1
|
Jathal MK, Mudryj MM, Dall'Era M, Ghosh PM. Amiloride Sensitizes Prostate Cancer Cells to the Reversible Tyrosine Kinase Inhibitor Lapatinib by Modulating ERBB3 Subcellular Localization. RESEARCH SQUARE 2024:rs.3.rs-4844371. [PMID: 39257973 PMCID: PMC11384790 DOI: 10.21203/rs.3.rs-4844371/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Neoadjuvant therapy (NAT) has been studied in clinically localized prostate cancer (PCa) to improve the outcomes from radical prostatectomy (RP) by 'debulking' of high-risk PCa; however, using androgen deprivation at this point risks castration resistant PCa (CRPC) clonal proliferation with potentially profound side effects such as fatigue, loss of libido, hot flashes, loss of muscle mass, and weight gain. Our goal is to identify alternative NAT that reduce hormone sensitive PCa (HSPC) without affecting androgen receptor (AR) transcriptional activity. PCa is associated with increased expression and activation of the epidermal growth factor receptor (EGFR) family, including HER2 and ErbB3. Dimerization between these receptors is required for activation of downstream targets involved in tumor progression. The FDA-approved HER2 inhibitor lapatinib has been tested in PCa but was ineffective due to continued activation of ErbB3. We now demonstrate that this is due to ErbB3 being localized to the nucleus in HSPC and thus protected from lapatinib which affect membrane localized HER2/ErbB3 dimers. Here, we show that the well-established, well-tolerated diuretic amiloride hydrochloride dose dependently prevented ErbB3 nuclear localization via formation of plasma membrane localized HER2/ErbB3 dimers. This in turn allowed lapatinib inactivation of these dimers via inhibition of its target HER2, which dephosphorylated downstream survival and proliferation regulators AKT and ERK1/2. Amiloride combined with lapatinib significantly increased apoptosis but did not affect AR transcriptional activity. Thus, our data indicate that a combination of amiloride and lapatinib could target HSPC tumors without problems associated with androgen deprivation therapy in localized PCa.
Collapse
|
2
|
Ke ZB, Chen SM, Chen JY, Chen SH, You Q, Sun JB, Xue YT, Sun XL, Wu XH, Zheng QS, Wei Y, Xue XY, Xu N. Head-to-head comparisons of [ 68Ga]Ga-PSMA-11 PET/CT, multiparametric MRI, and prostate-specific antigen for the evaluation of therapeutic responses to neoadjuvant chemohormonal therapy in high-risk non-metastatic prostate cancer patients: a prospective study. Eur J Nucl Med Mol Imaging 2023; 50:1240-1251. [PMID: 36416906 DOI: 10.1007/s00259-022-06047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE The optimal tool to evaluate the tumour therapeutic responses to neoadjuvant chemohormonal therapy (NCHT) in patients with high-risk non-metastatic prostate cancer (PCa) remains uncertain. We compared the role of [68Ga]-labeled prostate-specific membrane antigen (PSMA)-11 positron emission tomography/computerized tomography ([68Ga]Ga-PSMA-11 PET/CT), multiparametric MRI (mpMRI), and prostate-specific antigen (PSA) and assessed the practical value of the recent European Association of Urology and European Association of Nuclear Medicine (EAU/EANM) recommended criteria of PSMA PET/CT to evaluate the therapeutic responses to NCHT in patients with high-risk non-metastatic PCa. METHODS This prospective study included 72 high-risk non-metastatic PCa patients receiving NCHT followed by radical prostatectomy from June 2021 to March 2022. PSA testing, [68Ga]Ga-PSMA-11 PET/CT, and mpMRI scanning were conducted in all patients before and after NCHT. Therapeutic responses to NCHT were evaluated with PSA, RECIST 1.1, PERCIST 1.0, and EAU/EANM recommended criteria. Postoperative pathological results were considered the reference standard. A favourable pathological response was defined as pathologic complete remission (pCR) or minimal residual disease (MRD). Diagnostic accuracy was assessed by sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), positive predictive value (PPV), negative predictive value (NPV), and Cohen's kappa index. Logistic regression analysis was used to determine the independent predictive value of [68Ga]Ga-PSMA-11 PET/CT-derived parameters. RESULTS All cases experienced a marked decrease in PSA levels after NCHT. Twenty-four (33.33%) cases experienced a favourable pathological response, including five (6.94%) cases of pCR and 19 (26.39%) cases of MRD. According to the results of [68Ga]Ga-PSMA-11 PET/CT, EAU/EANM recommended criteria indicated that 20 (27.78%) cases had a CR, whereas PERCIST 1.0 criteria indicated that 23 (31.94%) cases had a CR. There was a strong association between EAU/EANM recommended criteria and PERCIST 1.0 criteria (Pearson's R=0.857). The sensitivity (75.00%, 79.17% vs. 58.33%, 58.33%), specificity (95.83%, 91.67% vs. 83.33%, 68.75%), PLR (18.00, 9.50 vs. 3.50, 1.87), NLR (0.26, 0.23 vs. 0.50, 0.61), PPV (90.0%, 82.6% vs. 63.6%, 48.3%), and NPV (88.5%, 89.8% vs. 80.0%, 76.7%) of [68Ga]Ga-PSMA-11 PET/CT (including EAU/EANM recommended criteria and PERCIST 1.0 criteria) to predict favourable pathological responses were all superior to those of mpMRI and nadir PSA. The kappa index to predict a favourable pathological response was 0.257 for PSA, 0.426 for RECIST 1.1, 0.716 for PERCIST 1.0, and 0.739 for EAU/EANM recommended criteria. Multivariate logistic analysis revealed that the post-NCHT maximum standardized uptake value (SUVmax) before radical prostatectomy was an independent predictor of a favourable pathological response to NCHT. CONCLUSIONS [68Ga]Ga-PSMA-11 PET/CT had a better concordance with a favourable pathological response to NCHT compared with nadir PSA and mpMRI. EAU/EANM recommended criteria and PERCIST 1.0 criteria performed equally to identify pathological responders when [68Ga]Ga-PSMA-11 PET/CT was used as a therapeutic response assessment tool.
Collapse
Affiliation(s)
- Zhi-Bin Ke
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Shao-Ming Chen
- Department of Nuclear Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qi You
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jiang-Bo Sun
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Ting Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiao-Hui Wu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
3
|
Perioperative Morbidity of Radical Prostatectomy After Intensive Neoadjuvant Androgen Blockade in Men With High-Risk Prostate Cancer: Results of Phase II Trial Compared to a Control Group. Clin Genitourin Cancer 2023; 21:43-54. [PMID: 36428171 DOI: 10.1016/j.clgc.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Recent studies about intense neoadjuvant therapy followed by Radical Prostatectomy (RP) lack standardized criteria regarding surgical complications and comparison to a group of patients who underwent RP without the use of neoadjuvant therapy. The aim of this study is to describe and compare the perioperative complication rates. MATERIALS AND METHODS This was a prospective, single-center phase II trial in patients with high-risk prostate cancer (HRPCa). The control group included HRPCa patients who underwent RP outside the clinical trial during the same study recruitment period. The interventional group was randomized (1:1) to receive neoadjuvant androgen deprivation therapy plus abiraterone with or without apalutamide followed by RP. Complications observed up to 30 days of surgery were classified based on the Clavien-Dindo classification. Uni- and multivariate analyses were carried out to assess predictive factors associated with perioperative complications. RESULTS In total, 124 patients with HRPCa were underwent to RP between May 27, 2019 and August 6, 2021, including 61 patients in the intervention group and 63 patients in the control group. The general and major complications in the intervention group reached 29.6% and 6.6%, respectively, and 39.7% and 7.9% in the control group, respectively. There was no significant difference between groups. We observed 4.9% of thromboembolic event in the neoadjuvant group. CONCLUSIONS There was no significant increase in morbidity rate in RP after intense neoadjuvant therapy. The association of intense androgen deprivation neoadjuvant therapy with RP and extended pelvic lymphadenectomy may increase the risk of a perioperative thromboembolic events.
Collapse
|
4
|
Tewari AK, Cheung ATM, Crowdis J, Conway JR, Camp SY, Wankowicz SA, Livitz DG, Park J, Lis RT, Bosma-Moody A, He MX, AlDubayan SH, Zhang Z, McKay RR, Leshchiner I, Brown M, Balk SP, Getz G, Taplin ME, Van Allen EM. Molecular features of exceptional response to neoadjuvant anti-androgen therapy in high-risk localized prostate cancer. Cell Rep 2021; 36:109665. [PMID: 34496240 DOI: 10.1016/j.celrep.2021.109665] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
High-risk localized prostate cancer (HRLPC) is associated with a substantial risk of recurrence and disease mortality. Recent clinical trials have shown that intensifying anti-androgen therapies administered before prostatectomy can induce pathologic complete responses or minimal residual disease, called exceptional response, although the molecular determinants of these clinical outcomes are largely unknown. Here, we perform whole-exome and transcriptome sequencing on pre-treatment multi-regional tumor biopsies from exceptional responders (ERs) and non-responders (NRs, pathologic T3 or lymph node-positive disease) to intensive neoadjuvant anti-androgen therapies. Clonal SPOP mutation and SPOPL copy-number loss are exclusively observed in ERs, while clonal TP53 mutation and PTEN copy-number loss are exclusively observed in NRs. Transcriptional programs involving androgen signaling and TGF-β signaling are enriched in ERs and NRs, respectively. These findings may guide prospective validation studies of these molecular features in large HRLPC clinical cohorts treated with neoadjuvant anti-androgens to improve patient stratification.
Collapse
Affiliation(s)
- Alok K Tewari
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander T M Cheung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jett Crowdis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jake R Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Bioinformatics and Integrative Genomics, Boston, MA 02115, USA
| | - Sabrina Y Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stephanie A Wankowicz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rosina T Lis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alice Bosma-Moody
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Meng Xiao He
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics, Boston, MA 02115, USA
| | - Saud H AlDubayan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Zhenwei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rana R McKay
- Division of Hematology/Oncology, University of California San Diego, San Diego, CA 92037, USA
| | | | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Steven P Balk
- Division of Cancer Biology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
6
|
McKay RR, Feng FY, Wang AY, Wallis CJD, Moses KA. Recent Advances in the Management of High-Risk Localized Prostate Cancer: Local Therapy, Systemic Therapy, and Biomarkers to Guide Treatment Decisions. Am Soc Clin Oncol Educ Book 2020; 40:1-12. [PMID: 32412803 PMCID: PMC10182417 DOI: 10.1200/edbk_279459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
High-risk prostate cancer accounts for approximately 15% of all prostate cancer diagnoses. Patients with high-risk disease have an increased risk of developing biochemical recurrence, metastases, and death from prostate cancer. As the optimal management of high-risk disease in patients with prostate cancer continues to evolve, the contemporary treatment paradigm is moving toward a multidisciplinary integrated approach of systemic and local therapy for patients with high-risk disease. The strategies for definitive, adjuvant, and salvage local treatment, including radical prostatectomy or radiation therapy, serve as the backbone of therapy for patients with localized disease. Systemic therapy decisions regarding use in combination with surgery, choice of therapy (hormone therapy, chemotherapy), and treatment duration continue to be refined. As more effective hormonal agents populate the treatment landscape for advanced prostate cancer, including abiraterone and next-generation antiandrogens, an opportunity is provided to explore these treatments in patients with localized disease in the hope of improving the long-term outcome for patients. Integration of innovative blood and tissue-based biomarkers to guide therapy selection for patients with high-risk disease is an area of active research. Contemporary studies are using such biomarkers to stratify patients and select therapies. In this review, we summarize contemporary evidence for local treatment strategies, systemic therapy options, and biomarkers in development for the management of high-risk prostate cancer in patients.
Collapse
Affiliation(s)
- Rana R McKay
- University of California San Diego, San Diego, CA
| | - Felix Y Feng
- University of California San Francisco, San Francisco, CA
| | - Alice Y Wang
- Vanderbilt University Medical Center, Nashville, TN
| | | | | |
Collapse
|