1
|
D'Avanzo C, Blaeschke F, Lysandrou M, Ingelfinger F, Zeiser R. Advances in cell therapy: progress and challenges in hematological and solid tumors. Trends Pharmacol Sci 2024; 45:1119-1134. [PMID: 39603960 DOI: 10.1016/j.tips.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024]
Abstract
Cell-based therapies harness the endogenous ability of the immune system to fight cancer and have shown promising results in the treatment of hematological malignancies. However, their clinical application beyond B cell malignancies is hampered by numerous hurdles, ranging from relapsed disease to a hostile tumor microenvironment (TME). Recent advances in cell engineering and TME modulation may expand the applicability of these therapies to a wider range of cancers, creating new treatment possibilities. Breakthroughs in advanced gene editing and sophisticated cell engineering, have also provided promising solutions to longstanding challenges. In this review, we examine the challenges and future directions of the most prominent cell-based therapies, including chimeric antigen receptor (CAR)-T cells, tumor-infiltrating lymphocytes (TILs), and natural killer (NK) cells, and emerging modalities. We provide a comprehensive analysis of emerging cell types and combination strategies translated into clinical trials, offering insights into the next generation of cell-based cancer treatments.
Collapse
Affiliation(s)
- Claudia D'Avanzo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Blaeschke
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Heidelberg University Hospital, Heidelberg, Germany
| | - Memnon Lysandrou
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Ingelfinger
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Zhen X, Kim J, Kang JS, Choi BJ, Park KH, Lee DS, Hong SH, Lee JH. Homology-independent targeted insertion-mediated derivation of M1-biased macrophages harbouring Megf10 and CD3ζ from human pluripotent stem cells. EBioMedicine 2024; 109:105390. [PMID: 39383607 PMCID: PMC11497429 DOI: 10.1016/j.ebiom.2024.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Macrophages engineered with chimeric antigen receptors (CAR) are suitable for immunotherapy based on their immunomodulatory activity and ability to infiltrate solid tumours. However, the production and application of genetically edited, highly effective, and mass-produced CAR-modified macrophages (CAR-Ms) are challenging. METHODS Here, we used homology-independent targeted insertion (HITI) for site-directed CAR integration into the safe-harbour region of human pluripotent stem cells (hPSCs). This approach, together with a simple differentiation protocol, produced stable and highly effective CAR-Ms without heterogeneity. FINDINGS These engineered cells phagocytosed cancer cells, leading to significant inhibition of cancer-cell proliferation in vitro and in vivo. Furthermore, the engineered CARs, which incorporated a combination of CD3ζ and Megf10 (referred to as FRP5Mζ), markedly enhanced the antitumour effect of CAR-Ms by promoting M1, but not M2, polarisation. FRP5Mζ promoted M1 polarisation via nuclear factor kappa B (NF-κB), ERK, and STAT1 signalling, and concurrently inhibited STAT3 signalling even under M2 conditions. These features of CAR-Ms modulated the tumour microenvironment by activating inflammatory signalling, inducing M1 polarisation of bystander non-CAR macrophages, and enhancing the infiltration of T cells in cancer spheroids. INTERPRETATION Our findings suggest that CAR-Ms have promise as immunotherapeutics. In conclusion, the guided insertion of CAR containing CD3ζ and Megf10 domains is an effective strategy for the immunotherapy of solid tumours. FUNDING This work was supported by KRIBB Research Initiative Program Grant (KGM4562431, KGM5282423) and a Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korean government (Ministry of Science and ICT,Ministry of Health and Welfare) (22A0304L1-01).
Collapse
Affiliation(s)
- Xing Zhen
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea; Department of Nanoscience and Nanotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jieun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Jong Soon Kang
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| | - Byeong Jo Choi
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| | - Ki Hwan Park
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.
| | - Dong-Seok Lee
- Department of Nanoscience and Nanotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea; KW-Bio Co., Ltd, Chuncheon, 24252, South Korea.
| | - Jong-Hee Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Tran E. More T cell receptors to the RAScue in cancer? J Clin Invest 2024; 134:e184782. [PMID: 39484723 PMCID: PMC11527437 DOI: 10.1172/jci184782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Treatment with T cells genetically engineered to express tumor-reactive T cell receptors (TCRs), known as TCR-gene therapy (TCR-T), is a promising immunotherapeutic approach for patients with cancer. The identification of optimal TCRs to use and tumor antigens to target are key considerations for TCR-T. In this issue of the JCI, Bear and colleagues report on their use of in vitro assays to characterize four HLA-A*03:01- or HLA-A*11:01-restricted TCRs targeting the oncogenic KRAS G12V mutation. The TCRs were derived from healthy donors or patients with pancreatic cancer who had received a vaccine against mutant KRAS. The most promising TCRs warrant testing in patients with KRAS G12V-positive cancers.
Collapse
|
4
|
Sun H, Han X, Du Z, Chen G, Guo T, Xie F, Gu W, Shi Z. Machine learning for the identification of neoantigen-reactive CD8 + T cells in gastrointestinal cancer using single-cell sequencing. Br J Cancer 2024; 131:387-402. [PMID: 38849478 PMCID: PMC11263575 DOI: 10.1038/s41416-024-02737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND It appears that tumour-infiltrating neoantigen-reactive CD8 + T (Neo T) cells are the primary driver of immune responses to gastrointestinal cancer in patients. However, the conventional method is very time-consuming and complex for identifying Neo T cells and their corresponding T cell receptors (TCRs). METHODS By mapping neoantigen-reactive T cells from the single-cell transcriptomes of thousands of tumour-infiltrating lymphocytes, we developed a 26-gene machine learning model for the identification of neoantigen-reactive T cells. RESULTS In both training and validation sets, the model performed admirably. We discovered that the majority of Neo T cells exhibited notable differences in the biological processes of amide-related signal pathways. The analysis of potential cell-to-cell interactions, in conjunction with spatial transcriptomic and multiplex immunohistochemistry data, has revealed that Neo T cells possess potent signalling molecules, including LTA, which can potentially engage with tumour cells within the tumour microenvironment, thereby exerting anti-tumour effects. By sequencing CD8 + T cells in tumour samples of patients undergoing neoadjuvant immunotherapy, we determined that the fraction of Neo T cells was significantly and positively linked with the clinical benefit and overall survival rate of patients. CONCLUSION This method expedites the identification of neoantigen-reactive TCRs and the engineering of neoantigen-reactive T cells for therapy.
Collapse
Affiliation(s)
- Hongwei Sun
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Han
- KangChen Bio-tech., Ltd, ShangHai, China
| | - Zhengliang Du
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Geer Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tonglei Guo
- Data and Analysis Center for Genetic Diseases, Beijing Chigene Translational Medicine Research Center Co, Ltd, Tongzhou District, Beijing, China
| | - Fei Xie
- Data and Analysis Center for Genetic Diseases, Beijing Chigene Translational Medicine Research Center Co, Ltd, Tongzhou District, Beijing, China
| | - Weiyue Gu
- Data and Analysis Center for Genetic Diseases, Beijing Chigene Translational Medicine Research Center Co, Ltd, Tongzhou District, Beijing, China
- Chineo Medical Technology Co., Ltd, Beijing, 100101, China
| | - Zhiwen Shi
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Data and Analysis Center for Genetic Diseases, Beijing Chigene Translational Medicine Research Center Co, Ltd, Tongzhou District, Beijing, China.
- Chineo Medical Technology Co., Ltd, Beijing, 100101, China.
| |
Collapse
|
5
|
Minegishi Y, Haga Y, Ueda K. Emerging potential of immunopeptidomics by mass spectrometry in cancer immunotherapy. Cancer Sci 2024; 115:1048-1059. [PMID: 38382459 PMCID: PMC11007014 DOI: 10.1111/cas.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
With significant advances in analytical technologies, research in the field of cancer immunotherapy, such as adoptive T cell therapy, cancer vaccine, and immune checkpoint blockade (ICB), is currently gaining tremendous momentum. Since the efficacy of cancer immunotherapy is recognized only by a minority of patients, more potent tumor-specific antigens (TSAs, also known as neoantigens) and predictive markers for treatment response are of great interest. In cancer immunity, immunopeptides, presented by human leukocyte antigen (HLA) class I, play a role as initiating mediators of immunogenicity. The latest advancement in the interdisciplinary multiomics approach has rapidly enlightened us about the identity of the "dark matter" of cancer and the associated immunopeptides. In this field, mass spectrometry (MS) is a viable option to select because of the naturally processed and actually presented TSA candidates in order to grasp the whole picture of the immunopeptidome. In the past few years the search space has been enlarged by the multiomics approach, the sensitivity of mass spectrometers has been improved, and deep/machine-learning-supported peptide search algorithms have taken immunopeptidomics to the next level. In this review, along with the introduction of key technical advancements in immunopeptidomics, the potential and further directions of immunopeptidomics will be reviewed from the perspective of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuriko Minegishi
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yoshimi Haga
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
6
|
Hung SI, Chu MT, Hou MM, Lee YS, Yang CK, Chu SY, Liu FY, Hsu HC, Pao SC, Teng YC, Chen CB, Chao A, Chung WH, Chang JWC, Lai CH. Personalized neoantigen-based T cell therapy triggers cytotoxic lymphocytes expressing polyclonal TCR against metastatic ovarian cancer. Biomed Pharmacother 2023; 169:115928. [PMID: 38011788 DOI: 10.1016/j.biopha.2023.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Neoantigen-reactive cytotoxic T lymphocytes play a vital role in precise cancer cell elimination. In this study, we demonstrate the effectiveness of personalized neoantigen-based T cell therapy in inducing tumor regression in two patients suffering from heavily-burdened metastatic ovarian cancer. Our approach involved the development of a robust pipeline for ex vivo expansion of neoantigen-reactive T lymphocytes. Neoantigen peptides were designed and synthesized based on the somatic mutations of the tumors and their predicted HLA binding affinities. These peptides were then presented to T lymphocytes through co-culture with neoantigen-loaded dendritic cells for ex vivo expansion. Subsequent to cell therapy, both patients exhibited significant reductions in tumor marker levels and experienced substantial tumor regression. One patient achieved repeated cancer regression through infusions of T cell products generated from newly identified neoantigens. Transcriptomic analyses revealed a remarkable increase in neoantigen-reactive cytotoxic lymphocytes in the peripheral blood of the patients following cell therapy. These cytotoxic T lymphocytes expressed polyclonal T cell receptors (TCR) against neoantigens, along with abundant cytotoxic proteins and pro-inflammatory cytokines. The efficacy of neoantigen targeting was significantly associated with the immunogenicity and TCR polyclonality. Notably, the neoantigen-specific TCR clonotypes persisted in the peripheral blood after cell therapy. Our findings indicate that personalized neoantigen-based T cell therapy triggers cytotoxic lymphocytes expressing polyclonal TCR against ovarian cancer, suggesting its promising potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Shuen-Iu Hung
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No.155, Section 2, Linong Street, Taipei 112, Taiwan.
| | - Mu-Tzu Chu
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan.
| | - Ming-Mo Hou
- Division of Hematology-Oncology, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, No. 5, De-Ming Road., Taoyuan 333, Taiwan.
| | - Yun-Shien Lee
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Guishan, Taoyuan 333, Taiwan; Department of Biotechnology, Ming-Chuan University, Taoyuan 333, Taiwan.
| | - Chan-Keng Yang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, No. 5, De-Ming Road., Taoyuan 333, Taiwan.
| | - Sung-Yu Chu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan.
| | - Feng-Yuan Liu
- College of Medicine, Chang Gung University, No. 5, De-Ming Road., Taoyuan 333, Taiwan; Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; School of Medicine, National Tsing Hua University, No.101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan.
| | - Hung-Chih Hsu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, No. 5, De-Ming Road., Taoyuan 333, Taiwan.
| | - Shih-Cheng Pao
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No.155, Section 2, Linong Street, Taipei 112, Taiwan.
| | - Yu-Chuan Teng
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Guishan, Taoyuan 333, Taiwan.
| | - Chun-Bing Chen
- College of Medicine, Chang Gung University, No. 5, De-Ming Road., Taoyuan 333, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan.
| | - Angel Chao
- College of Medicine, Chang Gung University, No. 5, De-Ming Road., Taoyuan 333, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan.
| | - Wen-Hung Chung
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, No. 5, De-Ming Road., Taoyuan 333, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung Branch, No. 222, Maijin Road., Keelung 204, Taiwan.
| | - John Wen-Cheng Chang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, No. 5, De-Ming Road., Taoyuan 333, Taiwan.
| | - Chyong-Huey Lai
- College of Medicine, Chang Gung University, No. 5, De-Ming Road., Taoyuan 333, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan; Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, No. 5. Fuxing Street, Taoyuan 333, Taiwan.
| |
Collapse
|
7
|
Zemanek T, Nova Z, Nicodemou A. Tumor-Infiltrating Lymphocytes and Adoptive Cell Therapy: State of the Art in Colorectal, Breast and Lung Cancer. Physiol Res 2023; 72:S209-S224. [PMID: 37888965 PMCID: PMC10669950 DOI: 10.33549/physiolres.935155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Our knowledge of tumor-infiltrating lymphocytes (TILs) is dramatically expanding. These cells have proven prognostic and therapeutic value for many cancer outcomes and potential to treat also disseminated breast, colorectal, or lung cancer. However, the therapeutical outcome of TILs is negatively affected by tumor mutational burden and neoantigens. On the other hand, it can be improved in combination with checkpoint blockade therapy. This knowledge and rapid detection techniques alongside gene editing allow us to classify and modify T cells in many ways. Hence, to tailor them precisely to the patient´s needs as to program T cell receptors to recognize specific tumor-associated neoantigens and to insert them into lymphocytes or to select tumor neoantigen-specific T cells, for the development of vaccines that recognize tumor-specific antigens in tumors or metastases. Further studies and clinical trials in the field are needed for an even better-detailed understanding of TILs interactions and aiming in the fight against multiple cancers.
Collapse
Affiliation(s)
- T Zemanek
- Lambda Life, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
8
|
Edsjö A, Holmquist L, Geoerger B, Nowak F, Gomon G, Alix-Panabières C, Ploeger C, Lassen U, Le Tourneau C, Lehtiö J, Ott PA, von Deimling A, Fröhling S, Voest E, Klauschen F, Dienstmann R, Alshibany A, Siu LL, Stenzinger A. Precision cancer medicine: Concepts, current practice, and future developments. J Intern Med 2023; 294:455-481. [PMID: 37641393 DOI: 10.1111/joim.13709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Precision cancer medicine is a multidisciplinary team effort that requires involvement and commitment of many stakeholders including the society at large. Building on the success of significant advances in precision therapy for oncological patients over the last two decades, future developments will be significantly shaped by improvements in scalable molecular diagnostics in which increasingly complex multilayered datasets require transformation into clinically useful information guiding patient management at fast turnaround times. Adaptive profiling strategies involving tissue- and liquid-based testing that account for the immense plasticity of cancer during the patient's journey and also include early detection approaches are already finding their way into clinical routine and will become paramount. A second major driver is the development of smart clinical trials and trial concepts which, complemented by real-world evidence, rapidly broaden the spectrum of therapeutic options. Tight coordination with regulatory agencies and health technology assessment bodies is crucial in this context. Multicentric networks operating nationally and internationally are key in implementing precision oncology in clinical practice and support developing and improving the ecosystem and framework needed to turn invocation into benefits for patients. The review provides an overview of the diagnostic tools, innovative clinical studies, and collaborative efforts needed to realize precision cancer medicine.
Collapse
Affiliation(s)
- Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Genomic Medicine Sweden (GMS), Kristianstad, Sweden
| | - Louise Holmquist
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Genomic Medicine Sweden (GMS), Kristianstad, Sweden
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | | | - Georgy Gomon
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, Montpellier, France
- CREEC, MIVEGEC, University of Montpellier, Montpellier, France
| | - Carolin Ploeger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Ulrik Lassen
- Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- INSERM U900 Research Unit, Saint-Cloud, France
- Faculty of Medicine, Paris-Saclay University, Paris, France
| | - Janne Lehtiö
- Department of Oncology Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Emile Voest
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frederick Klauschen
- Institute of Pathology, Charite - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Munich Partner Site, Heidelberg, Germany
| | | | | | - Lillian L Siu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
| |
Collapse
|
9
|
Lybaert L, Thielemans K, Feldman SA, van der Burg SH, Bogaert C, Ott PA. Neoantigen-directed therapeutics in the clinic: where are we? Trends Cancer 2023; 9:503-519. [PMID: 37055237 PMCID: PMC10414146 DOI: 10.1016/j.trecan.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 04/15/2023]
Abstract
In the past decade, immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy have brought immunotherapy to the forefront of cancer treatment; however, only subsets of patients benefit from current approaches. Neoantigen-driven therapeutics specifically redirect the immune system of the patient to enable or reinduce its ability to recognize and eliminate cancer cells. The tumor specificity of this strategy spares healthy and normal cells from being attacked. Consistent with this concept, initial clinical trials have demonstrated the feasibility, safety, and immunogenicity of neoantigen-directed personalized vaccines. We review neoantigen-driven therapy strategies as well as their promise and clinical successes to date.
Collapse
Affiliation(s)
| | | | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
10
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|