1
|
Mahmoudi M, Alizadeh P, Soltani M. Wound healing performance of electrospun PVA/70S30C bioactive glass/Ag nanoparticles mats decorated with curcumin: In vitro and in vivo investigations. BIOMATERIALS ADVANCES 2023; 153:213530. [PMID: 37356283 DOI: 10.1016/j.bioadv.2023.213530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Biocompatible fibrous scaffold containing polyvinyl alcohol (PVA), 70S30C bioactive glass (BG), silver (Ag) nanoparticles and curcumin (Cur) was fabricated through electrospinning method. Scanning electron microscope (SEM) and Field emission scanning electron microscopy (FESEM) were employed to investigate the morphological characteristics of the scaffolds. In addition, biodegradability, hydrophilicity, and contact angle were studied as criteria for evaluating physical properties of the scaffolds. Tensile strength was reported to be 0.971 ± 0.093 MPa. Also, the viability of fibroblasts after 7 days of cell culture was 93.58 ± 1.36 %. The antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria was illustrated using inhibition zones of 13.12 ± 0.69 and 14.21 ± 1.37 mm, respectively. Histological results revealed that tissue regeneration after 14 days of surgery was much higher for the dressing group compared to the blank group. According to the obtained results, the authors introduce the PVA-BG-Ag-Cur scaffold as a promising candidate for skin tissue engineering applications.
Collapse
Affiliation(s)
- Masoud Mahmoudi
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| | - Parvin Alizadeh
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran.
| | - Mohammad Soltani
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| |
Collapse
|
2
|
Liu T, Chen J, Wei B, Nie F, Zhu G. Safety and efficacy of autologous skin tissue cells grafting for facial sunken or flat scars. Heliyon 2023; 9:e16992. [PMID: 37484283 PMCID: PMC10361016 DOI: 10.1016/j.heliyon.2023.e16992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
Importance It is necessary to determine whether safety and efficacy of autologous skin tissue cells grafting for facial sunken or flat scars. Objective To identify autologous skin tissue cells grafting can reduce facial sunken or flat scars. Design setting and participants In this retrospective cross-sectional study, a total of 128 patients with scar (exclude pathological scar patients), who were receiving autologous skin tissue cells grafting therapy from January 1, 2016, to December 31, 2019. Interventions Autologous skin tissue cells grafting. Main outcomes and measures Changes in scar severity, color changes in the scar area, infection rate and patient satisfaction. Results A total of 128 patients with scar (89 females [69.5%]; mean [SD] age, 30.6 [13.12] years) received autologous skin tissue cells grafting therapy. SCAR (Scar Cosmesis Assessment and Rating), with scores ranging from 0 (best possible scar) to 15 (worst possible scar). After treatment 12 months, the mean [SD] of SCAR score went down from 9.85 [1.33] to 2.67 [1.21]. No infection was observed during treatment or recovery, and the main drawback after autologous skin tissue cells grafting is that the color recovery time is longer. The patient satisfaction 6 months after treatment was 85.2%, furthermore 12 months after treatment patient satisfaction was 94.7%. Conclusions and relevance In this study, autologous skin tissue cells grafting was safe and effective to treat facial scars. Therefore, autologous skin tissue cells grafting may be recommended as a reliable treatment for facial scar.
Collapse
Affiliation(s)
- Tao Liu
- Department of General Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Jinxi Chen
- Department of Yongjia Jinxi Institute for Scar Repair, Zhejiang, China
| | - Bin Wei
- Department of General Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Fangfang Nie
- Department of Jiading District Central Hospital Affiliated Shanghai University of Medicine &Health Sciences, China
| | - Guanghui Zhu
- Department of General Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China
| |
Collapse
|
3
|
Zhang KW, Jia Y, Li YY, Guo DY, Li XX, Hu K, Qian XX, Chen ZH, Wu JJ, Yuan ZD, Yuan FL. LEP and LEPR are possibly a double-edged sword for wound healing. J Cell Physiol 2023; 238:355-365. [PMID: 36571294 DOI: 10.1002/jcp.30936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong. Leptin (Lep) and leptin receptors (LepRs) have recently been shown to affect multiple stages of wound healing. This effect, however, is paradoxical for scarless wound healing. On the one hand, Lep exerts pro-inflammatory and profibrotic effects; on the other hand, Lep can regulate hair follicle growth. This paper summarises the role of Lep and LepRs on cells in different stages of wound healing, briefly introduces the process of wound healing and Lep and LepRs, and examines the possibility of promoting scarless wound healing through spatiotemporal, systemic, and local regulation of Lep levels and the binding of Lep and LepRs.
Collapse
Affiliation(s)
- Kai-Wen Zhang
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yue-Yue Li
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dan-Yang Guo
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Xiao Li
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Kai Hu
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Xiao-Xi Qian
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Zhong-Hua Chen
- Department of Medicine, The Nantong University, Nantong, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China.,Affiliated Hospital of Jiangnan University, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng 2023; 14:20417314231185848. [PMID: 37529248 PMCID: PMC10388637 DOI: 10.1177/20417314231185848] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
Scars caused by skin injuries after burns, wounds, abrasions and operations have serious physical and psychological effects on patients. In recent years, the research of scar free wound repair has been greatly expanded. However, understanding the complex mechanisms of wound healing, in which various cells, cytokines and mechanical force interact, is critical to developing a treatment that can achieve scarless wound healing. Therefore, this paper reviews the types of wounds, the mechanism of scar formation in the healing process, and the current research progress on the dual consideration of wound healing and scar prevention, and some strategies for the treatment of scar free wound repair.
Collapse
Affiliation(s)
- Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
5
|
Pérez-Contreras CV, Alvarado-Flores J, Orona-Ortiz A, Balderas-López JL, Salgado RM, Zacaula-Juárez N, Krötzsch E, Navarrete A. Wound healing activity of the hydroalcoholic extract and the main metabolites of Amphipterygium adstringens (cuachalalate) in a rat excision model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115313. [PMID: 35461988 DOI: 10.1016/j.jep.2022.115313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bark of Amphipterygium adstringens Schiede ex Schltdl (Anacardiaceae), commonly known as 'cuachalalate' has been used in Mexican traditional medicine for the treatment of skin and oral lesions, gastric ulcers, and other conditions. The use as wound healing of the bark of this plant has been known since before the Spanish conquest of Mexico. Its uses are mentioned in the first writings of the Spanish in the 16th century. It is important to highlight that its use for wound healing treatment has no scientific previous reports. AIM OF THE STUDY The objectives of this study were to determine the wound healing effect of the hydroalcoholic extract of the stem bark of Amphipterygium adstringens and its main metabolites, using a model of excision in the back of Wistar rats. To evaluate its antimicrobial effect against common bacteria that living on the skin of wounds and to evaluate its effect on angiogenesis. MATERIALS AND METHODS The hydroalcoholic extract of cuachalalate (HAE, 10 mg/wound/day), the 3α-hydroxymasticadienoic acid (3 MA, 300 μg/wound/day), the masticadienoic acid (MA, 300 μg/wound/day), and a mixture of anacardic acids (ANA, 300 μg per wound) were tested in a murine excision model topically for 15 days, to evaluate their wound-healing effect. The results were reported in a wound closure percentage (n = 30 animals per treatment curve), using pirfenidone (PIR, 8% in vehicle) as a reference drug. In addition, histologic analysis was performed to evaluate the structure and quality of the scar. The effect on angiogenesis was assessed using the chick embryo chorioallantoic membrane (CAM) model (n = 6 eggs per treatment). The concentration evaluated for each treatment was 300 μg, using as proangiogenic reference drug the histamine (HIS, 5.6 μg) and as antiangiogenic drugs pirfenidone (9 μg) and acetylsalicylic acid (ASA, 9 μg). The antimicrobial test was performed against S. mutans, S. aureus, P. aeruginosa y E. coli using a minimum inhibitory concentration (MIC) assay. RESULTS The 3α-hydroxymasticadienoic (3 MA) acid and the anacardic acids (ANA) improve the wound closure by approximates 30% (similar to pirfenidone) in comparison with the control-treated with the vehicle in the proliferative phase. On the other hand, the hydroalcoholic extract of cuachalalate (HAE) did not show an effect on the wound healing process. The histologic analysis demonstrated that the three main metabolites showed an improvement in the scar structure. According to the CAM results, it is probable that the main action mechanism of the 3α-hydroxymasticadienoic acid and the anacardic acids is related to their proangiogenic effect. In addition, ANA showed a modest antimicrobial effect. CONCLUSIONS The 3α-hydroxymasticadienoic acid and anacardic acids showed a better tissue structure and reduced the time closure of the wound. In addition, the anacardic acids showed antimicrobial effects and both metabolites promote angiogenesis, suggesting that these effects may be related to their action mechanism. These metabolites of cuachalalate could be a good alternative for wound healing treatment.
Collapse
Affiliation(s)
- Christian Verónica Pérez-Contreras
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, 04510, Ciudad de México, Mexico
| | - Jesús Alvarado-Flores
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, 04510, Ciudad de México, Mexico
| | - Alejandra Orona-Ortiz
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, 04510, Ciudad de México, Mexico
| | - José Luis Balderas-López
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, 04510, Ciudad de México, Mexico
| | - Rosa María Salgado
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Tlalpan, 14389, Ciudad de México, Mexico
| | - Noé Zacaula-Juárez
- Laboratory of Biotechnology, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Tlalpan, 14389, Ciudad de México, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Tlalpan, 14389, Ciudad de México, Mexico
| | - Andrés Navarrete
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Cartier A, Barbier MA, Larouche D, Morissette A, Bussières A, Montalin L, Beaudoin Cloutier C, Germain L. Tie-Over Bolster Pressure Dressing Improves Outcomes of Skin Substitutes Xenografts on Athymic Mice. Int J Mol Sci 2022; 23:5507. [PMID: 35628318 PMCID: PMC9141235 DOI: 10.3390/ijms23105507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/20/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
The efficacy of skin substitutes is established for the treatment of burn injuries, but its use is not limited to this condition. This technology has the potential to improve the treatment of various conditions by offering highly advanced and personalized treatments. In vivo studies are challenging but essential to move to clinical use in humans. Mice are the most widely used species in preclinical studies, but the main drawback of this model is the limited surface area of the graft in long-term transplantation studies caused by the displacement and the contraction of the graft. We improved the conventional surgical procedures by stabilizing the chamber covering the graft with intramuscular sutures and by adding a tie-over bolster dressing. The current study was therefore performed to compare outcomes of skin grafts between the conventional and optimized skin graft model. Human self-assembled skin substitutes (SASSs) were prepared and grafted to athymic mice either by the conventional method or by the new grafting method. Graft healing and complications were assessed using digital photographs on postoperative days 7, 14, and 21. Similar structure and organization were observed by histological staining. The new grafting method reduced medium and large displacement events by 1.26-fold and medium and large contraction events by 1.8-fold, leading to a 1.6-fold increase in graft surface area compared to skin substitutes grafted with the usual method. This innovation ensures better reproducibility and consistency of skin substitute transplants on mice.
Collapse
Affiliation(s)
- Andréanne Cartier
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (A.C.); (M.A.B.); (D.L.); (A.M.); (A.B.); (L.M.); (C.B.C.)
- Centre de Recherche, CHU de Québec-Université Laval, Regenerative Medicine Division, Quebec, QC G1J 1Z4, Canada
| | - Martin A. Barbier
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (A.C.); (M.A.B.); (D.L.); (A.M.); (A.B.); (L.M.); (C.B.C.)
- Centre de Recherche, CHU de Québec-Université Laval, Regenerative Medicine Division, Quebec, QC G1J 1Z4, Canada
| | - Danielle Larouche
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (A.C.); (M.A.B.); (D.L.); (A.M.); (A.B.); (L.M.); (C.B.C.)
- Centre de Recherche, CHU de Québec-Université Laval, Regenerative Medicine Division, Quebec, QC G1J 1Z4, Canada
| | - Amélie Morissette
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (A.C.); (M.A.B.); (D.L.); (A.M.); (A.B.); (L.M.); (C.B.C.)
- Centre de Recherche, CHU de Québec-Université Laval, Regenerative Medicine Division, Quebec, QC G1J 1Z4, Canada
| | - Ariane Bussières
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (A.C.); (M.A.B.); (D.L.); (A.M.); (A.B.); (L.M.); (C.B.C.)
- Centre de Recherche, CHU de Québec-Université Laval, Regenerative Medicine Division, Quebec, QC G1J 1Z4, Canada
- Unité des Grands Brûlés, CHU de Québec-Université Laval, Quebec, QC G1J 1Z4, Canada
| | - Livia Montalin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (A.C.); (M.A.B.); (D.L.); (A.M.); (A.B.); (L.M.); (C.B.C.)
- Centre de Recherche, CHU de Québec-Université Laval, Regenerative Medicine Division, Quebec, QC G1J 1Z4, Canada
- Unité des Grands Brûlés, CHU de Québec-Université Laval, Quebec, QC G1J 1Z4, Canada
| | - Chanel Beaudoin Cloutier
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (A.C.); (M.A.B.); (D.L.); (A.M.); (A.B.); (L.M.); (C.B.C.)
- Centre de Recherche, CHU de Québec-Université Laval, Regenerative Medicine Division, Quebec, QC G1J 1Z4, Canada
- Unité des Grands Brûlés, CHU de Québec-Université Laval, Quebec, QC G1J 1Z4, Canada
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (A.C.); (M.A.B.); (D.L.); (A.M.); (A.B.); (L.M.); (C.B.C.)
- Centre de Recherche, CHU de Québec-Université Laval, Regenerative Medicine Division, Quebec, QC G1J 1Z4, Canada
| |
Collapse
|
7
|
Saraiva N, Nicolai M, Martins M, Almeida N, Gusmini M, Maurício EM, Duarte MP, Gonçalves M, Baby AR, Fernandes A, Rosado C. Impact of Portuguese propolis on keratinocyte proliferation, migration and ROS protection: Significance for applications in skin products. Int J Cosmet Sci 2022; 44:333-342. [PMID: 35462442 DOI: 10.1111/ics.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Propolis has been used since antiquity, but recent reports of its biological properties hint that it could be employed as a topical pharmaceutical and cosmetic ingredient. This work aims to probe the action of Portuguese propolis extracts on skin cells, providing mechanistic insights into its mode of action and preliminarily assessing its applicability as a skin repair ingredient. METHODS The total phenolic content of propolis extracts was measured by the Folin Ciocalteu method. The cytotoxic effect of propolis extracts in human keratinocytes was determined and non-cytotoxic concentrations of the extracts were used to study the impact on collective cell migration, cell cycle and intracellular ROS levels. RESULTS o significant impact was observed in collective cell migration, but one of the extracts mildly increased G2 phase while reducing the % of sub-G1 at a non-cytotoxic concentration. The two extracts with higher phenolic content strongly prevented intracellular cellular ROS accumulation upon exposure to TBHP. Collectively, these results indicate that the putative beneficial effects of propolis extracts in skin repair may not be attributable to induction of collective cell migration but could be partially ascribed to the protection from oxidative stress, which could act in synergy with its well-known antimicrobial activity. CONCLUSION These data support the applicability of this material in topical and cosmetic formulations and further in vivo assays should be conducted to fully characterize its efficacy and safety.
Collapse
Affiliation(s)
- Nuno Saraiva
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Marisa Nicolai
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Marta Martins
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Nuno Almeida
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Matteo Gusmini
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Elisabete Muchagato Maurício
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal.,Elisa Câmara, Lda, Cosmética Natural, São Domingos de Rana, Portugal
| | - Maria Paula Duarte
- MEtRICs/DCTB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Margarida Gonçalves
- MEtRICs/DCTB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Fernandes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Catarina Rosado
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| |
Collapse
|
8
|
Takejima AL, Francisco JC, Simeoni RB, de Noronha L, Garbers LA, Foltz KM, Junior PAM, Souza IC, Pinho RA, Carvalho KA, Guarita-Souza LC. Role of mononuclear stem cells and decellularized amniotic membrane in the treatment of skin wounds in rats. Tissue Barriers 2022; 10:1982364. [PMID: 34612164 PMCID: PMC9067462 DOI: 10.1080/21688370.2021.1982364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022] Open
Abstract
Stem cells (SC) and amniotic membrane (AM) are recognized for their beneficial impacts on the healing of cutaneous wounds. Thus, this study evaluated the capacity of tissue repair in a skin lesion rat model. Forty Wistar rats were randomized into four groups: group I - control, with full-thickness lesions on the back, without SC or AM; group II-injected SC; group III - covered by AM; group IV-injected SC and covered by AM. Lesion closure was assessed using contraction rate (Cr). Histochemical and immunohistochemical analyses were performed, and collagen, elastic fibers, fibroblast differentiation factor (TGF-β), collagen remodeling (MMP-8), and the number of myofibroblasts and blood vessels (α-SMA) were evaluated. On the 7th postoperative day, Cr 1st-7th day levels were higher in groups III and IV. However, on the 28th day, Cr 1st-28th day were higher in the control group. Picrosirius staining showed that type I collagen was predominant in all groups; however, the SC + AM group obtained a higher average when compared to the control group. Elastic fiber analysis showed a predominance in groups that received treatment. Groups II and IV showed the lowest expression levels of TGF-β and MMP-8, and α-SMA was significantly lower in group IV. The application of SC and AM accelerated the initial healing phase, probably owing to their anti-inflammatory effect that favored early formation of collagen and elastic fibers.
Collapse
Affiliation(s)
- Aline L. Takejima
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Julio C. Francisco
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Pathology Department, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Laboratory of Exercise Biochemistry in Health (BioEx) of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Institute, Curitiba, PR, Brazil
| | - Rossana B. Simeoni
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Lúcia de Noronha
- Pathology Department, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Luiz A.F.M. Garbers
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Pathology Department, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Laboratory of Exercise Biochemistry in Health (BioEx) of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Institute, Curitiba, PR, Brazil
| | - Kátia M. Foltz
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Paulo A.B. Machado Junior
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Isio C. Souza
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Ricardo A. Pinho
- Laboratory of Exercise Biochemistry in Health (BioEx) of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Katherine A.T. Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Institute, Curitiba, PR, Brazil
| | - Luiz C. Guarita-Souza
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| |
Collapse
|
9
|
Chen Y, Liu L, Fan J, Zhang T, Zeng Y, Su Z. Low-level laser treatment promotes skin wound healing by activating hair follicle stem cells in female mice. Lasers Med Sci 2022; 37:1699-1707. [PMID: 34546465 DOI: 10.1007/s10103-021-03419-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023]
Abstract
The aim of the study was to explore the effect and mechanism of a low-level laser on hair follicle stem cells in full-thickness skin wound healing in mice. Full-thickness skin defects were generated by a 5-mm punch biopsy tool on the backs of depilated C57/BL6N mice, which were randomly divided thereafter into a low-dose laser treatment group (LLLT-Low), a high-dose laser treatment group (LLLT-High), and a control group (control). From the day of modeling to the day before the skin samples were taken, the wound area and wound edge of the mice in the LLLT-Low and LLLT-High groups were irradiated with a laser comb every 24 h, and the energy density was 1 J/cm2 and 10 J/cm2, respectively. The control group was irradiated with an ordinary fluorescent lamp. At 0, 3, 5, 10, and 14 days after modeling, pictures of each wound were taken, and the percent wound closure was analyzed. At 3, 5, 10, and 14 days after modeling, the samples were observed by hematoxylin and eosin (HE) and immunofluorescence (IF) staining. Whole transcriptome sequencing (RNA-Seq) was performed on the samples on day 10. Gene Ontology (GO) analysis was performed, and the results were validated by Western blot analysis and enzyme-linked immunosorbent assay (ELISA). The analysis of the percent of wound closure showed that healing was accelerated (significantly from 5 to 10 days) in the LLLT-Low group, but there was no clear change in the LLLT-High group. HE staining showed that the LLLT-Low group had an increasing number of hair follicles and a tendency to migrate to the center of the wound. There was no significant increase in the number of hair follicles and no obvious migration in the LLLT-High group. Immunofluorescence staining showed that the total number of CK15 + hair follicle stem cells in the LLLT-Low group was higher than that in the control group and LLLT-High group at all time points. The number and farthest migration distance of CK15 + hair follicle stem cells increased significantly with time, and after 5 days, they were significantly higher than those in the control group and LLLT-High group. RNA-Seq and Western blot analysis showed that the expression of related genes in hair follicle stem cells, including CK15, in the LLLT-Low group was upregulated. GO analysis and ELISA showed that the expression of many cytokines, represented by IL34, in the LLLT-Low group was upregulated. Low-level laser treatment can promote the proliferation, differentiation, and migration of CK15 + hair follicle stem cells by upregulating the cytokine IL34, thereby promoting skin wound healing in mice.
Collapse
Affiliation(s)
- Yihua Chen
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Liqiang Liu
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China.
| | - Jincai Fan
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Tiran Zhang
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Yan Zeng
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Zhiguo Su
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| |
Collapse
|
10
|
Xu Z, Liu Y, Ma R, Chen J, Qiu J, Du S, Li C, Wu Z, Yang X, Chen Z, Chen T. Thermosensitive Hydrogel Incorporating Prussian Blue Nanoparticles Promotes Diabetic Wound Healing via ROS Scavenging and Mitochondrial Function Restoration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14059-14071. [PMID: 35298140 DOI: 10.1021/acsami.1c24569] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetic foot ulcer is a serious complication in diabetes patients, imposing a serious physical and economic burden to patients and to the healthcare system as a whole. Oxidative stress is thought to be a key driver of the pathogenesis of such ulcers. However, no antioxidant drugs have received clinical approval to date, underscoring the need for the further development of such medications. Hydrogels can be applied directly to the wound site, wherein they function to prevent infection and maintain local moisture concentrations, in addition to serving as a reservoir for the delivery of a range of therapeutic compounds with the potential to expedite wound healing in a synergistic manner. Herein, we synthesized Prussian blue nanoparticles (PBNPs) capable of efficiently scavenging reactive oxygen species (ROS) owing to their ability to mimic the activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). In the context of in vitro oxidative stress, these PBNPs were able to protect against cytotoxicity, protect mitochondria from oxidative stress-related damage, and restore nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) pathway activity. To expand on these results in an in vivo context, we prepared a thermosensitive poly (d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA) hydrogel (PLEL)-based wound dressing in which PBNPs had been homogenously incorporated, and we then used this dressing as a platform for controlled PBNP release. The resultant PBNPs@PLEL wound dressing was able to improve diabetic wound healing, decrease ROS production, promote angiogenesis, and reduce pro-inflammatory interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels within diabetic wounds. Overall, our results suggest that this PBNPs@PLEL platform holds great promise as a treatment for diabetic foot ulcers.
Collapse
Affiliation(s)
- Zhao Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rui Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zihan Wu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
11
|
Lu L, Liu D, Ying J, Yao Z, Hou Q, Wang H, Qi F, Luan W, Jiang H. Denervation Affected Skin Wound Healing in a Modified Rat Model. THE INTERNATIONAL JOURNAL OF LOWER EXTREMITY WOUNDS 2022:15347346221090758. [PMID: 35341341 DOI: 10.1177/15347346221090758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Lacking of normal innervation increases the chance of chronic wounds and recurrence of ulceration. Various rodent models are designed to reveal nerve-wound relationship but present many limitations to mimic human wound which heals primarily by re-epithelialization rather than contraction in rodents. This article tested a modified rat model of denervated wound healing to better mimic clinical common denervated wounds. Material and Methods: The wounds formed on right hind paws of 18 SD rats served as the experimental (denervated) group and the left side as contra-lateral control (non-denervated). The denervation was achieved through sciatic and femoral nerve co-transection and the control side underwent sham-surgery 3 days prior to a skin punch wound formation on both sides. Wound closure rate was calculated under digital photographing. Loss of innervation and affected healing process was confirmed by histological analyses. Results: Truncation of the sciatic and femur nerve successfully denervated the skin of the hind paw and resulted in a significantly declined healing rate, prolonged inflammation, weakened dermal contraction, hindered macrophage recruitment, retarded re-epithelialization and collagen deposition, decreased angiogenesis and epidermal proliferation, and persisted epidermal apoptosis compared to the innervated contra-lateral control. Conclusion: Wound on denervated dorsal pedis in rats can be used to study denervated skin healing in multiple histological process. We believe that this model will assist in understanding the underlying mechanism of nerve-wound relationship and identifying new treatment strategies that can be more rapidly translated into clinical practice.
Collapse
Affiliation(s)
- Lu Lu
- Department of Plastic and Reconstructive Surgery, 66324Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Dandan Liu
- Department of Plastic Surgery, 74573Shenzhen Hospital, Peking University, Shenzhen, 510836, China
| | - Jianghui Ying
- Department of Plastic and Reconstructive Surgery, 66324Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery, 66324Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qiang Hou
- Department of Plastic and Reconstructive Surgery, 66324Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Wang
- Department of Plastic and Reconstructive Surgery, 66324Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fazhi Qi
- Department of Plastic and Reconstructive Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenjie Luan
- Department of Plastic and Reconstructive Surgery, 92323Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hua Jiang
- Department of Plastic and Reconstructive Surgery, 66324Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
12
|
Ntentakis DP, Ntentaki AM, Delavogia E, Kalomoiris L, Venieri D, Arkadopoulos N, Kalogerakis N. Dissolved oxygen technologies as a novel strategy for non-healing wounds: A critical review. Wound Repair Regen 2021; 29:1062-1079. [PMID: 34655455 DOI: 10.1111/wrr.12972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Non-healing wounds are steadily becoming a global-health issue. Prolonged hypoxia propagates wound chronicity; yet, oxygenating treatments are considered inadequate to date. Dissolved oxygen (DO) in aqueous solutions introduces a novel approach to enhanced wound oxygenation, and is robustly evaluated for clinical applications. A systematic literature search was conducted, whereby experimental and clinical studies of DO technologies were categorized per engineering approach. Technical principles, methodology, endpoints and outcomes were analysed for both oxygenating and healing effects. Forty articles meeting our inclusion criteria were grouped as follows: DO solutions (17), oxygen (O2 ) dressings (9), O2 hydrogels (11) and O2 emulsions (3). All technologies improved wound oxygenation, each to a variable degree. They also achieved at least one statistically significant outcome related to wound healing, mainly in epithelialization, angiogenesis and collagen synthesis. Scarcity in clinical data and methodological variability precluded quantitative comparisons among the biotechnologies studied. DO technologies warrantee further evaluation for wound oxygenation in the clinical setting. Standardised methodologies and targeted research questions are pivotal to facilitate global integration in healthcare.
Collapse
Affiliation(s)
- Dimitrios P Ntentakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | | | - Eleni Delavogia
- Department of Paediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Loukas Kalomoiris
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Danae Venieri
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, Faculty of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| |
Collapse
|
13
|
Pichlsberger M, Jerman UD, Obradović H, Tratnjek L, Macedo AS, Mendes F, Fonte P, Hoegler A, Sundl M, Fuchs J, Schoeberlein A, Kreft ME, Mojsilović S, Lang-Olip I. Systematic Review of the Application of Perinatal Derivatives in Animal Models on Cutaneous Wound Healing. Front Bioeng Biotechnol 2021; 9:742858. [PMID: 34631683 PMCID: PMC8498585 DOI: 10.3389/fbioe.2021.742858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Knowledge of the beneficial effects of perinatal derivatives (PnD) in wound healing goes back to the early 1900s when the human fetal amniotic membrane served as a biological dressing to treat burns and skin ulcerations. Since the twenty-first century, isolated cells from perinatal tissues and their secretomes have gained increasing scientific interest, as they can be obtained non-invasively, have anti-inflammatory, anti-cancer, and anti-fibrotic characteristics, and are immunologically tolerated in vivo. Many studies that apply PnD in pre-clinical cutaneous wound healing models show large variations in the choice of the animal species (e.g., large animals, rodents), the choice of diabetic or non-diabetic animals, the type of injury (full-thickness wounds, burns, radiation-induced wounds, skin flaps), the source and type of PnD (placenta, umbilical cord, fetal membranes, cells, secretomes, tissue extracts), the method of administration (topical application, intradermal/subcutaneous injection, intravenous or intraperitoneal injection, subcutaneous implantation), and the type of delivery systems (e.g., hydrogels, synthetic or natural biomaterials as carriers for transplanted cells, extracts or secretomes). This review provides a comprehensive and integrative overview of the application of PnD in wound healing to assess its efficacy in preclinical animal models. We highlight the advantages and limitations of the most commonly used animal models and evaluate the impact of the type of PnD, the route of administration, and the dose of cells/secretome application in correlation with the wound healing outcome. This review is a collaborative effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the preclinical application of PnD in wound healing.
Collapse
Affiliation(s)
- Melanie Pichlsberger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hristina Obradović
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Sofia Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Francisca Mendes
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fonte
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Center for Marine Sciences (CCMar), Faculty of Sciences and Technology, University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - Anja Hoegler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Monika Sundl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
14
|
Accelerated Wound Healing Using a Novel Far-Infrared Ceramic Blanket. Life (Basel) 2021; 11:life11090878. [PMID: 34575027 PMCID: PMC8469926 DOI: 10.3390/life11090878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Wounds are associated with ranges of simple to complex disruption or damage to anatomical structure and function. They are also associated with enormous economic and social costs, increasing yearly, resulting in a severe impact on the wellbeing of individuals and society. Technology that might accelerate wound healing is associated with many benefits to injured people. METHODS BALBc mice underwent symmetrical excisional wounds through the panniculus carnosus. They were divided into a treatment group placed on an autonomous ceramic far-field infrared blanket (cIFRB) and a control group maintained under standard conditions. We also expanded and cultured adipose tissue-derived mesenchymal stem cells (MSCs) on cIFRB and compared them to standard conditions subjected to a scratch injury to compare survival, proliferation, and wound healing. RESULTS The wound healing of the cIRFB treatment group was significantly faster than the control group of mice. The wound-healing effect of mesenchymal stem cells on cIRFB was also increased and associated with significant migration to the wound area. CONCLUSIONS Wound healing is improved in a mouse model exposed to cFIRB. The ceramic blanket also promotes survival, proliferation, increased migration, and wound healing of MSCs without affecting their survival and proliferation. The utilization of cFIRB in cellular biology and medical applications may be promising in many situations currently explored in animal and human models. This technology needs no direct or battery power source and is entirely autonomous and noninvasive, making its application possible in any environment.
Collapse
|
15
|
Pontes GH, Carneiro Filho FSM, Vargas Guerrero LA, Lipinski LC, de Noronha L, Silva EN, Serra-Guimarães F. Reduced Remodeling Biomarkers Tissue Expression in Nanotextured Compared With Polyurethane Implants Capsules: A Study in Rats. Aesthet Surg J 2021; 41:NP664-NP683. [PMID: 33232440 DOI: 10.1093/asj/sjaa315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In the biological response to biomaterials, the implant shell plays a key role in immune and inflammatory reactions. We hypothesized that the capsules formed around nanotextured implants exhibit an immunohistochemical behavior different to those formed around polyurethane implants. OBJECTIVES The aim of this study was to evaluate through immunohistochemistry markers the capsules formed around nanotextured and polyurethane implants. METHODS Sixty albino female Wistar rats were divided into 2 groups (nanotextured and polyurethane), with 30 animals in each group. A mini silicone implant was inserted on the back of the animals. After a predetermined period, the animals were killed, and the capsules formed around the implants were studied. The capsules in the 30-, 60-, and 90-day subgroups were analyzed via immunohistochemistry to detect markers for fibroblast α smooth muscle actin (α-SMA), transforming growth factor β (TGF-β), cluster of differentiation 34 (CD34), and CD68, via picrosirius staining to determine the density of type I and III collagen fibers and via hematoxylin and eosin staining to assess capsule thickness. A Wilcoxon-Mann-Whitney test was used to compare the groups, and a Kruskal-Wallis test was used to compare the subgroups. RESULTS Lower α-SMA, TGF-β, CD34 and CD68 immunoexpression was observed in the nanotextured 30- and 60-day subgroups than in the corresponding polyurethane subgroups. In the 90-day subgroup, more pronounced α-SMA and CD34 immunoexpression was observed in the nanotextured group; however, TGF-β and CD68 immunoexpression remained lower. The nanotextured implants showed reduced capsular thickness and greater formation of type I collagen in all the analyzed subgroups. CONCLUSIONS Nanotextured implants led to reduced immune and inflammatory reactions compared with polyurethane implants according to all analyzed variables.
Collapse
Affiliation(s)
- Gisela Hobson Pontes
- Postgraduate Program in Physiopathology and Surgical Sciences, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | | | | | | | - Lucia de Noronha
- Anatomical Pathology, Pontifical Catholic University of Paraná (PUC-PR), Curitiba-PR, Brazil
| | | | - Fernando Serra-Guimarães
- Postgraduate Program in Physiopathology and Surgical Sciences, State University of Rio de Janeiro (UERJ)
| |
Collapse
|
16
|
Karim AS, Liu A, Lin C, Uselmann AJ, Eliceiri KW, Brown ME, Gibson ALF. Evolution of ischemia and neovascularization in a murine model of full thickness human wound healing. Wound Repair Regen 2020; 28:812-822. [PMID: 32686215 PMCID: PMC8592059 DOI: 10.1111/wrr.12847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 11/30/2022]
Abstract
Translation of wound healing research is limited by the lack of an appropriate animal model, due to the anatomic and wound healing differences in animals and humans. Here, we characterize healing of grafted, full-thickness human skin in an in vivo model of wound healing. Full-thickness human skin, obtained from reconstructive operations, was grafted onto the dorsal flank of NOD.Cg-KitW41J Tyr + Prkdcscid Il2rgtm1Wjl /ThomJ mice. The xenografts were harvested 1 to 12 weeks after grafting, and histologic analyses were completed for viability, neovascularization, and hypoxia. Visual inspection of the xenograft shows drying and sloughing of the epidermis starting at week four. By week 12, the xenograft appears healed but has lost 63.05 ± 0.24% of the initial graft size. There is histologic evidence of epidermolysis as early as 2 weeks, which progresses until week 4, when new epidermis appears from the wound edges. Epidermal regeneration is complete by week 12, although the epidermis appears hypertrophied. An initial increase of infiltrating immune mouse cells into the xenograft normalizes to baseline 6 months after grafting. Neovascularization, as evidenced by positive staining for the proteins human CD31 and alpha smooth muscle actin, is present as early as 2 weeks after grafting at the interface between the xenograft and the mouse tissue. CD31 and alpha smooth muscle actin staining increased throughout the xenograft over the 12 weeks, leading to greater viability of the tissue. Likewise, there is increased Hypoxia Inducible Factor 1-alpha expression at the interface of viable and nonviable tissue, which suggest a hypoxia-driven process causing early graft loss. These findings illustrate human skin wound healing in an ischemic environment, providing a timeline for use of full thickness human skin after grafting in a murine model to study mechanisms underlying human skin wound healing.
Collapse
Affiliation(s)
- Aos S. Karim
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christie Lin
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Adam J. Uselmann
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kevin W. Eliceiri
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Angela L. F. Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
17
|
Deal HE, Brown AC, Daniele MA. Microphysiological systems for the modeling of wound healing and evaluation of pro-healing therapies. J Mater Chem B 2020; 8:7062-7075. [PMID: 32756718 PMCID: PMC7460719 DOI: 10.1039/d0tb00544d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wound healing is a multivariate process involving the coordinated response of numerous proteins and cell types. Accordingly, biomedical research has seen an increased adoption of the use of in vitro wound healing assays with complexity beyond that offered by traditional well-plate constructs. These microphysiological systems (MPS) seek to recapitulate one or more physiological features of the in vivo microenvironment, while retaining the analytical capacity of more reductionist assays. Design efforts to achieve relevant wound healing physiology include the use of dynamic perfusion over static culture, the incorporation of multiple cell types, the arrangement of cells in three dimensions, the addition of biomechanically and biochemically relevant hydrogels, and combinations thereof. This review provides a brief overview of the wound healing process and in vivo assays, and we critically review the current state of MPS and supporting technologies for modelling and studying wound healing. We distinguish between MPS that seek to inform a particular phase of wound healing, and constructs that have the potential to inform multiple phases of wound healing. This distinction is a product of whether analysis of a particular process is prioritized, or a particular physiology is prioritized, during design. Material selection is emphasized throughout, and relevant fabrication techniques discussed.
Collapse
Affiliation(s)
- Halston E Deal
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA. and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA. and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA. and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, USA and Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC 27695, USA
| |
Collapse
|
18
|
Docosahexaenoic Acid Improves Diabetic Wound Healing in a Rat Model by Restoring Impaired Plasticity of Macrophage Progenitor Cells. Plast Reconstr Surg 2020; 145:942e-950e. [PMID: 32332536 DOI: 10.1097/prs.0000000000006739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic inflammation associated with delayed diabetic wound healing is induced by disturbed polarization of macrophages derived mainly from predisposed progenitor cells in bone marrow. Docosahexaenoic acid plays a critical role in regulating the function of macrophage progenitor cells. The authors evaluated whether docosahexaenoic acid accelerates diabetic wound healing in rats. METHODS Streptozotocin-induced diabetic rats divided into control and docosahexaenoic acid-treated groups (n = 10) were subjected to paired dorsal skin wounds. Docosahexaenoic acid (100 mg/kg per day) was orally supplemented 2 weeks before wounding until termination. The wound healing process was recorded 0, 7, and 14 days after wounding. At day 7, blood perfusion was measured by laser Doppler perfusion imaging; angiogenesis was compared using immunofluorescent CD31 and α-smooth muscle actin staining; macrophage polarization was detected using immunofluorescence for CD68, CD206, and inducible nitric oxide synthase. Hematoxylin and eosin staining was used to examine wound healing at day 14. Activation status of macrophages derived from bone marrow cells in normal, diabetic, and docosahexaenoic acid-treated diabetic rats was determined in vitro using Western blotting and enzyme-linked immunosorbent assay. RESULTS Docosahexaenoic acid significantly accelerated wound healing 7 and 14 days (p < 0.01) after wounding. Increased vessel densities (1.96-fold; p < 0.001) and blood perfusion (2.56-fold; p < 0.001) were observed in docosahexaenoic acid-treated wounds. Immunofluorescence revealed more CD206 and fewer inducible nitric oxide synthase-positive macrophages (p < 0.001) in treated wounds. Furthermore, macrophages derived from diabetic rats expressed higher levels of inducible nitric oxide synthase and tumor necrosis factor-α and lower arginase-1 and interleukin-10 (p < 0.05). CONCLUSION Docosahexaenoic acid accelerates diabetic wound healing at least in part by restoring impaired plasticity of macrophage progenitor cells.
Collapse
|
19
|
Meador WD, Sugerman GP, Story HM, Seifert AW, Bersi MR, Tepole AB, Rausch MK. The regional-dependent biaxial behavior of young and aged mouse skin: A detailed histomechanical characterization, residual strain analysis, and constitutive model. Acta Biomater 2020; 101:403-413. [PMID: 31614209 DOI: 10.1016/j.actbio.2019.10.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/12/2023]
Abstract
Skin fulfills several vital functions, many of which are dependent on its mechanical properties. Therefore, as mice have become an invaluable model for skin research, determining murine skin's mechanical properties is important. Specifically, skin's mechanical properties are important for functional tests as well as for prognostic and diagnostic purposes. Additionally, computational simulations of skin behavior are becoming commonplace, rendering accurate models of murine skin's constitutive behavior necessary. To date, our knowledge of mouse skin mechanics shows significant gaps. For example, there are no comprehensive reports correlating skin's mechanical properties with region, age, and direction. Moreover, mouse skin's residual strain behavior has not been reported on. In our current work, we set out to fill these gaps. Based on histology, 2-photon microscopy, and planar biaxial testing, while accurately tracking various reference configurations, we report on differences in gross structure, microstructural organization, and constitutive response of skin, and cast those properties into a versatile Fung-type hyperelastic constitutive law for three reference configurations. Our data is the most comprehensive report contrasting the mechanical properties of young (12 weeks) and aged (52 weeks) mouse skin and will, thus, be valuable to basic science as control data, and provide accurate constitutive laws for mouse skin modeling. STATEMENT OF SIGNIFICANCE: Our findings are significant as they fill several gaps in our understanding of mouse skin mechanics. This is particularly important as mouse skin is becoming a frequent and critical model of human skin for cosmetic and medical science. Specifically, we quantified how mechanical properties of mice skin vary with age, with location, and with direction. Additionally, we cast our findings into constitutive models that can be used by others for predictive computer simulations of skin behavior.
Collapse
|
20
|
Padmanabhan J, Maan ZN, Kwon SH, Kosaraju R, Bonham CA, Gurtner GC. In Vivo Models for the Study of Fibrosis. Adv Wound Care (New Rochelle) 2019; 8:645-654. [PMID: 31827979 PMCID: PMC6904938 DOI: 10.1089/wound.2018.0909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/28/2019] [Indexed: 02/04/2023] Open
Abstract
Significance: Fibrosis and scar formation pose a substantial physiological and psychological burden on patients and a significant public health burden on the economy, estimated to be up to $12 billion a year. Fibrosis research is heavily reliant on in vivo models, but variations in animal models and differences between animal and human fibrosis necessitates careful selection of animal models to study fibrosis. There is also an increased need for improved animal models that recapitulate human pathophysiology. Recent Advances: Several murine and porcine models, including xenograft, drug-induced fibrosis, and mechanical load-induced fibrosis, for different types of fibrotic disease have been described in the literature. Recent findings have underscored the importance of mechanical forces in the pathophysiology of scarring. Critical Issues: Differences in skin, properties of subcutaneous tissue, and modes of fibrotic healing in animal models and humans provide challenges toward investigating fibrosis with in vivo models. While porcine models are typically better suited to study cutaneous fibrosis, murine models are preferred because of the ease of handling and availability of transgenic strains. Future Directions: There is a critical need to develop novel murine models that recapitulate the mechanical cues influencing fibrosis in humans, significantly increasing the translational value of fibrosis research. We advocate a translational pipeline that begins in mouse models with modified biomechanical environments for foundational molecular and cellular research before validation in porcine models that closely mimic the human condition.
Collapse
Affiliation(s)
- Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Zeshaan N. Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Sun Hyung Kwon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Revanth Kosaraju
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Clark A. Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
21
|
Zhou R, Wang C, Liang Y, Li X, Li Q. Anti-miR-200b promotes wound healing by regulating fibroblast functions in a novel mouse model. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1049-1055. [PMID: 31553422 DOI: 10.1093/abbs/gmz091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-200b (miR-200b) down-regulation has been found in wound-healing tissues. Fibroblasts are the predominant cells that orchestrate the production of collagen in wound healing. However, it is still unclear whether miR-200b can affect the wound healing by regulating the fibroblasts' function. The current rodent wound-healing models are not ideal due to their marked difference in structure compared with the human skin. In this study, we demonstrated that the murine plantar skin had similar anatomical features to the human skin. Using this model, the gain/loss-of-function studies showed that miR-200b caused a significantly delayed wound healing in vivo. Furthermore, using cell proliferation, migration and collagen synthesis assays, we found that miR-200b attenuated cell proliferation, migration and collagen synthesis of fibroblasts, which are critical aspects of wound healing. miR-200b also decreased the expression of Zeb1. Collectively, we established a new murine plantar skin model for the investigation of wound healing, and based on it we found that miR-200b affected the wound healing by regulating the biological function of fibroblasts, which provided a new insight for wound healing.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangqi Li
- Department of Endocrine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Stephens CJ, Spector JA, Butcher JT. Biofabrication of thick vascularized neo-pedicle flaps for reconstructive surgery. Transl Res 2019; 211:84-122. [PMID: 31170376 PMCID: PMC6702068 DOI: 10.1016/j.trsl.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Wound chronicity due to intrinsic and extrinsic factors perturbs adequate lesion closure and reestablishment of the protective skin barrier. Immediate and proper care of chronic wounds is necessary for a swift recovery and a reduction of patient vulnerability to infection. Advanced therapies supplemented with standard wound care procedures have been clinically implemented to restore aberrant tissue; however, these treatments are ineffective if local vasculature is too compromised to support minimally-invasive strategies. Autologous "flaps", which are tissues equipped with their own hierarchical vascular supply, can be harvested from one region of the patient and transplanted to the wound where it is reperfused upon microsurgical anastomosis to appropriate recipient vessels. Despite the success of autologous flap transfer, these procedures are extremely invasive, incur obligatory donor-site morbidity, and require sufficient donor-tissue availability, microsurgical expertise, and specialized equipment. 3D-bioprinting modalities, such as extrusion-based bioprinting, can be used to address the clinical constraints of autologous flap transfer, primarily addressing donor-site morbidity and tissue availability. This advancement in regenerative medicine allows the biofabrication of heterogeneous tissue structures with high shape fidelity and spatial resolution to generate biomimetic constructs with the anatomically-precise geometries of native tissue to ensure tissue-specific function. Yet, meaningful progress toward this clinical application has been limited by the lack of vascularization required to meet the nutrient and oxygen demands of clinically relevant tissue volumes. Thus, various criteria for the fabrication of functional tissues with hierarchical, patent vasculature must be considered when implementing 3D-bioprinting technologies for deep, chronic wounds.
Collapse
Affiliation(s)
- Chelsea J Stephens
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jason A Spector
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York; Division of Plastic Surgery, Weill Cornell Medical College, New York, New York
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
23
|
Pratsinis H, Mavrogonatou E, Kletsas D. Scarless wound healing: From development to senescence. Adv Drug Deliv Rev 2019; 146:325-343. [PMID: 29654790 DOI: 10.1016/j.addr.2018.04.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
An essential element of tissue homeostasis is the response to injuries, cutaneous wound healing being the most studied example. In the adults, wound healing aims at quickly restoring the barrier function of the skin, leading however to scar, a dysfunctional fibrotic tissue. On the other hand, in fetuses a scarless tissue regeneration takes place. During ageing, the wound healing capacity declines; however, in the absence of comorbidities a higher quality in tissue repair is observed. Senescent cells have been found to accumulate in chronic unhealed wounds, but more recent reports indicate that their transient presence may be beneficial for tissue repair. In this review data on skin wound healing and scarring are presented, covering the whole spectrum from early embryonic development to adulthood, and furthermore until ageing of the organism.
Collapse
|
24
|
Silva EN, Ribas-Filho JM, Tabushi FI, Silva MAP, Siqueira EBD, de Noronha L, da Silva ABD, Lipinski LC, Guth I, Vosgerau LM. Smooth Muscle Alpha Actin Immunoexpression (α-Sma) and CD-117 Antibody (C-Kit) in Capsules Formed by Polyurethane Foam-Coated Silicone Implants and with Textured Surface: A Study on Rats. Aesthetic Plast Surg 2019; 43:233-242. [PMID: 30276460 DOI: 10.1007/s00266-018-1238-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/09/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND One of the undesirable complications that might occur after breast augmentation with silicone implants is capsular contracture. In its etiology, the relations between mast cells and myofibroblasts play an important role in collagen synthesis. Mast cells are able to activate fibroblasts into myofibroblasts, through paracrine secretions, inducing collagen production. The objectives of this study were to analyze the myofibroblast concentration through the α-SMA immunomarker and evaluate the intensity of mast cell expression against the C-Kit immunomarker. MATERIAL AND METHOD Sixty-four Wistar rats were used, divided into two groups (polyurethane foam and textured surface) with 32 animals in each. The animals received silicone implants on the back, below the panniculus carnosus, and after the determined period, they were killed and the capsules formed around the implants were studied. The capsules were analyzed employing the immunohistochemical technique, with the α-SMA and C-Kit immunomarkers in subgroups of 30, 50, 70 and 90 days. RESULTS The myofibroblast concentration was higher in the polyurethane group when compared to the textured group (30 days p = 0.105; 50 days p = 0.247; 70 days p = 0.014 and 90 days p = 0.536). The intensity of mast cell expression was more pronounced in the polyurethane group when compared to the textured group (30 days p = 0.798; 50 days p = 0.537; 70 days p = 0.094 and 90 days p = 0.536). CONCLUSIONS Polyurethane-coated implants induced higher concentrations of myofibroblasts and higher expression of mast cells, when compared to the textured surface implants. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Eduardo Nascimento Silva
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil.
- Plastic Surgery and Anatomy, State University of Ponta Grossa (UEPG), Avenida Doutor Francisco Búrzio, 991, 84010-200, Ponta Grossa, PR, Brazil.
| | - Jurandir Marcondes Ribas-Filho
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil
| | - Fernando Issamu Tabushi
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil
| | | | - Elisa Beatriz Dalledone Siqueira
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil
| | - Lucia de Noronha
- Anatomical Pathology, Pontifical Catholic University of Paraná (PUC-PR), Curitiba, PR, Brazil
| | - Alfredo Benjamim Duarte da Silva
- Plastic Surgery and Anatomy, State University of Ponta Grossa (UEPG), Avenida Doutor Francisco Búrzio, 991, 84010-200, Ponta Grossa, PR, Brazil
- Operative Technique, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Isabelle Guth
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil
| | - Larissa Maria Vosgerau
- Evangelical Faculty of Medicine of Paraná (FEPAR), Evangelical University Hospital of Curitiba (HUEC) and Institute for Medical Research (IPEM), Curitiba, PR, Brazil
| |
Collapse
|
25
|
Karim AS, Yan A, Ocotl E, Bennett DD, Wang Z, Kendziorski C, Gibson ALF. Discordance between histologic and visual assessment of tissue viability in excised burn wound tissue. Wound Repair Regen 2018; 27:150-161. [PMID: 30585657 DOI: 10.1111/wrr.12692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
The regenerative capacity of burn wounds, and the need for surgical intervention, depends on wound depth. Clinical visual assessment is considered the gold standard for burn depth assessment but it remains a subjective and inaccurate method for tissue evaluation. The purpose of this study was to compare visual assessment with microscopic and molecular techniques for human burn depth determination, and illustrate differences in the evaluation of tissue for potential regenerative capacity. Using intraoperative visual assessment, patients were identified as having deep partial thickness or full thickness burn wounds. Tangential excisions of burn tissue were processed with hematoxylin and eosin to visualize tissue morphology, lactate dehydrogenase assay to ascertain cellular viability, and Keratin-15 and Ki67 to identify epidermal progenitor cells and proliferative capacity, respectively. RNA from deep partial and full thickness burn tissue as well as normal tissue controls were submitted for RNA sequencing. Lactate dehydrogenase, Keratin-15, and Ki67 were found throughout the excised burn wound tissue in both deep partial thickness burn tissues and in the second tangential excision of full thickness burn tissues. RNA sequencing demonstrated regenerative capacity in both deep partial and full thickness burn tissue, however a greater capacity for regeneration was present in deep partial thickness compared with full thickness burn tissues. In this study, we highlight the discordance that exists between the intraoperative clinical identification of burn injury depth, and microscopic and molecular determination of viability and regenerative capacity. Current methods utilizing visual assessment for depth of injury are imprecise, and can lead to removal of viable tissue. Additionally, hematoxylin and eosin microscopic analysis should not be used as the sole method in research or clinical determination of depth, as there are no differences in staining between viable and nonviable tissue.
Collapse
Affiliation(s)
- Aos S Karim
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Amy Yan
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Edgar Ocotl
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Daniel D Bennett
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ziyue Wang
- Department of Statistics, University of Wisconsin, Madison, Wisconsin
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
26
|
Park SH, Lee CW, Lee JH, Park JY, Roshandell M, Brennan CA, Choe KM. Requirement for and polarized localization of integrin proteins during Drosophila wound closure. Mol Biol Cell 2018; 29:2137-2147. [PMID: 29995573 PMCID: PMC6249799 DOI: 10.1091/mbc.e17-11-0635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
Wound reepithelialization is an evolutionarily conserved process in which skin cells migrate as sheets to heal the breach and is critical to prevent infection but impaired in chronic wounds. Integrin heterodimers mediate attachment between epithelia and underlying extracellular matrix and also act in large signaling complexes. The complexity of the mammalian wound environment and evident redundancy among integrins has impeded determination of their specific contributions to reepithelialization. Taking advantage of the genetic tools and smaller number of integrins in Drosophila, we undertook a systematic in vivo analysis of integrin requirements in the reepithelialization of skin wounds in the larva. We identify αPS2-βPS and αPS3-βPS as the crucial integrin dimers and talin as the only integrin adhesion component required for reepithelialization. The integrins rapidly accumulate in a JNK-dependent manner in a few rows of cells surrounding a wound. Intriguingly, the integrins localize to the distal margin in these cells, instead of the frontal or lamellipodial distribution expected for proteins providing traction and recruit nonmuscle myosin II to the same location. These findings indicate that signaling roles of integrins may be important for epithelial polarization around wounds and lay the groundwork for using Drosophila to better understand integrin contributions to reepithelialization.
Collapse
Affiliation(s)
- Si-Hyoung Park
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Chan-wool Lee
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Ji-Hyun Lee
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Jin Young Park
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Mobina Roshandell
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831
| | - Catherine A. Brennan
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831
| | - Kwang-Min Choe
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
27
|
Evaluating STZ-Induced Impaired Wound Healing in Rats. J Invest Dermatol 2018; 138:994-997. [DOI: 10.1016/j.jid.2017.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 11/19/2022]
|