng J, Toh HC, Wang S. Electroporation of NKG2D RNA CAR Improves Vγ9Vδ2 T Cell Responses against Human Solid Tumor Xenografts. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:421-430. [PMID: 32462079 PMCID: PMC7240063 DOI: 10.1016/j.omto.2020.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/29/2020] [Indexed: 01/25/2023]
Abstract
Vγ9Vδ2 T cell-based anticancer immunotherapy has shown some promise in early-phase clinical trials but there is still large room for improvement. Using the extracellular domain of the human NKG2D, a stimulatory receptor expressed by Vγ9Vδ2 T cells, we constructed NKG2D ligand-specific chimeric antigen receptors (CARs). We adopted a non-viral CAR approach via mRNA electroporation to modify Vγ9Vδ2 T cells and demonstrated that, upon interaction with the NKG2D ligand-positive cancer cells, the CARs substantially enhanced the cytotoxic activity of the modified cells toward multiple cultured solid tumor cell lines, including those resistant to Zometa treatment. Repeated doses of the CAR-expressing cells resulted in tumor regression in mice with established tumors, extending median survival time by up to 132% as compared to the PBS control group. The findings suggest clinical potential for RNA CAR-modified Vγ9Vδ2 T cells to treat a wide variety of NKG2D ligand-expressing cancers.
Collapse
Affiliation(s)
- Wei Xia Ang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Yu Yang Ng
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Lin Xiao
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Can Chen
- Tessa Therapeutics, Singapore 239351, Singapore
| | - Zhendong Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Zhixia Chi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Johan Chin-Kang Tay
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wee Kiat Tan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Jieming Zeng
- Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
37
|
CXCR1 Expression to Improve Anti-Cancer Efficacy of Intravenously Injected CAR-NK Cells in Mice with Peritoneal Xenografts. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:75-85. [PMID: 31970285 PMCID: PMC6965500 DOI: 10.1016/j.omto.2019.12.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/14/2023]
Abstract
One reason underlying the failure of current chimeric antigen receptor (CAR) immune therapy to treat solid tumors adequately is insufficient tumor infiltration of CAR immune cells. To address the issue, we electroporated natural killer (NK) cells with two mRNA constructs encoding the chemokine receptor CXCR1 and a CAR targeting tumor-associated NKG2D ligands. The CXCR1-modified NK cells displayed increased migration toward tumor supernatants in vitro and augmented infiltration into human tumors in vivo in subcutaneous and intraperitoneal xenograft models. Most importantly, the cytotoxicity of the CAR-NK cells was not affected by CXCR1 transgene expression, and the enhanced tumor trafficking following intravenous injection resulted in significantly increased antitumor responses in mice carrying established peritoneal ovarian cancer xenografts. Collectively, our findings suggest that the coexpression of CXCR1 and a CAR may provide a novel strategy to enhance therapeutic efficacy of NK cells against solid cancers.
Collapse
|
38
|
Guo C, Wang X, Zhang H, Zhi L, Lv T, Li M, Lu C, Zhu W. Structure-based rational design of a novel chimeric PD1-NKG2D receptor for natural killer cells. Mol Immunol 2019; 114:108-113. [PMID: 31351411 DOI: 10.1016/j.molimm.2019.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 02/09/2023]
Abstract
Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells have the potential to provide the potential for the implementation of allogeneic "off-the-shelf" cellular therapy against cancers. Currently, most CARs are not optimized for NK cells, so new NK-tailored CARs are needed. Here, a major activating receptor of NK cells, NKG2D was harnessed to design different chimeric receptors that mediate strong NK cell signaling. In these NKG2D signaling-based chimeric receptors, the extracellular domain of inhibitory receptor PD-1 was employed to reverse the immune escape mediated by PD-1 ligands in the solid tumors. To achieve the rational design of chimeric PD1-NKG2D receptors, we developed a transmembrane protein tertiary structure prediction program (PredMP & I-TASSER) and optimized the conformation of the PD-1 ectodomain by genetically altering the sequences encoding the hinge and intracellular domain. Finally, we identified a chimeric PD1-NKG2D receptor containing NKG2D hinge region and 4-1BB co-stimulatory domain to exhibit stable surface expression and mediate in vitro cytotoxicity of NK92 cells against various tumor cells. This strategy now provides a promising approach for the computer-aided design (CAD) of potent NK cell-tailored chimeric receptors with NKG2D signaling.
Collapse
Affiliation(s)
- Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Xiaoyin Wang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Huiyong Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Tanyu Lv
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Mingfeng Li
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Chengui Lu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| |
Collapse
|
39
|
Märklin M, Hagelstein I, Koerner SP, Rothfelder K, Pfluegler MS, Schumacher A, Grosse-Hovest L, Jung G, Salih HR. Bispecific NKG2D-CD3 and NKG2D-CD16 fusion proteins for induction of NK and T cell reactivity against acute myeloid leukemia. J Immunother Cancer 2019; 7:143. [PMID: 31142382 PMCID: PMC6542021 DOI: 10.1186/s40425-019-0606-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Background Monoclonal antibodies (mAbs) mediate their effects in great part by inducing ADCC of NK cells, and multiple efforts aim to increase this function by engineering mAbs optimized Fc-parts. Even more potent antitumor immunity can be induced by strategies to stimulate T cells with their profoundly higher effector potential. However, upon increased immunostimulatory potential, the necessity to target highly tumor-specific antigens becomes critically important to reduce side effects. Methods We here report on bispecific fusion proteins (BFP) that target ligands of the immunoreceptor NKG2D (NKG2DL), which are widely expressed on malignant cells but generally absent on healthy tissue. They consist of the extracellular domain of NKG2D as targeting moiety fused to Fab-fragments of CD3 (NKG2D-CD3) or CD16 (NKG2D-CD16) antibodies. Results NKG2D-CD16 displayed increased affinity to the FcγRIII on NK cells compared to engineered Fc-parts, which are contained in optimized mAbs that presently undergo clinical evaluation. In line, NKG2D-CD16 induced superior activation, degranulation, IFN-γ production and lysis of acute myeloid leukemia (AML) cell lines and patient AML cells. NKG2D-CD3 in turn potently stimulated T cells, and comparison of efficacy over time revealed that NKG2D-CD16 was superior upon short term application, while NKG2D-CD3 mediated overall more potent effects which manifested after longer times. This can be attributed to treatment-induced proliferation of T cells but not NK cells. Conclusions Taken together, we here introduce novel “antibody-like” BFP that take advantage of the highly tumor-restricted expression of NKG2DL and potently activate the reactivity of NK cells or T cells for immunotherapy of AML. Electronic supplementary material The online version of this article (10.1186/s40425-019-0606-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Otfried-Mueller-Str. 10, 72076, Tuebingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Otfried-Mueller-Str. 10, 72076, Tuebingen, Germany
| | - Samuel P Koerner
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Otfried-Mueller-Str. 10, 72076, Tuebingen, Germany
| | - Kathrin Rothfelder
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Otfried-Mueller-Str. 10, 72076, Tuebingen, Germany
| | - Martin S Pfluegler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Otfried-Mueller-Str. 10, 72076, Tuebingen, Germany
| | - Andreas Schumacher
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Otfried-Mueller-Str. 10, 72076, Tuebingen, Germany
| | | | - Gundram Jung
- Department for Immunology, Eberhard Karls University, Tuebingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Otfried-Mueller-Str. 10, 72076, Tuebingen, Germany.
| |
Collapse
|
40
|
Di Vito C, Mikulak J, Zaghi E, Pesce S, Marcenaro E, Mavilio D. NK cells to cure cancer. Semin Immunol 2019; 41:101272. [PMID: 31085114 DOI: 10.1016/j.smim.2019.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Natural Killer (NK) cells are innate lymphocytes able to mediate immune-surveillance and clearance of viral infected and tumor-transformed cells. Growing experimental and clinical evidence highlighted a dual role of NK cells either in the control of cancer development/progression or in promoting the onset of immune-suppressant tumor microenvironments. Indeed, several mechanisms of NK cell-mediated tumor escape have been described and these includes cancer-induced aberrant expression of activating and inhibitory receptors (i.e. NK cell immune checkpoints), impairments of NK cell migration to tumor sites and altered NK cell effector-functions. These phenomena highly contribute to tumor progression and metastasis formation. In this review, we discuss the latest insights on those NK cell receptors and related molecules that are currently being implemented in clinics either as possible prognostic factors or therapeutic targets to unleash NK cell anti-tumor effector-functions in vivo. Moreover, we address here the major recent advances in regard to the genetic modification and ex vivo expansion of anti-tumor specific NK cells used in innovative adoptive cellular transfer approaches.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy.
| |
Collapse
|
41
|
Xiao L, Cen D, Gan H, Sun Y, Huang N, Xiong H, Jin Q, Su L, Liu X, Wang K, Yan G, Dong T, Wu S, Zhou P, Zhang J, Liang W, Ren J, Teng Y, Chen C, Xu XH. Adoptive Transfer of NKG2D CAR mRNA-Engineered Natural Killer Cells in Colorectal Cancer Patients. Mol Ther 2019; 27:1114-1125. [PMID: 30962163 DOI: 10.1016/j.ymthe.2019.03.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/04/2023] Open
Abstract
By fusing the extracellular domain of the natural killer (NK) cell receptor NKG2D to DAP12, we constructed a chimeric antigen receptor (CAR) to improve NK cell tumor responses. An RNA electroporation approach that provides transient expression of the CAR was adopted as a risk mitigation strategy. Expression of the NKG2D RNA CAR significantly augmented the cytolytic activity of NK cells against several solid tumor cell lines in vitro and provided a clear therapeutic benefit to mice with established solid tumors. Three patients with metastatic colorectal cancer were then treated with local infusion of the CAR-NK cells. Reduction of ascites generation and a marked decrease in number of tumor cells in ascites samples were observed in the first two patients treated with intraperitoneal infusion of low doses of the CAR-NK cells. The third patient with metastatic tumor sites in the liver was treated with ultrasound-guided percutaneous injection, followed by intraperitoneal infusion of the CAR-NK cells. Rapid tumor regression in the liver region was observed with Doppler ultrasound imaging and complete metabolic response in the treated liver lesions was confirmed by positron emission tomography (PET)- computed tomographic (CT) scanning. Our results highlight a promising therapeutic potential of using RNA CAR-modified NK cells to treat metastatic colorectal cancer.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Dongzhi Cen
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Haining Gan
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yan Sun
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Nanqi Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hanzhen Xiong
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Qiongmei Jin
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Liqun Su
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xuejuan Liu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Kejian Wang
- Lin He's Academician Workstation of New Medicine and Clinical Translation at The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Guangrong Yan
- Biomedicine Research Centre, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Tianfa Dong
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Shangbiao Wu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Pengzhi Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Jinshan Zhang
- Department of Radiation Oncology and Nuclear Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Weixiang Liang
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junlan Ren
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong Province 510320, China
| | - Yaoshu Teng
- Department of Otorhinolaryngology, Affiliated Hangzhou First's People Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Can Chen
- Hangzhou Youshan Biomedical Co., Ltd., 459 Qianmo Road, Hangzhou 310051, China
| | - Xue Hu Xu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
42
|
Barrow AD, Colonna M. Exploiting NK Cell Surveillance Pathways for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11010055. [PMID: 30626155 PMCID: PMC6356551 DOI: 10.3390/cancers11010055] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells can evoke potent anti-tumour activity. This function is largely mediated through a battery of specialised cell-surface receptors which probe the tissue microenvironment for changes in surface and secretory phenotypes that may alert to the presence of infection or malignancy. These receptors have the potential to arouse the robust cytotoxic and cytokine-secreting functions of NK cells and so must be tightly regulated to prevent autoimmunity. However, such functions also hold great promise for clinical intervention. In this review, we highlight some of the latest breakthroughs in fundamental NK cell receptor biology that have illuminated our understanding of the molecular strategies NK cells employ to perceive malignant cells from normal healthy cells. Moreover, we highlight how these sophisticated tumour recognition strategies are being harnessed for cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Cruz-Ramos M, García-Foncillas J. CAR-T cell and Personalized Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1168:131-145. [DOI: 10.1007/978-3-030-24100-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Guedan S, Calderon H, Posey AD, Maus MV. Engineering and Design of Chimeric Antigen Receptors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:145-156. [PMID: 30666307 PMCID: PMC6330382 DOI: 10.1016/j.omtm.2018.12.009] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cells engineered with chimeric antigen receptors (CARs) have emerged as a potent new class of therapeutics for cancer, based on their remarkable potency in blood cancers. Since the first clinical reports of their efficacy emerged 7 years ago, investigators have focused on the mechanisms and properties that make CARs effective or toxic, and their effects on T cell biology. Novel CAR designs coupled with improvements in gene transfer technology, incorporating advances in gene editing, have the potential to increase access to engineered cell therapies, as well as improve their potency in solid tumors.
Collapse
Affiliation(s)
- Sonia Guedan
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Hugo Calderon
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cellular Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Breman E, Demoulin B, Agaugué S, Mauën S, Michaux A, Springuel L, Houssa J, Huberty F, Jacques-Hespel C, Marchand C, Marijsse J, Nguyen T, Ramelot N, Violle B, Daro D, De Waele P, Gilham DE, Steenwinckel V. Overcoming Target Driven Fratricide for T Cell Therapy. Front Immunol 2018; 9:2940. [PMID: 30619300 PMCID: PMC6299907 DOI: 10.3389/fimmu.2018.02940] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Chimeric Antigen Receptor (CAR) T cells expressing the fusion of the NKG2D protein with CD3ζ (NKG2D-CAR T Cells) acquire a specificity for stress-induced ligands expressed on hematological and solid cancers. However, these stress ligands are also transiently expressed by activated T cells implying that NKG2D-based T cells may undergo self-killing (fratricide) during cell manufacturing or during the freeze thaw cycle prior to infusion in patients. To avoid target-driven fratricide and enable the production of NKG2D-CAR T cells for clinical application, two distinct approaches were investigated. The first focused upon the inclusion of a Phosphoinositol-3-Kinase inhibitor (LY294002) into the production process. A second strategy involved the inclusion of antibody blockade of NKG2D itself. Both processes impacted T cell fratricide, albeit at different levels with the antibody process being the most effective in terms of cell yield. While both approaches generated comparable NKG2D-CAR T cells, there were subtle differences, for example in differentiation status, that were fine-tuned through the phasing of the inhibitor and antibody during culture in order to generate a highly potent NKG2D-CAR T cell product. By means of targeted inhibition of NKG2D expression or generic inhibition of enzyme function, target-driven CAR T fratricide can be overcome. These strategies have been incorporated into on-going clinical trials to enable a highly efficient and reproducible manufacturing process for NKG2D-CAR T cells.
Collapse
|
46
|
Wang J, Lupo KB, Chambers AM, Matosevic S. Purinergic targeting enhances immunotherapy of CD73 + solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J Immunother Cancer 2018; 6:136. [PMID: 30514403 PMCID: PMC6278070 DOI: 10.1186/s40425-018-0441-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The anti-tumor immunity of natural killer (NK) cells can be paralyzed by the CD73-induced generation of immunosuppressive adenosine from precursor ATP within the hypoxic microenvironment of solid tumors. In an effort to redirect purinergic immunosuppression of NK cell anti-tumor function, we showed, for the first time, that immunometabolic combination treatment with NKG2D-engineered CAR-NK cells alongside blockade of CD73 ectonucleotidase activity can result in significant anti-tumor responses in vivo. METHODS NK cells were engineered non-virally with NKG2D.CAR-presenting vectors based on the piggyBac transposon system with DAP10 and CD3ζ co-signaling domains. The anti-tumor immunity of NKG2D.CAR.NK cells in combination with CD73 targeting was evaluated against multiple solid tumor targets in vitro and humanized mouse xenografts in immunodeficient tumor-bearing mice in vivo. Intratumoral migration was evaluated via immunohistochemical staining, while degranulation capacity and IFN-γ production of NK cells were measured in response to solid tumor targets. RESULTS Our results showed that CD73 blockade can mediate effective purinergic reprogramming and enhance anti-tumor cytotoxicity both in vitro and in vivo by enhancing the killing ability of CAR-engineered NK cells against CD73+ solid tumor targets via mechanisms that might imply alleviation from adenosinergic immunometabolic suppression. CD73 blockade improved the intratumoral homing of CD56+ CAR-NK cells in vivo. These engineered NK cells showed synergistic therapeutic efficacy in combination with CD73 targeting against CD73+ human lung cancer xenograft models. Interestingly, CD73 blockade could inhibit tumor growth in vivo independently of adaptive immune cells, innate immunity or NK cell-mediated ADCC. CONCLUSIONS Immunotherapies targeting the adenosinergic signaling cascade, which act by neutralizing CD73 ectoenzymatic activity, had thus far not been evaluated in humanized tumor models, nor had the implication of innate immunity been investigated. Taken together, our pre-clinical efficacy data demonstrate, for the first time, the potential of targeting CD73 to modulate purinergic signaling and enhance adoptive NK cell immunotherapy via mechanisms that could implicate autocrine tumor control as well as by mediating adenosinergic signaling.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, Robert E. Heine Pharmacy Building, West Lafayette, IN, USA
| | - Kyle B Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, Robert E. Heine Pharmacy Building, West Lafayette, IN, USA
| | - Andrea M Chambers
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, Robert E. Heine Pharmacy Building, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, Robert E. Heine Pharmacy Building, West Lafayette, IN, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
47
|
Baragaño Raneros A, López-Larrea C, Suárez-Álvarez B. Acute myeloid leukemia and NK cells: two warriors confront each other. Oncoimmunology 2018; 8:e1539617. [PMID: 30713800 DOI: 10.1080/2162402x.2018.1539617] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease whose therapies currently show elevated toxicity and a high rate of relapse. Recently, the burgeoning of new anti-tumor therapeutic strategies aimed at enhancing the immune response has pushed natural killer cells (NKs) into the spotlight. These cells are powerful warriors that can bring about the lysis of tumor cells through their cytotoxic ability. However, tumor cells have developed strategies to evade recognition mediated by NKs. Here, we review the mechanisms triggered by AML cells and discuss the emerging immunotherapeutic strategies that potentiate the anti-tumor functions of NKs.
Collapse
Affiliation(s)
- Aroa Baragaño Raneros
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain.,Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Beatriz Suárez-Álvarez
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
48
|
Schmiedel D, Mandelboim O. NKG2D Ligands-Critical Targets for Cancer Immune Escape and Therapy. Front Immunol 2018; 9:2040. [PMID: 30254634 PMCID: PMC6141707 DOI: 10.3389/fimmu.2018.02040] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
DNA damage, oncogene activation and excessive proliferation, chromatin modulations or oxidative stress are all important hallmarks of cancer. Interestingly, all of these abnormalities also induce a cellular stress response. By upregulating “stress-induced ligands,” damaged or transformed cells can be recognized by immune cells and cleared. The human genome encodes eight functional “stress-induced ligands”: MICA, MICB, and ULBP1-6. All of them are recognized by a single receptor, NKG2D, which is expressed on natural killer (NK) cells, cytotoxic T cells and other T cell subsets. The NKG2D ligand/NKG2D-axis is well-recognized as an important mediator of anti-tumor activity; however, patient data about the role of NKG2D ligands in immune surveillance and escape appears conflicting. As these ligands are often actively transcribed, tumor cells are urged to manipulate the expression of these ligands on post-transcriptional or post-translational level. Although our knowledge on the regulation of NKG2D ligand expression remains fragmentary, research of the past years revealed multiple cellular mechanisms that are adopted by tumor cells to reduce the expression of “stress-induced ligands” and therefore escape immune recognition. Here, we review the post-transcriptional and post-translational mechanisms by which NKG2D ligands are modulated in cancer cells and their impact on patient prognosis.We discuss controversies and approaches to apply our understanding of the NKG2D ligand/NKG2D-axis for cancer therapy.
Collapse
Affiliation(s)
- Dominik Schmiedel
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
49
|
Paubelle E, Rocher C, Julia E, Thomas X. Chimeric Antigen Receptor-Engineered T Cell Therapy in Acute Myeloid Leukaemia. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10314141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a disease with a very poor outcome and remains an area of significant unmet need, necessitating novel therapeutic strategies. The progress made in the field of immunotherapy, in particular chimeric antigen receptor (CAR)-engineered T cells, has given rise to many hopes for pathologies such as B cell acute lymphoblastic leukaemia and B cell lymphoma, and many studies have attempted to translate these successes to AML. This review summarises the recent advances in, and defines an ideal target for, CAR T cell therapy in AML.
Collapse
Affiliation(s)
- Etienne Paubelle
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France; LBMC, ENS, CNRS UMR5239, Faculté de Médecine Lyon-Sud, Lyon, France
| | - Clément Rocher
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Edith Julia
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Xavier Thomas
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
| |
Collapse
|
50
|
Ajina A, Maher J. Strategies to Address Chimeric Antigen Receptor Tonic Signaling. Mol Cancer Ther 2018; 17:1795-1815. [PMID: 30181329 PMCID: PMC6130819 DOI: 10.1158/1535-7163.mct-17-1097] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/19/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Adoptive cell transfer using chimeric antigen receptors (CAR) has emerged as one of the most promising new therapeutic modalities for patients with relapsed or refractory B-cell malignancies. Thus far, results in patients with advanced solid tumors have proven disappointing. Constitutive tonic signaling in the absence of ligand is an increasingly recognized complication when deploying these synthetic fusion receptors and can be a cause of poor antitumor efficacy, impaired survival, and reduced persistence in vivo In parallel, ligand-dependent tonic signaling can mediate toxicity and promote T-cell anergy, exhaustion, and activation-induced cell death. Here, we review the mechanisms underpinning CAR tonic signaling and highlight the wide variety of effects that can emerge after making subtle structural changes or altering the methodology of CAR transduction. We highlight strategies to prevent unconstrained tonic signaling and address its deleterious consequences. We also frame this phenomenon in the context of endogenous TCR tonic signaling, which has been shown to regulate peripheral tolerance, facilitate the targeting of foreign antigens, and suggest opportunities to coopt ligand-dependent CAR tonic signaling to facilitate in vivo persistence and efficacy. Mol Cancer Ther; 17(9); 1795-815. ©2018 AACR.
Collapse
MESH Headings
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Adam Ajina
- CAR Mechanics Group, King's College London, London, United Kingdom.
- School of Cancer and Pharmaceutical Studies, Guy's Hospital, London, United Kingdom
| | - John Maher
- CAR Mechanics Group, King's College London, London, United Kingdom
- School of Cancer and Pharmaceutical Studies, Guy's Hospital, London, United Kingdom
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Immunology, Eastbourne Hospital, East Sussex, United Kingdom
| |
Collapse
|