1
|
Deng Y, Liu X, Jian X, Zhang Y, Hou Y, Hou S, Qi F, Xiao S, Deng C. A novel cryopreservation solution for adipose tissue based on metformin. Stem Cell Res Ther 2025; 16:20. [PMID: 39849625 PMCID: PMC11756080 DOI: 10.1186/s13287-025-04142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Autologous fat grafting (AFG) often needs multiple sessions due to low volume retention. Young adipose tissue demonstrates a more pronounced therapeutic effect; thus, the cryopreservation of adipose tissue of young origin is particularly crucial. This study investigated the protective effect of a new cryopreservation solution combining trehalose, glycerol, and metformin on adipose tissue. METHODS This study initially examined the effect of various concentrations of metformin (0, 1, 2, 4, and 8 mM) on oxidative damage in adipose tissue to identify the optimal concentration. Subsequently, 1.5 mL of fresh human adipose tissue was subjected to freezing using trehalose + glycerol (TG group), trehalose + glycerol + metformin (TGM group), and the common cryoprotectant dimethyl sulfoxide (DMSO) + fetal bovine serum (FBS) (DF group). Samples were cryopreserved in liquid nitrogen for 2 weeks. After thawing, 1 mL of adipose tissue from each group was transplanted subcutaneously into the backs of nude mice. The cryoprotective effects on adipose tissue viability were evaluated during transplantation one month after transplantation. RESULTS The 2 mM concentration of metformin exhibited the lowest reactive oxygen species (ROS) level (29.20 ± 1.73) compared to other concentrations (P < 0.05). Cell proliferation and migration assays also supported the superior performance of the 2 mM concentration. Apoptotic analyses of stromal vascular fraction (SVF) cells showed the lowest levels in the 2 mM group. Compared to other cryopreservation groups, the adipose tissue in the TGM group closely resembled fresh adipose tissue in terms of gross structure and histological characteristics, with the lowest apoptosis rate of SVF cells. In vivo analysis revealed the highest tissue retention rate in the TGM group, with histological examination indicating robust structural integrity. CONCLUSION The TGM cryopreservation solution, containing metformin, greatly preserves adipose tissue, reduces apoptosis, and improves tissue retention rates. This solution was non-toxic and safe, making it well-suited for tissue cryopreservation in clinical settings.
Collapse
Affiliation(s)
- Yaping Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Xin Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Xichao Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Yan Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Yinchi Hou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Suyun Hou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China.
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, Zunyi City, Guizhou Province, 563003, China.
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China.
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, Zunyi City, Guizhou Province, 563003, China.
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China.
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, Zunyi City, Guizhou Province, 563003, China.
| |
Collapse
|
2
|
Funke S, Wiggenhauser PS, Grundmeier A, Fuchs B, Koban K, Demmer W, Giunta RE, Kuhlmann C. Aspirin Inhibits the In Vitro Adipogenic Differentiation of Human Adipose Tissue-Derived Stem Cells in a Dose-Dependent Manner. Int J Mol Sci 2025; 26:853. [PMID: 39859567 PMCID: PMC11766433 DOI: 10.3390/ijms26020853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Aspirin (ASA) is one of the most used medications worldwide and has shown various effects on cellular processes, including stem cell differentiation. However, the effect of ASA on adipogenesis of adipose tissue-derived stem cells (ASCs) remains largely unknown. Considering the potential application of ASCs in regenerative medicine and cell-based therapies, this study investigates the effects of ASA on adipogenic differentiation in human ASCs. ASCs were exposed to varying concentrations of ASA (0 µM, 400 µM, and 1000 µM) and evaluated for changes in morphology, migration, and adipogenic differentiation. While ASA exposure did not affect self-renewal potential, migration ability, or cell morphology, it significantly reduced lipid vacuole formation at 1000 µM after 21 days of adipogenic differentiation (p = 0.0025). This visible inhibition correlated with decreased expression of adipogenic markers (PPARG, ADIPOQ, and FABP4) and the proliferation marker MKi67 under ASA exposure in comparison to the control (ns). Overall, the findings demonstrate that ASA inhibits adipogenic differentiation of human ASCs in a dose-dependent manner in vitro, contrasting its known role in promoting osteogenic differentiation. This research highlights ASA's complex effects on ASCs and emphasizes the need for further investigation into its mechanisms and potential therapeutic applications in obesity and metabolic diseases. The inhibitory effects of ASA on adipogenesis should be considered in cell-based therapies using ASCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Constanze Kuhlmann
- Division of Hand Surgery, Plastic Surgery and Aesthetic Surgery, University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany; (S.F.); (P.S.W.); (A.G.); (B.F.); (K.K.); (W.D.); (R.E.G.)
| |
Collapse
|
3
|
Qin Z, Chen G, Wang N, Long J, Yang M, Wang J, Gao B, Zhang Z, Zhang Z. Biomechanics of Negative-Pressure-Assisted Liposuction and Their Influence on Fat Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39587950 DOI: 10.1089/ten.teb.2024.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Autologous fat grafting has been widely adopted in cosmetic and reconstructive procedures recently. With the emerging of negative-pressure-assisted liposuction system, the harvesting process of fat grafting is more standardized, controllable, and efficient. Each component in the system could influence the biomechanical environment of lipoaspirate. Several reviews have studied the impact of negative pressure on fat regeneration. As the initial part of the harvesting system, cannulas possess their unique mechanical parameters and their influence on lipoaspirate biomechanical characters, biological behaviors, and regeneration patterns remains unclear. Basic in vivo and in vitro studies have been performed to determine the possible mechanisms. Instant in vivo studies focus on adipocytes, stromal vascular fraction cells, fat particles, and growth factors, while in vivo grafting experiments analyze the graft retention rate and histology. Understanding the different regeneration patterns of lipoaspirate and the mechanisms behind may facilitate the choice of harvesting cannulas in clinical practice.
Collapse
Affiliation(s)
- Zijin Qin
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Guo Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Na Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Jie Long
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Minli Yang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Juan Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Botao Gao
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Zhaoxiang Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Ziang Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| |
Collapse
|
4
|
Jin X, Yoo H, Tran VVT, Yi C, Hong KY, Chang H. Efficacy and Safety of Cell-Assisted Acellular Adipose Matrix Transfer for Volume Retention and Regeneration Compared to Hyaluronic Acid Filler Injection. Aesthetic Plast Surg 2024:10.1007/s00266-024-04408-0. [PMID: 39354227 DOI: 10.1007/s00266-024-04408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Cell-assisted acellular adipose matrix (AAM) transfer is a novel technique for soft tissue volume restoration, where AAM acts as a scaffold for tissue proliferation and promotes host cell migration, vascularization, and adipogenesis. This study aimed to evaluate the efficacy and safety of in vivo cell-assisted AAM transfer compared to hyaluronic acid (HA) filler injection. METHODS Human adipose tissue was used to manufacture AAM, and murine adipose-derived stem cells (ASCs) were prepared. Nude mice were divided into four groups: AAM transfer (AT), ASC-assisted AAM transfer (CAT), HA filler injection (HI), and ASC-assisted HA filler injection (CHI). Eight weeks post-transfer, in vivo graft volume/weight, histology, and gene expression were analyzed to assess efficacy and safety. RESULTS The AAM retained its three-dimensional scaffold structure without cellular components. AT/CAT showed lower volume retention than HA/CHA; however, CAT maintained a similar volume to HA. Histologically, adipogenesis and collagen formation were increased in AT/CAT compared to HA/CHA, with CAT showing the highest levels. CAT also demonstrated superior angiogenesis, adipogenesis, and gene expression (Vegf and Pparg), along with lower Il-6 expression, higher Il-10 expression, and reduced capsule formation, indicating better biocompatibility. CONCLUSIONS Cell-assisted AAM transfer is a promising technique for volume retention and tissue regeneration, offering a safe and effective alternative to HA filler injections. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Xian Jin
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyokyung Yoo
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Vinh Vuong The Tran
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chenggang Yi
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ki Yong Hong
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
5
|
Zhang Y, Liang J, Lu F, Dong Z. Survival Mechanisms and Retention Strategies in Large-Volume Fat Grafting: A Comprehensive Review and Future Perspectives. Aesthetic Plast Surg 2024; 48:4178-4193. [PMID: 39191922 DOI: 10.1007/s00266-024-04338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Large-volume fat grafting is emerging as a promising technique in plastic and reconstructive surgery. However, the unpredictable graft volume retention rate remains a critical challenge. To address this issue, we need a profound understanding of the survival mechanisms following large-volume fat transplantation. This review summarizes known survival mechanisms and strategies to enhance graft retention. METHODS This review comprehensively examines the current literature on the survival mechanisms and retention strategies in large-volume fat grafting. A thorough literature search was conducted using PubMed, Medline and Google Scholar databases, focusing on studies published from 2009 to 2023. CONCLUSION In the current research on fat survival mechanisms, few have focused on large-volume fat grafting. This review provides an overview of the survival mechanisms specific to large-volume fat grafting and identifies a survival pattern distinct from that of small-volume fat grafting. Additionally, we have summarized existing strategies to improve graft retention across five stages (harvesting, processing, enrichment, grafting and post-graft care), analyzed their advantages and disadvantages and identified some of the most promising strategies. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jiancong Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Yang Z, Lu H, Gao Q, Yuan X, Hu Y, Qi Z. Enhancing Fat Transplantation Efficiency in a Mouse Model through Pretreatment of Adipose-Derived Stem Cells with RIP3 Inhibitors. Aesthetic Plast Surg 2024; 48:3488-3499. [PMID: 38532201 DOI: 10.1007/s00266-024-03981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Autologous fat transplantation, widely used in cosmetic and reparative surgery for volumetric enhancements, faces challenges with its inconsistent long-term survival rates. The technique's efficacy, crucial for its development, is hindered by unpredictable outcomes. Enriching fat grafts with adipose-derived stem cells (ADSCs) shows promise in improving survival efficiency. OBJECTIVES This study aimed to explore the potential of receptor-interacting protein kinase 3 (RIP3) kinase inhibitors as a pretreatment for ADSCs in enhancing autologous fat graft retention over a long term. METHODS ADSCs were isolated, cultured under normal or oxygen-glucose deprivation conditions, and mixed with particulate fat grafts to form distinct experimental groups in female nude mice. Fat graft mass and volume, along with underlying mechanisms, were evaluated using quantitative reverse transcription polymerase chain reaction (RT-qPCR), immunohistochemistry, and Western blot analysis. RESULTS The experimental group, pretreated with RIP3 kinase inhibitors, had higher graft mass and volume, greater adipocyte integrity, and increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA levels than control groups. Furthermore, the experimental group demonstrated lower expression of necroptosis pathway proteins in the short term and an ameliorated inflammatory response as indicated by interleukin-1 beta (IL-1β), interleukin-10 (IL-10) mRNA levels, and histological analyses. Notably, enhanced neovascularization was evident in the experimental group. CONCLUSIONS These findings suggest that RIP3 kinase inhibitor pretreatment of ADSCs can improve fat graft survival, promote adipocyte integrity, potentially decrease inflammation, and enhance neovascularization. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Zhenyu Yang
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Haibin Lu
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Qiuni Gao
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Xihang Yuan
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Yuling Hu
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Zuoliang Qi
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
7
|
Tran VVT, Jin X, Hong KY, Chang H. Effects of Nanofat in Plastic and Reconstructive Surgery: A Systematic Review. Plast Reconstr Surg 2024; 154:451e-464e. [PMID: 37400953 DOI: 10.1097/prs.0000000000010905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
BACKGROUND Since nanofat was first introduced by Tonnard in 2013, numerous studies have reported positive findings with its use; however, concerns exist regarding its effects and mechanisms, and the various methods used to generate nanofat also remain unclear. The authors conducted a systematic review to evaluate the efficacy of nanofat grafting alone in plastic and reconstructive surgery. METHODS The MEDLINE, Embase, Cochrane Central, Web of Science, and Scopus databases were searched for studies related to the use of nanofat grafting alone in plastic and reconstructive surgery. Outcomes of interest were all clinical results in humans or animals. RESULTS Twelve studies were included. No meta-analysis was conducted due to the clinical heterogeneity of the studies. In general, included studies had a low level of evidence. Six studies ( n = 253 patients) showed significant improvements in scar characteristics based on Patient and Observer Scar Assessment Scale, FACE-Q scale, physician assessment, patient satisfaction, and Vancouver Scar Scale scores. Four studies described the benefits of nanofat in skin rejuvenation (wrinkles, fine rhytides, pigmentation, and discoloration) through photographs, questionnaires, and indentation indices. Histologic evaluation illustrated overall increases in skin thickness, collagen, and elastic fibers. Three experimental studies showed the beneficial effects of nanofat on fat grafting, diabetic wound healing, and hair growth, with compelling histological evidence. No severe complication was reported. CONCLUSIONS Nanofat grafting shows potential benefits in scar and antiaging treatments, with conclusive histological evidence. Clinical studies of fat grafting, wound healing, and hair growth should be conducted, based on the results of this systematic review. Nanofat grafting could be a practical and safe procedure.
Collapse
Affiliation(s)
- Vinh Vuong The Tran
- From the Hi-Tech Center, Vinmec Healthcare System
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine
| | - Xian Jin
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine
| | - Ki Yong Hong
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| |
Collapse
|
8
|
Zhu J, Zhao F, Chai Y, Jia X, Li F. Evaluating the Efficacy of Dedifferentiated Fat Cells (DFATs) vs Adipose-Derived Stem Cells (ASCs) in Enhancing the Viability of Fat Grafts. Aesthet Surg J 2024; 44:NP307-NP318. [PMID: 37943807 DOI: 10.1093/asj/sjad342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Enhancing graft fat survival remains a paramount challenge in autologous fat transplantation surgeries. Dedifferentiated fat cells (DFATs) and adipose-derived stem cells (ASCs) represent 2 pivotal cells with potential to improve fat graft survival rates. OBJECTIVES In this study we aimed to compare the effectiveness of DFATs and ASCs in promoting fat graft survival, emphasizing their adipogenic and angiogenic capabilities. METHODS Both in vitro and in vivo experiments were conducted. In vitro assessments compared adipogenesis, angiogenesis, osteogenesis, chondrogenesis, cell migration abilities, and surface markers. For in vivo evaluation, a cell-assisted lipotransfer animal model was employed to gauge graft volume retention and histological morphology. Analysis techniques included hematoxylin and eosin staining, Western blotting, and real-time polymerase chain reaction. RESULTS In vitro findings suggested a slight superiority of DFATs in adipogenesis and angiogenesis compared to ASCs. In vivo tests demonstrated both cell types surpassed the control in terms of graft volume retention, with the DFATs group marginally outperforming in retention rates and the ASC group presenting a slightly enhanced graft tissue structure. CONCLUSIONS Our study underscores the distinct advantages of DFATs and ASCs in bolstering fat graft survival, offering potentially novel insights for plastic surgeons aiming to elevate fat graft survival rates.
Collapse
|
9
|
Tran VVT, Hong KY, Jin X, Chang H. Histological Comparison of Nanofat and Lipoconcentrate: Enhanced Effects of Lipoconcentrate on Adipogenesis and Angiogenesis. Aesthetic Plast Surg 2024; 48:752-763. [PMID: 37648930 DOI: 10.1007/s00266-023-03583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Nanofat and lipoconcentrate contain adipose-derived stem cells and growth factors, and have wide clinical applications in the regenerative field. This study aimed to investigate the microenvironmental changes associated with nanofat and lipoconcentrate. METHODS Conventional fat, nanofat, or lipoconcentrate (0.2 mL each, n = 5 per group) were injected subcutaneously into the dorsal flanks of athymic nude mice. The graft weights were measured at postoperative week 4; the grafts and their overlying skin were used for histological analyses. RESULTS Weights of the lipoconcentrate grafts were significantly greater than those of the conventional fat (p < 0.05) and nanofat (p < 0.01) grafts. There was no significant difference in inflammation, oil cysts, and fibrosis between the conventional fat and nanofat groups. Histological examination of the lipoconcentrate grafts showed less macrophage infiltration and the formation of fibrosis and oil cysts. Additionally, adipogenesis and angiogenesis were induced more in the lipoconcentrate grafts than in the nanofat grafts (p < 0.01). Lipoconcentrate and nanofat improved dermal thickness (p < 0.001 and p < 0.01, respectively, versus the baseline). CONCLUSION Lipoconcentrate grafts had greater volume and shape retention than conventional fat and nanofat grafts. They had better histological structure and acted as scaffolds for adipogenesis and angiogenesis. Both products showed regenerative effects on dermal thickness; however, only lipoconcentrate grafts had the required volume and regenerative effects, allowing it to serve as a novel adipose-free grafting method for facial rejuvenation and contouring. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Vinh Vuong The Tran
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Yong Hong
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Xian Jin
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
10
|
Huang Y, Jin X, Hong KY, Chang H. Enhanced Effect of Secondary Administration of Adipose-Derived Stromal Cells Concurrent with Fat Grafting. Plast Reconstr Surg 2024; 153:390-399. [PMID: 37159916 DOI: 10.1097/prs.0000000000010648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Cell-assisted lipotransfer, a fat graft mixed with adipose-derived stromal cells, is known to enhance fat graft retention. Previously, the authors showed that intravenous injection of adipose-derived stromal cells can improve the survival of grafted fat. In the present study, the authors investigated the effects of a secondary intravenous injection of adipose-derived stromal cells on fat grafting. METHODS Wild-type C57BL/6J (B6) mice were used as donors for grafted fat and as recipients. Adipose-derived stromal cells were harvested from green fluorescent protein and DsRed B6 mice. The recipient mice were divided into three groups: SI ( n = 10), RI1 ( n = 10), and RI2 ( n = 11). All groups received intravenous injections of green fluorescent protein adipose-derived stromal cells immediately after fat grafting. The RI1 and RI2 groups received repeated intravenous injections of DsRed adipose-derived stromal cells at 1 and 2 weeks, respectively, after fat grafting. The grafted fat volume was measured using micro-computed tomography. RESULTS Secondarily injected DsRed adipose-derived stromal cells were recruited to the grafted fat and resulted in a higher retention of graft volume and vascular density ( P < 0.05). The stromal-derived factor-1 and C-X-C chemokine receptor type 4 genes related to stem cell homing were highly expressed in the grafted fat and adipose-derived stromal cells ( P < 0.05). The RI2 group showed a higher graft volume and vascular density than the SI and RI1 groups ( P < 0.05). CONCLUSIONS A secondary intravenous injection of adipose-derived stromal cells at a 2-week interval enhances the effect of adipose-derived stromal cell enrichment in fat grafting. These findings refine clinical protocols and enhance the therapeutic value of cell-assisted lipotransfer. CLINICAL RELEVANCE STATEMENT In a modified animal model of cell-assisted lipotransfer, the authors demonstrated that secondary intravenous administration of adipose-derived stromal cells improved retention of grafted fat.
Collapse
Affiliation(s)
- Yan Huang
- From the Departments of Interdisciplinary Program in Stem Cell Biology
| | - Xian Jin
- Plastic and Reconstructive Surgery, Seoul National University College of Medicine
| | - Ki Yong Hong
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| |
Collapse
|
11
|
Xining Z, Sai L. The Evolving Function of Vasculature and Pro-angiogenic Therapy in Fat Grafting. Cell Transplant 2024; 33:9636897241264976. [PMID: 39056562 PMCID: PMC11282510 DOI: 10.1177/09636897241264976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024] Open
Abstract
Autologous fat grating is a widely-accepted method to correct soft tissue deficiency. Although fat transplantation shows excellent biocompatibility and simple applicability, the relatively low retention rate caused by fat necrosis is still a challenge. The vasculature is integral after fat grafting, serving multiple crucial functions. Rapid and effective angiogenesis within grafts is essential for supplying oxygen necessary for adipocytes' survival. It facilitates the influx of inflammatory cells to remove necrotic adipocytes and aids in the delivery of regenerative cells for adipose tissue regeneration in fat grafts. The vasculature also provides a niche for interaction between adipose progenitor cells and vascular progenitor cells, enhancing angiogenesis and adipogenesis in grafts. Various methods, such as enriching grafts with diverse pro-angiogenic cells or utilizing cell-free approaches, have been employed to enhance angiogenesis. Beige and dedifferentiated adipocytes in grafts could increase vessel density. This review aims to outline the function of vasculature in fat grafting and discuss different cell or cell-free approaches that can enhance angiogenesis following fat grafting.
Collapse
Affiliation(s)
- Zhang Xining
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luo Sai
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Li W, Chen X, Zou F, He X. Extracellular Vesicles Derived From Hypoxia-Treated Human Adipose Stem Cells Increase Proliferation and Angiogenic Differentiation in Human Adipose Stem Cells. Aesthet Surg J 2023; 43:NP924-NP933. [PMID: 37158152 DOI: 10.1093/asj/sjad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) are crucial in cell-assisted lipotransfer (CAL). ADSC-derived exosomes could improve the survival of CAL. Almost all relevant research now ignores ADSCs in favor of studying the proangiogenic potential of extracellular vesicles (EVs) on human umbilical vein endothelial cells (HUVECs). OBJECTIVES Given the significance of ADSCs in CAL, the authors sought to verify that EVs from ADSCs under hypoxia treatment can enhance the angiogenic potential of ADSCs. METHODS EVs were harvested from human ADSCs (hADSCs) under normoxia and hypoxia. A Cell Counting Kit-8 (CCK-8) assay was used to measure the proliferation of hADSCs. By examining the expression of CD31, vascular endothelial growth factor receptor 2, and vascular endothelial growth factor, the pro-angiogenic differentiation potential was assessed. Moreover, a tube formation experiment was carried out to evaluate the pro-angiogenic differentiation potential. RESULTS Hypoxic EVs showed more significant pro-proliferative and pro-angiogenic potential. Angiogenesis was more vigorous in hADSCs treated with hypoxic EVs than in those treated with nomorxic EVs. The hADSCs treated with hypoxic EVs expressed higher angiogenic markers, according to real-time polymerase chain reaction (RT-PCR) and Western blot analysis, which revealed more angiogenic marker expression in hypoxic EV-treated hADSCs. The same result was demonstrated by tube formation on Matrigel in vitro. CONCLUSIONS Hypoxic EVs significantly increased the proliferation and angiogenic differentiation potential of hADSCs. Hypoxic EV-treated ADSCs may be beneficial to CAL and prevascularized tissue-engineered constructs.
Collapse
|
13
|
Lee K, Jeong W, Choi J, Kim J, Son D, Jo T. Fat Graft Survival Requires Metabolic Reprogramming Toward the Glycolytic Pathway. J Plast Reconstr Aesthet Surg 2023:S1748-6815(23)00162-6. [PMID: 37140074 DOI: 10.1016/j.bjps.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/16/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Fat grafts are widely used as natural fillers in reconstructive and cosmetic surgery. However, the mechanisms underlying fat graft survival are poorly understood. Here, we performed an unbiased transcriptomic analysis in a mouse fat graft model to determine the molecular mechanism underlying free fat graft survival. METHODS We conducted RNA-sequencing (RNA-seq) analysis in a mouse free subcutaneous fat graft model on days 3 and 7 following grafting (n = 5). High-throughput sequencing was performed on paired-end reads using NovaSeq6000. The calculated transcripts per million (TPM) values were processed for principal component analysis (PCA), unsupervised hierarchically clustered heat map generation, and gene set enrichment analysis. RESULTS PCA and heat map data revealed global differences in the transcriptomes of the fat graft model and the non-grafted control. The top meaningful upregulated gene sets in the fat graft model were related to the epithelial-mesenchymal transition and hypoxia on day 3, and angiogenesis on day 7. Mechanistically, the glycolytic pathway was upregulated in the fat graft model at days 3 (FDR q = 0.012) and 7 (FDR q = 0.084). In subsequent experiments, pharmacological inhibition of the glycolytic pathway in mouse fat grafts with 2-deoxy-D-glucose (2-DG) significantly suppressed fat graft retention rates, both grossly and microscopically (n = 5). CONCLUSIONS Free adipose tissue grafts undergo metabolic reprogramming toward the glycolytic pathway. Future studies should examine whether targeting this pathway can enhance the graft survival rate. DATA AND MATERIALS AVAILABILITY RNA-seq data were deposited in the Gene Expression Omnibus (GEO) database under accession number GSE203599.
Collapse
Affiliation(s)
- Kanghee Lee
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea
| | - Woonhyeok Jeong
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea
| | - Jaehoon Choi
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea
| | - Junhyung Kim
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea
| | - Daegu Son
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea
| | - Taehee Jo
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea.
| |
Collapse
|
14
|
Liu M, Shang Y, Liu N, Zhen Y, Chen Y, An Y. Strategies to Improve AFT Volume Retention After Fat Grafting. Aesthetic Plast Surg 2023; 47:808-824. [PMID: 36316460 DOI: 10.1007/s00266-022-03088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/28/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Autologous fat grafting has gained increasing popularity used in plastic surgery as a strategy to improve functional and aesthetic outcome. However, variable augmentation results have concerned surgeons in that volume loss of grafted fat reported fluctuates unsteadily. AIM An optimal technique that clinically maximizes the long-term survival rate of transplantation is in urgent need to be identified. METHOD The PubMed/MEDLINE database was queried to search for animal and human studies published through March of 2022 with search terms related to adipose grafting encompassing liposuction, adipose graft viability, processing technique, adipose-derived stem cell, SVF and others. RESULTS 45 in vivo studies met inclusion criteria. The principal of ideal processing technique is effective purification of fat and protection of tissue viability, such as gauze rolling and washing-filtration devices. Cell-assisted lipotransfer including SVF, SVF-gel and ADSCs significantly promotes graft retention via differentiation potential and paracrine manner. ADSCs induce polarization of macrophages to regulate inflammatory response, mediate extracellular matrix remodeling and promote endothelial cell migration and sprouting, and differentiate into adipocytes to replace necrotic cells, providing powerful evidence for the benefits and efficacy of cell-assisted lipotransfer. CONCLUSION Based on the current evidence, the best strategy can not be decided. Cell-assisted lipotransfer has great potential for use in regenerative medicine. But so far mechanically prepared SVF-gel is conducive to clinical promotion. PRP as endogenous growth factor sustained-release material shows great feasibility. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Meiling Liu
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
15
|
Lai F, Dai S, Zhao Y, Sun Y. Combination of PDGF-BB and adipose-derived stem cells accelerated wound healing through modulating PTEN/AKT pathway. Injury 2023:S0020-1383(23)00123-7. [PMID: 37028952 DOI: 10.1016/j.injury.2023.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 04/09/2023]
Abstract
Adipose-derived stem cells (ADSCs) have been widely proven to facilitate wound healing. Our study aimed to estimate the influence of combined ADSCs and platelet-derived growth factor-BB (PDGF-BB) on wound healing. We utilized 4 healthy SD rats to isolate ADSCs. Platelet-rich plasma (PRP) was acquired utilizing a two-step centrifugation technology. The role of PRP, PDGF-BB, and PDGF-BB combined with a PI3k inhibitor LY294002 on the viability, migration, and PTEN/AKT pathway in ADSCs were examined utilizing CCK-8, Transwell, and western blot assays. Then, we constructed an open trauma model in SD rats. Effects of ADSCs treated with PDGF-BB on pathological changes, CD31, and PTEN/AKT pathway of wound closure were assessed by hematoxylin & eosin (H&E) staining, Masson staining, immunohistochemical, and western blot assays, respectively. PRP and PDGF-BB intensified the viability and migration of ADSCs by modulating the PTEN/AKT pathway. Interestingly, LY294002 reversed the role of PDGF-BB on ADSCs. In vivo experiments, combined intervention with ADSCs plus PDGF-BB/PRP facilitated wound closure and ameliorated histological injury. Moreover, combined intervention with ADSCs and PDGF-BB attenuated the PTEN level and elevated the CD31 level as well as the ratio of p-AKT/AKT in the skin tissues. A combination of ADSCs and PDGF-BB facilitated wound healing might associate with the regulation of the PTEN/AKT pathway.
Collapse
Affiliation(s)
- Fangyuan Lai
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shijie Dai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yi Sun
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Park BY, Wu D, Kwon KR, Kim MJ, Kim TG, Lee JH, Park DY, Kim IK. Implantation and tracing of green fluorescent protein-expressing adipose-derived stem cells in peri-implant capsular fibrosis. Stem Cell Res Ther 2023; 14:22. [PMID: 36750973 PMCID: PMC9906918 DOI: 10.1186/s13287-023-03248-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) have been reported to reduce fibrosis in various tissues. In this study, we investigated the inhibitory role of ASCs on capsule formation by analyzing the histologic, cellular, and molecular changes in a mouse model of peri-implant fibrosis. We also investigated the fate and distribution of ASCs in the peri-implant capsule. METHODS To establish a peri-implant fibrosis model, customized silicone implants were inserted into the dorsal site of C57BL/6 wild-type mice. ASCs were harvested from the fat tissues of transgenic mice that express a green fluorescent protein (GFP-ASCs) and then injected into the peri-implant space of recipient mice. The peri-implant tissues were harvested from postoperative week 2 to 8. We measured the capsule thickness, distribution, and differentiation of GFP-ASCs, as well as the cellular and molecular changes in capsular tissue following ASC treatment. RESULTS Injected GFP-ASCs were distributed within the peri-implant capsule and proliferated. Administration of ASCs reduced the capsule thickness, decreased the number of myofibroblasts and macrophages in the capsule, and decreased the mRNA level of fibrogenic genes within the peri-implant tissue. Angiogenesis was enhanced due to trans-differentiation of ASCs into vascular endothelial cells, and tissue hypoxia was relieved upon ASC treatment. CONCLUSIONS We uncovered that implanted ASCs inhibit capsule formation around the implant by characterizing a series of biological alterations upon ASC treatment and the fate of injected ASCs. These findings highlight the value of ASCs for future clinical applications in the prevention of capsular contracture after implant-based reconstruction surgery.
Collapse
Affiliation(s)
- Bo-Yoon Park
- grid.413028.c0000 0001 0674 4447Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, 170, Hyeonchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Dirong Wu
- grid.413028.c0000 0001 0674 4447Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, 170, Hyeonchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Kyoo-Ri Kwon
- grid.413028.c0000 0001 0674 4447Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, 170, Hyeonchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Mi-Jin Kim
- grid.413028.c0000 0001 0674 4447Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, 170, Hyeonchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Tae-Gon Kim
- grid.413028.c0000 0001 0674 4447Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, 170, Hyeonchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Jun-Ho Lee
- grid.413028.c0000 0001 0674 4447Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, 170, Hyeonchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Do Young Park
- Department of Ophthalmology, Yeungnam University College of Medicine, 170, Hyeonchung-ro, Nam-gu, Daegu, 42415, Korea.
| | - Il-Kug Kim
- Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, 170, Hyeonchung-ro, Nam-gu, Daegu, 42415, Korea.
| |
Collapse
|
17
|
Oncologic Safety and Efficacy of Cell-Assisted Lipotransfer for Breast Reconstruction in a Murine Model of Residual Breast Cancer. Aesthetic Plast Surg 2023; 47:412-422. [PMID: 35918436 DOI: 10.1007/s00266-022-03021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cell-assisted lipotransfer (CAL) is a novel technique for fat grafting that combines the grafting of autologous fat and adipose-derived stromal cells (ASCs) to enhance fat graft retention; however, its oncologic safety is controversial. METHODS Herein, we investigated the oncologic safety of CAL for breast reconstruction using a murine model of residual breast cancer. Various concentrations of 4T1 cells (murine breast cancer cells) were injected into female mastectomized BALB/c mice to determine the appropriate concentration for injection. One week after injection, mice were divided into control (100 μL fat), low CAL (2.5 × 105 ASCs/100 μL fat), and high CAL (1.0 × 106 ASCs/100 μL fat) groups, and fat grafting was performed. The injection of 5.0 × 103 4T1 cells was appropriate to produce a murine model of residual breast cancer. RESULTS The weight of the fat tumor mass was significantly higher in the high CAL group than in the other groups (p < 0.05). However, the estimated tumor weight was not significantly different between the groups. Additionally, the fat graft survival rate was significantly higher in the high CAL group than in the control and low CAL groups (p < 0.05). No significant difference was noted in the percentage of Ki-67-positive cells, suggesting that tumor proliferation was not significantly different between the groups. CONCLUSION In summary, CAL significantly improved fat graft survival without affecting tumor size and proliferation in a murine model of residual breast cancer. These results highlight the oncologic safety of CAL for breast reconstruction. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
18
|
Li B, Ri C, Mao J, Zhao M. A Bibliometric and Visualization Analysis on the Research of Fat Grafting from 1945 to 2021. Aesthetic Plast Surg 2023; 47:397-411. [PMID: 36261744 DOI: 10.1007/s00266-022-03137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/03/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND It is very important to generate a comprehensive assessment of the fat grafting field due to the rapid growth of scientific literature. The current study aimed to use bibliometric analysis to evaluate fat grafting research qualitatively and quantitatively and determine the research hotspots and trends in this field. METHODS Publications on fat grafting research were extracted from the Web of Science core collection database. VOSviewer 1.6.18 was applied to perform the bibliometric analysis of these articles. RESULTS A total of 2558 studies published by 594 different journals authored by 9097 researchers were contained in this study. In the co-authorship analysis, the bulk of the retrieved studies was conducted by the USA, followed by China, Italy and Japan, while the most productive institution, journal and author were Chinese Academy of Medicine Sciences, Plastic and Reconstruction Surgery and Klinger M, respectively. In the co-cited analysis, the most top cited author, journal, organization and country were Coleman Sr, Plastic and Reconstruction Surgery, New York University and the USA, respectively. The map of keywords occurrence revealed the most active research aspects were focused on "surgery," "cell," "breast reconstruction" and "survival" and the time overlay mapping showed that the most active research hotspots were "breast reconstruction" and "retention". CONCLUSIONS The research hotspots include the following four aspects: aesthetic surgeries, cell-assisted lipotransfer, breast reconstruction and grafted fat survival. Breast fat grafting and volume retention may be trends in the future. We are willing to provide more beneficial data to contribute valuable research for the fat grafting through this study. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Bo Li
- The Second Affiliated Hospital of Dalian Medical University in China, Dalian, China
| | - CholSik Ri
- The Second Affiliated Hospital of Dalian Medical University in China, Dalian, China.,The Pyongyang Medical University in D.P.R of Korea, Pyongyang, Korea
| | - JiaXin Mao
- The Second Affiliated Hospital of Dalian Medical University in China, Dalian, China
| | - MuXin Zhao
- The Second Affiliated Hospital of Dalian Medical University in China, Dalian, China.
| |
Collapse
|
19
|
Adipose-derived stem cells exosome and its potential applications in autologous fat grafting. J Plast Reconstr Aesthet Surg 2023; 76:219-229. [PMID: 36527904 DOI: 10.1016/j.bjps.2022.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
Recently, there has been renewed interest in autologous fat grafting both for its filler and regenerative traits. The universal application, however, has been impeded by the unstable survival rates and complications. There has been substantial research undertaken on the role of adipose-derived stem cells (ADSCs) involved in fat graft fates including angiogenesis, adipogenesis, and inflammatory regulation. As the effectors of their parental cells, ADSC-derived exosomes (ADSC-exos) encapsulating multiple bioactive cargoes mediate cell-to-cell communication in a paracrine manner. ADSC-exos have received much attention for their biocompatible and efficient therapeutic potentials as "cell-free therapy" in plastic surgery, including increasing fat grafting survival rates. In this review, we summarize the current knowledge about the biological basis of ADSC-exos, ADSC-related mechanisms of fat survival, research updates of ADSC-exos in autologous fat grafting, and discuss some challenges along with research prospects.
Collapse
|
20
|
Adipose-derived stem cells regulate CD4+ T-cell-mediated macrophage polarization and fibrosis in fat grafting in a mouse model. Heliyon 2022; 8:e11538. [DOI: 10.1016/j.heliyon.2022.e11538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/04/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
|
21
|
Chai Y, Chen Y, Yin B, Zhang X, Han X, Cai L, Yin N, Li F. Dedifferentiation of Human Adipocytes After Fat Transplantation. Aesthet Surg J 2022; 42:NP423-NP431. [PMID: 35032169 DOI: 10.1093/asj/sjab402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Fat transplantation is a common method employed to treat soft-tissue defects. The dedifferentiation of mature adipocytes has been well documented, but whether it occurs after fat transplantation remains unclear. OBJECTIVES The major purpose of this project was to investigate the dedifferentiation of mature adipocytes after fat transplantation. METHODS Human lipoaspirate tissue was obtained from 6 female patients who underwent esthetic liposuction. Mature adipocytes were extracted and labeled with PKH26, mixed with lipoaspirate, and injected into nude mice. In addition, PKH26+ adipocytes were subjected to a ceiling culture. Grafted fat was harvested from nude mice, and stromal vascular fragment cells were isolated. The immunophenotype of PKH26+ cells was detected by flow cytometry analysis at 2 days and 1 week. The PKH26+ cells were sorted and counted at 2 and 4 weeks to verify their proliferation and multilineage differentiation abilities. RESULTS Two days after transplantation, almost no PKH26+ cells were found in the stromal vascular fragment cells. The PKH26+ cells found 1 week after transplantation showed a positive expression of cluster of differentiation (CD) 90 (CD90) and CD105 and a negative expression of CD45. This indicates that the labeled adipocytes were dedifferentiated. Its pluripotency was further demonstrated by fluorescent cell sorting and differentiation culture in vitro. In addition, the number of live PKH26+ cells at week 4 [(6.83 ± 1.67) × 104] was similar with that at week 2 [(7.11 ± 1.82) × 104]. CONCLUSIONS Human mature adipocytes can dedifferentiate into stem cell-like cells in vivo after fat transplantation.
Collapse
Affiliation(s)
- Yimeng Chai
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuanjing Chen
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Bo Yin
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xinyu Zhang
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xuefeng Han
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Lei Cai
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ningbei Yin
- Cleft Lip and Palate Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Facheng Li
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Lin J, Zhu S, Liao Y, Liang Z, Quan Y, He Y, Cai J, Lu F. Spontaneous Browning of White Adipose Tissue Improves Angiogenesis and Reduces Macrophage Infiltration After Fat Grafting in Mice. Front Cell Dev Biol 2022; 10:845158. [PMID: 35557960 PMCID: PMC9087586 DOI: 10.3389/fcell.2022.845158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Fat grafting is a frequently used technique; however, its survival/ regeneration mechanism is not fully understood. The browning of white adipocytes, a process initiated in response to external stimuli, is the conversion of white to beige adipocytes. The physiologic significance of the browning of adipocytes following transplantation is unclear. Methods: C57BL/6 mice received 150 mg grafts of inguinal adipose tissue, and then the transplanted fat was harvested and analyzed at different time points to assess the browning process. To verify the role of browning of adipocytes in fat grafting, the recipient mice were allocated to three groups, which were administered CL316243 or SR59230A to stimulate or suppress browning, respectively, or a control group after transplantation. Results: Browning of the grafts was present in the center of each as early as 7 days post-transplantation. The number of beige cells peaked at day 14 and then decreased gradually until they were almost absent at day 90. The activation of browning resulted in superior angiogenesis, higher expression of the pro-angiogenic molecules vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 21 (FGF21), fewer macrophages, and ultimately better graft survival (Upregulation, 59.17% ± 6.64% vs. Control, 40.33% ± 4.03%, *p < 0.05), whereas the inhibition of browning led to poor angiogenesis, lower expression of VEGF-A, increased inflammatory macrophages, and poor transplant retention at week 10 (Downregulation, 20.67% ± 3.69% vs. Control, 40.33% ± 4.03%, *p < 0.05). Conclusion: The browning of WAT following transplantation improves the survival of fat grafts by the promotion of angiogenesis and reducing macrophage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feng Lu
- *Correspondence: Junrong Cai, ; Feng Lu,
| |
Collapse
|
23
|
Ho CK, Zheng D, Sun J, Wen D, Wu S, Yu L, Gao Y, Zhang Y, Li Q. LRG-1 promotes fat graft survival through the RAB31-mediated inhibition of hypoxia-induced apoptosis. J Cell Mol Med 2022; 26:3153-3168. [PMID: 35322540 PMCID: PMC9170820 DOI: 10.1111/jcmm.17280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 11/29/2022] Open
Abstract
Autologous adipose tissue is an ideal soft tissue filling material, and its biocompatibility is better than that of artificial tissue substitutes, foreign bodies and heterogeneous materials. Although autologous fat transplantation has many advantages, the low retention rate of adipose tissue limits its clinical application. Here, we identified a secretory glycoprotein, leucine‐rich‐alpha‐2‐glycoprotein 1 (LRG‐1), that could promote fat graft survival through RAB31‐mediated inhibition of hypoxia‐induced apoptosis. We showed that LRG‐1 injection significantly increased the maintenance of fat volume and weight compared with the control. In addition, higher fat integrity, more viable adipocytes and fewer apoptotic cells were observed in the LRG‐1‐treated groups. Furthermore, we discovered that LRG‐1 could reduce the ADSC apoptosis induced by hypoxic conditions. The mechanism underlying the LRG‐1‐mediated suppression of the ADSC apoptosis induced by hypoxia was mediated by the upregulation of RAB31 expression. Using LRG‐1 for fat grafts may prove to be clinically successful for increasing the retention rate of transplanted fat.
Collapse
Affiliation(s)
- Chia-Kang Ho
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Danning Zheng
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaming Sun
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dongsheng Wen
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Wu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Gao
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Zhang
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Lee CK, Park BY, Jo T, Park CH, Kim JH, Chung KJ, Kim YH, Park DY, Kim IK. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:742-752. [PMID: 35579982 PMCID: PMC9299511 DOI: 10.1093/stcltm/szac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | | | - Cheol-Heum Park
- Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Ju-Hee Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Kyu-Jin Chung
- Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Yong-Ha Kim
- Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Do Young Park
- Do Young Park, MD, PhD, Department of Ophthalmology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea. Tel: +82 53 620 3440; Fax: +82 53 626 5936;
| | - Il-Kug Kim
- Corresponding author: Il-Kug Kim, MD, PhD, Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea. Tel: +82 53 620 3480; Fax: +82 53 626 0705;
| |
Collapse
|
25
|
Reply: Salvia miltiorrhiza Injection Promotes the Adipogenic Differentiation of Human Adipose-Derived Stem Cells. Plast Reconstr Surg 2021; 149:338e-340e. [PMID: 34962900 DOI: 10.1097/prs.0000000000008751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Bi X, Li Y, Dong Z, Zhao J, Wu W, Zou J, Guo L, Lu F, Gao J. Recent Developments in Extracellular Matrix Remodeling for Fat Grafting. Front Cell Dev Biol 2021; 9:767362. [PMID: 34977018 PMCID: PMC8716396 DOI: 10.3389/fcell.2021.767362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Remodeling of the extracellular matrix (ECM), which provides structural and biochemical support for surrounding cells, is vital for adipose tissue regeneration after autologous fat grafting. Rapid and high-quality ECM remodeling can improve the retention rate after fat grafting by promoting neovascularization, regulating stem cells differentiation, and suppressing chronic inflammation. The degradation and deposition of ECM are regulated by various factors, including hypoxia, blood supply, inflammation, and stem cells. By contrast, ECM remodeling alters these regulatory factors, resulting in a dynamic relationship between them. Although researchers have attempted to identify the cellular sources of factors associated with tissue regeneration and regulation of the microenvironment, the factors and mechanisms that affect adipose tissue ECM remodeling remain incompletely understood. This review describes the process of adipose ECM remodeling after grafting and summarizes the factors that affect ECM reconstruction. Also, this review provides an overview of the clinical methods to avoid poor ECM remodeling. These findings may provide new ideas for improving the retention of adipose tissue after fat transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Schreiter JS, Kurow LO, Langer S, Steinert M, Massier L. Effects of non-vascularized adipose tissue transplantation on its genetic profile. Adipocyte 2021; 10:131-141. [PMID: 33648423 PMCID: PMC7928050 DOI: 10.1080/21623945.2021.1889815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Subcutaneous adipose tissue (SAT) is recognized as a highly active metabolic and inflammatory tissue. Interestingly, adipose tissue transplantation is widely performed in plastic surgery via lipofilling, yet little is known about the gene alteration of adipocytes after transplantation. We performed an RNA-expression analysis of fat transplants before and after fat transplantation.In C57BL/6 N mice SAT was autologously transplanted. Samples of SAT were analysed before transplantation, 7, and 15 days after transplantation and gene expression profiles were measured.Analysis revealed that lipid metabolism-related genes were downregulated while inflammatory and extracellular matrix related genes were up-regulated 7 and 15 days after transplantation. When comparing gene expression profile 7 days after transplantation to 15 days after transplantation developmental pathways showed most changes.
Collapse
Affiliation(s)
| | - L. O Kurow
- Department of Orthopedics, Traumatology and Plastic Surgery
| | - S Langer
- Department of Orthopedics, Traumatology and Plastic Surgery
| | - M Steinert
- Department of Thoracic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - L Massier
- University Hospital Leipzig, Leipzig, Germany, Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
28
|
Qiu H, Jiang Y, Chen C, Wu K, Wang H. The Effect of Different Diameters of Fat Converters on Adipose Tissue and Its Cellular Components: Selection for Preparation of Nanofat. Aesthet Surg J 2021; 41:NP1734-NP1744. [PMID: 33769461 DOI: 10.1093/asj/sjab146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nanofat is an autologous product prepared mechanically from harvested fat. In nanofat grafting, converters are employed for mechanical emulsification to facilitate fat injection. To date, the study of different converters has received scant attention regarding whether they affect the characteristics of nanofat in terms of the practical applications and indications. OBJECTIVES The authors set out to investigate the influence of different internal diameters of converters on biological functionality of nanofat during shuffling. METHODS The 3-dimensional finite element method was employed to simulate the process of mechanical emulsification of fat and to research the stress with 5 different converters (3.76 mm, 2.00 mm, 1.20 mm, 1.00 mm, 0.80 mm). An assessment of the morphology of emulsified fat was conducted. Isolated stromal vascular fraction (SVF) was analyzed for cellular components, number, and viability through flowcytometry and live/ dead staining. Adipocytic and angiogenic differentiation assay allowed assessment of differentiation capacity of the SVF. RESULTS The smaller the aperture of the converter, the greater the mechanical force on adipose tissue during mechanical emulsification, showing the different macroscopic and microscopic structure of the emulsified fat. No difference in viability or ratio of endothelial progenitor cells and other cells was found. Angiogenic and adipogenic differentiation capacity of the SVF significantly changed in 5 different converters. CONCLUSIONS The mechanical emulsification from different apertures of converters exerts different effects of adipose tissue structure, cell content, and multipotency differentiation but not its viability. Converters with different apertures can be selected according to clinical needs.
Collapse
Affiliation(s)
- He Qiu
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu,China
| | - Yichen Jiang
- Department of General Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqinng,China
| | - Chang Chen
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu,China
| | - Kelun Wu
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu,China
| | - Hang Wang
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu,China
| |
Collapse
|
29
|
Jiang W, Cai J, Guan J, Liao Y, Lu F, Ma J, Gao J, Zhang Y. Characterized the Adipogenic Capacity of Adipose-Derived Stem Cell, Extracellular Matrix, and Microenvironment With Fat Components Grafting. Front Cell Dev Biol 2021; 9:723057. [PMID: 34616732 PMCID: PMC8489879 DOI: 10.3389/fcell.2021.723057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Autologous fat grafting has been a widely used technique; however, the role of adipose-derived stem cells (ASCs), extracellular matrix (ECM), and microenvironment in fat regeneration are not fully understood. Methods: Lipoaspirates were obtained and processed by inter-syringe shifting to remove adipocytes, yielding an adipocyte-free fat (Aff). Aff was then exposed to lethal dose of radiation to obtain decellularized fat (Df). To further remove microenvironment, Df was rinsed with phosphate-buffered saline (PBS) yielding rinsed decellularized fat (Rdf). Green fluorescent protein (GFP) lentivirus (LV-GFP)-transfected ASCs were added to Df to generate cell-recombinant decellularized fat (Crdf). Grafts were transplanted subcutaneously into nude mice and harvested over 3 months. Results: Removal of adipocytes (Aff) didn't compromise the retention of fat grafts, while additional removal of stromal vascular fraction (SVF) cells (Df) and microenvironment (Rdf) resulted in poor retention by day 90 (Aff, 82 ± 7.1% vs. Df, 28 ± 6.3%; p < 0.05; vs. Rdf, 5 ± 1.2%; p < 0.05). Addition of ASCs to Df (Crdf) partially restored its regenerative potential. Aff and Crdf exhibited rapid angiogenesis and M2-polarized macrophages infiltration, in contrast to impaired angiogenesis and M1-polarized inflammatory pattern in Df. GFP + ASCs participated in angiogenesis and displayed a phenotype of endothelial cells in Crdf. Conclusion: Adipose ECM and microenvironment have the capacity to stimulate early adipogenesis while ECM alone cannot induce adipogenesis in vivo. By directly differentiating into endothelial cells and regulating macrophage polarization, ASCs coordinate early adipogenesis with angiogenesis and tissue remodeling, leading to better long-term retention and greater tissue integrity.
Collapse
Affiliation(s)
- Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyan Guan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Ma
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuteng Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand age-related changes to the face and neck and pertinent anatomy and discuss important aspects of fat graft harvesting, processing, and infiltration. 2. Recognize key differences between common techniques for fat processing and infiltration and develop a plan for patients based on site-specific facial anatomical zones. 3. Appreciate the utility of fat grafting as an adjunct to other facial rejuvenating procedures such as face lift and blepharoplasty procedures and list the potential complications from fat grafting to the face and neck. SUMMARY Fat grafting to the face and neck aids in volume restoration, thereby addressing soft-tissue atrophy associated with the aging face, acquired conditions, or congenital malformations. Often, fat grafting may sufficiently restore facial volume alone or in conjunction with other facial rejuvenation procedures. Facial/neck fat grafting requires a systematic and thoughtful approach, with special care to atraumatic technique. This CME article covers the principles and techniques for modern facial fat grafting to the face and neck. Increasing data support the ability of autologous fat to produce significant and sustainable appearance-related changes. The authors follow the general principles of the Coleman technique for facial fat grafting and have observed tremendous success over the years. Other techniques for facial fat grafting are also discussed including microfat and nanofat processing. As the understanding of facial fat compartments continues to evolve, the authors may better predict fat grafting outcomes following augmentation. Finally, the technique described as "lipotumescence" has been successfully used in the breast and other regions of the body that have radiation damage and is discussed in this article specifically for the face and neck.
Collapse
|
31
|
Molitor M, Trávníčková M, Měšťák O, Christodoulou P, Sedlář A, Bačáková L, Lucchina S. The Influence of High and Low Negative Pressure Liposuction and Various Harvesting Techniques on the Viability and Function of Harvested Cells-a Systematic Review of Animal and Human Studies. Aesthetic Plast Surg 2021; 45:2379-2394. [PMID: 33876289 DOI: 10.1007/s00266-021-02249-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND An understanding of fat grafting methodology, techniques and patient-related factors is crucial when considering fat grafting. Multiple factors can influence the success of a fat graft and consequently the outcome of the procedure. The aim of this systematic review is to elucidate the influence of negative pressure and various techniques of fat harvesting on the viability and function of cells, particularly adipocytes and adipose-derived stem cells. METHODS We conducted a literature search from 1975 to 2020 using the PubMed bibliography, ScienceDirect, SCOPUS and the Google Scholar databases which produced 168,628 articles on the first pass. After applying all the exclusion criteria by two independent reviewers, we were left with 21 articles (level IV of Oxford Centre for Evidence-Based Studies and Grade C of Grade Practice Recommendation from the American Society of Plastic Surgeons) on which this review is based. RESULTS From 11 studies focused on different negative pressures, no one found using high negative pressure advantageous. Summarising 13 studies focused on various harvesting techniques (excision, syringe, and pump-machine), most often equal results were reported, followed by excision being better than either syringe or liposuction. CONCLUSION From our systematic review, we can conclude that the low negative pressure seems to yield better results and that the excision seems to be the most sparing method for fat graft harvesting. However, we have to point out that this conclusion is based on a very limited number of statistically challengeable articles and we recommend well-conducted further research. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Martin Molitor
- Department of Plastic Surgery, First Faculty of Medicine, Charles University and Na Bulovce Hospital, Budinova 67/2, 180 81, Prague 8-Liben, Czech Republic.
| | - Martina Trávníčková
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4-Krc, Czech Republic
| | - Ondřej Měšťák
- Department of Plastic Surgery, First Faculty of Medicine, Charles University and Na Bulovce Hospital, Budinova 67/2, 180 81, Prague 8-Liben, Czech Republic
| | - Petros Christodoulou
- Department of Plastic Surgery, First Faculty of Medicine, Charles University and Na Bulovce Hospital, Budinova 67/2, 180 81, Prague 8-Liben, Czech Republic
| | - Antonín Sedlář
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4-Krc, Czech Republic
| | - Lucie Bačáková
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4-Krc, Czech Republic
| | - Stefano Lucchina
- Hand Unit, General Surgery Department, Locarno's Regional Hospital, Via Ospedale 1, 6600, Locarno, Switzerland
| |
Collapse
|
32
|
Hu JL, Kim BJ, Yu NH, Kwon ST. Impact of Injection Frequency of Adipose-Derived Stem Cells on Allogeneic Skin Graft Survival Outcomes in Mice. Cell Transplant 2021; 30:9636897211041966. [PMID: 34538121 PMCID: PMC8743972 DOI: 10.1177/09636897211041966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previous studies indicated that mesenchymal stem cells (MSCs) exhibit immunomodulatory properties in composite tissue allotransplantation. However, due to the high immunogenicity of skin, although the single administration of MSCs improves survival of the skin allotransplant, immune rejection is still inevitable. The aim of our study was to evaluate whether multiple administrations of MSCs would improve immune tolerance in the allogeneic skin graft, compared to that with a single administration in a mouse model. After full-thickness skin allotransplantation on the backs of the mice, the recipient mice were infused with phosphate-buffered saline and isogenic 1.5 × 105/mL adipose-derived stem cells (ADSCs). ADSCs were transplanted into different mice according to the different injection frequencies such as single, once a week, and twice a week. Skin sections were taken on days 7 and 21 post-transplantation in all groups for gene expression and histological studies. ADSCs increased skin allograft survival compared to that in control mice (P < 0.05). Interleukin-6 and tumor necrosis factor-alpha messenger RNA levels were decreased, and the abundance of lymphocytes, based on immunohistochemistry, was also decreased in ADSC-infused mice (P < 0.05). However, among the different ADSC injection frequency groups, multiple ADSC infusion did not improve the survival rate and decreased proinflammatory cytokines and lymphocytes, compared to those with the single administration of ADSCs (P > 0.05). Conversely, the results with single administration were slightly better than those with multiple administrations. Our study demonstrated that ADSCs have the potential for immunomodulation in vivo. However, the results with multiple ADSC administration were not as good as those with single administration, which indicates the complexity of ADSCs in vivo and implying the need for adequate preclinical experimentation.
Collapse
Affiliation(s)
- Ju Long Hu
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung Jun Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Na Hee Yu
- Biomedical Research Institute, Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung Tack Kwon
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Sun JM, Ho CK, Gao Y, Chong CH, Zheng DN, Zhang YF, Yu L. Salvianolic acid-B improves fat graft survival by promoting proliferation and adipogenesis. Stem Cell Res Ther 2021; 12:507. [PMID: 34535194 PMCID: PMC8447755 DOI: 10.1186/s13287-021-02575-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Our previous study proved that Salvia miltiorrhiza could enhance fat graft survival by promoting adipogenesis. However, the effect of salvianolic acid B (Sal-B), the most abundant and bioactive water-soluble compound in Salvia miltiorrhiza, on fat graft survival has not yet been investigated. Objective This study aims to investigate whether salvianolic acid B could improve fat graft survival and promote preadipocyte differentiation. The underlying mechanism has also been studied. Methods In vivo, 0.2 ml of Coleman fat was transplanted into nude mice with salvianolic acid B. The grafts were evaluated by HE and IF at 2 and 4 weeks posttransplantation and by micro-CT at 4 weeks posttransplantation. In vitro, the adipogenesis and proliferative activities of salvianolic acid B were analyzed in cultured human adipose-derived stem cells (h-ADSCs) and 3T3-L1 cells to detect the mechanism by which salvianolic acid B affects graft survival. Results In vivo, the weights and volumes of the fat grafts in the Sal-B-treated groups were significantly higher than those of the fat grafts in the control group. In addition, higher fat integrity and more viable adipocytes were observed in the Sal-B-treated groups. In vitro, salvianolic acid B showed the ability to promote 3T3-L1 and h-ADSC proliferation and adipogenesis. Conclusions Our in vitro experiments demonstrated that salvianolic acid B can promote the proliferation of adipose stem cells and enhance the differentiation of adipose stem cells. Simultaneously, in vivo experiments showed that salvianolic acid B can improve the survival rate of fat transplantation. Therefore, our research shed light on the potential therapeutic usage of salvianolic acid B in improving the survival rate of fat transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02575-4.
Collapse
Affiliation(s)
- Jia-Ming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Chia-Kang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Chio-Hou Chong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Dan-Ning Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| | - Yi-Fan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| | - Li Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| |
Collapse
|
34
|
The Effects of Lipoaspirate-Derived Fibrous Tissue on Survival Quality and Mechanical Property of Fat Grafts. J Craniofac Surg 2021; 32:2238-2244. [PMID: 33770045 DOI: 10.1097/scs.0000000000007540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Fibrous connective tissue (referred to as fiber) in lipoaspirates would be discarded before lipotransfer in case of cannula blockage. However, the fiber contains extracellular matrix which provide structure support and is rich in stromal vascular fractions (SVFs). Removal of the fiber might theoretically affect the survival quality and mechanical properties of fat grafts. But there is few evidence in vivo and vitro about how the fiber affects the fat grafts. OBJECTIVE To assess the effect of fibers on the survival quality and mechanical property of fat grafts. METHODS The SVFs in both fat and fiber were obtained by collagenase digestion for cells counting and comparison. Three groups were designed according to the different proportions of fat and fiber: the fat group (100% fat), the mixed group (50% fat, 50% fiber in volume ratio), and the fiber group (100% fiber). Three groups of grafts were transplanted in vivo to evaluate the differences in volume retention rate, histological characteristics and mechanical properties. RESULTS The amount of SVF cells in fibers (3.47 ± 1.49 × 104 cells/mL) was significantly lower than that in fat (12.3 ± 4.95 × 104 cells/mL) (P < 0.05). Grafts in the mixed group and the fiber group showed an increase of volume retention at week 4, but the fiber content showed no significant effects on the volume retention of grafts in three groups at week 12. Elasticity modulus of grafts in the fat group was higher than that in the fiber group and the mixed group at week 4 and 8, the fiber content showed no significant effects on the elasticity modulus of grafts in three groups at week 12. The addition of the fiber reduced the inflammation, cysts, fibrosis, and capillaries density of the grafts. CONCLUSIONS There were few SVF cells in the fiber. When it was mixed with fat in different proportions and transplanted in vivo, the content of fiber showed no significantly different effects on the long-term volume retention and mechanical property of fat grafts. Due to the risk of blockage, it is recommended to discard the fiber in lipoaspirates.
Collapse
|
35
|
Hu JL, Kwon ST, Kim SW, Nam HJ, Kim BJ. Effects of Administration Route of Adipose-Derived Stem Cells on the Survival of Allogeneic Skin Grafts in Mice. Transplant Proc 2021; 53:2397-2406. [PMID: 34376314 DOI: 10.1016/j.transproceed.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Composite tissue allotransplantation presents considerable potential for defective tissue reconstruction. However, the high immunogenicity of the allogeneic skin grafts can cause acute rejection. Adipose-derived stem cells (ADSCs) reportedly have an immunomodulation potential, which may improve the survival of allogeneic skin grafts. However, there is currently no consensus on administration route of ADSCs. This study compared the effectiveness of local injection vs intravenous (IV) administration of ADSCs in improving the survival of allogenic skin grafts in mice. METHODS BALB/c and C57BL/6 mice were used as skin graft donors and recipients, respectively. Mice were divided into 3 groups for IV injection of ADSCs (IV group) or phosphate-buffered saline (PBS; control), or for local injection in the fascial layer of the recipient bed (FL group). After allogeneic skin transplantation, 0.1 mL of PBS alone or with 1.5 × 105 ADSCs was immediately injected. The grafts were histologically evaluated on days 7 and 14 postoperation. RESULTS The graft necrotic area was significantly smaller in the IV and FL groups than in the control group. Additionally, the grafts in these 2 groups exhibited decreased interleukin 17/6, tumor necrosis factor-α, and interferon-γ messenger mRNA levels; inflammatory changes; and cluster of differentiation 4 expression, and increased expression of vascular endothelial growth factor expression (P < .05). However, these 2 groups did not significantly differ (P > .05). CONCLUSIONS ADSCs increased the survival of allogeneic skin grafts in mice regardless of IV or FL route of administration, and this effect is likely through anti-inflammatory and angiogenic effects of ADSCs.
Collapse
Affiliation(s)
- Ju Long Hu
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Tack Kwon
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Wha Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Nam
- Biomedical Research Institute, Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung Jun Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Chen Q, Liu S, Cao L, Yu M, Wang H. Effects of macrophage regulation on fat grafting survival: Improvement, mechanisms, and potential application-A review. J Cosmet Dermatol 2021; 21:54-61. [PMID: 34129721 DOI: 10.1111/jocd.14295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Autologous fat grafting has become a popular tool in plastic surgery to solve soft tissue defects and achieve skin rejuvenation, but the volume loss after transplantation remains a disturbing problem. In recent years, some new strategies have improved the outcome to some extent, but the fat graft retention is still far from ideal, so there remains a wide development prospect in this field. Macrophages are closely related to the local microenvironment and tissue regeneration, and their role in fat grafting has been increasingly highlighted. AIMS This article was aimed to review the efficacy, possible mechanisms, and potential application of macrophage regulation on fat grafting, as well as concerns and future perspectives of this filed. METHODS A retrospective review of the published data was conducted. RESULTS Most studies indicated that up-regulating M2 macrophages during fat grafting would improve fat retention via promoting neovascularization. M2 macrophages could secrete several pro-angiogenic factors, accelerate extracellular matrix (ECM) remodeling, and directly function on endothelial cells to encourage vascular expansion. In addition, macrophages could influence the proliferation, apoptosis, and adipogenic differentiation of preadipocytes. CONCLUSIONS During autologous fat grafting, appropriately regulating macrophages may become a promising method to increase fat retention. Nevertheless, the M2 macrophage polarizing agents, treatment opportunity, and contraindications require further discussion. We hope our work could promote more in-depth studies in this field, and we are looking forward to a standard procedure for the macrophage therapy in clinical practice.
Collapse
Affiliation(s)
- Qiuyu Chen
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuo Liu
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lideng Cao
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
de Arruda EGP, Munhoz AM, Matsumoto W, Ueda T, Montag E, Okada A, Coudry RDA, de Castro I, Gemperli R. Impact of Fat Graft Thickness and Harvesting Technique on Adipocyte Viability in a New Porcine Experimental Model: An Immunohistochemical Analysis. Aesthet Surg J 2021; 41:NP616-NP630. [PMID: 32875312 DOI: 10.1093/asj/sjaa256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Autologous fat grafting (AFG) has been employed in surgical practice as a filling method. However, controversies remain on the specifics of this technique. So far, few relevant experimental large animal studies have objectively assessed factors related to AFG integration. OBJECTIVES This study utilized an experimental, medium-sized animal model to compare the feasibility of AFG collected employing 2 different techniques with instruments of distinct thicknesses. METHODS Twenty minipigs (Sus scropha domesticus) were subjected to AFG harvesting via en bloc resection utilizing 3- (Group I) and 5-mm-diameter (Group II) round punch blades (PBs) and liposuction (LS) with 3- (Group III) and 5-mm-diameter cannulas (Group IV). Both samples were grafted intramuscularly (biceps femoralis). Hematoxylin and eosin staining was employed to identify intact adipocytes, fat necrosis, fibrosis, inflammation, and oil cysts. Immunohistochemical staining (perilipin-A, tumor necrosis factor alfa, and cluster of differentiation number 31) was utilized to quantify the feasibility of adipocytes, tissue necrosis, and neoangiogenesis, respectively. RESULTS Hematoxylin and eosin analysis showed that fat necrosis and histiocyte presence were significantly lower in the AFG harvested utilizing a PB than in LS. For perilipin-A, a statistical difference was observed between subgroups I and III (P = 0.001) and I and IV (P = 0.004). Instrument diameter had no effect on graft integration in comparisons between groups II and III (P = 0.059) and II and IV (P = 0.132). CONCLUSIONS In this experimental study, fat collected utilizing a PB demonstrated higher adipocyte viability than fat collected with LS. The diameter of the collection instruments, whether PB or LS, had no effect on graft integration.
Collapse
Affiliation(s)
- Eduardo Gustavo Pires de Arruda
- Department of Surgery, Plastic Surgery Division, Cancer Institute of Estado de São Paulo, University of São Paulo School of Medicine, Hospital Sírio-Libanês, São Paolo, Brazil
| | | | | | - Thiago Ueda
- Department of Surgery, Plastic Surgery Division, Cancer Institute of Estado de São Paulo, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Eduardo Montag
- Department of Surgery, Plastic Surgery Division, Cancer Institute of Estado de São Paulo, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Alberto Okada
- Department of Surgery, Plastic Surgery Division, Cancer Institute of Estado de São Paulo, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | - Rolf Gemperli
- Plastic Surgery, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Lauvrud AT, Gümüscü R, Wiberg R, Brohlin M, Kelk P, Wiberg M, Kingham PJ. Water jet-assisted lipoaspiration and Sepax cell separation system for the isolation of adipose stem cells with high adipogenic potential. J Plast Reconstr Aesthet Surg 2021; 74:2759-2767. [PMID: 33994109 DOI: 10.1016/j.bjps.2021.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Water jet-assisted liposuction has gained popularity due to favourable fat grafting outcomes. In this study, we compared stem cells obtained from fat isolated with manual or the water jet-assisted procedure. METHODS Liposuction of abdominal fat was performed using the two methods on each donor (n = 10). Aspirate samples were collagenase digested and the isolated cells seeded in vitro prior to proliferation, adipogenic differentiation and angiogenic activity analyses. RESULTS Cells from either procedure proliferated at similar rates and exhibited a similar colony-forming ability. The cells expressed stem cell markers CD73, CD90 and CD105. In the water jet cell preparations, there were higher numbers of cells expressing CD146. Robust adipogenic differentiation was observed in cultures expanded from both manual and water jet lipoaspirates. Gene analysis showed higher expression of the adipocyte markers aP2 and GLUT4 in the adipocyte-differentiated water jet cell preparations, and ELISA indicated increased secretion of adiponectin from these cells. Both cell groups expressed vasculogenic factors and the water jet cells promoted the highest levels of in vitro angiogenesis. Given these positive results, we further characterised the water jet cells when prepared using an automated closed cell processing unit, the Sepax-2 system (Cytiva). The growth and stem cell properties of the Sepax-processed cells were similar to the standard centrifugation protocol, but there was evidence for greater adipogenic differentiation in the Sepax-processed cells. CONCLUSIONS Water jet lipoaspirates yield cells with high adipogenic potential and angiogenic activity, which may be beneficial for use in cell-assisted lipotransfers.
Collapse
Affiliation(s)
- Anne Therese Lauvrud
- Department of Integrative Medical Biology, Umeå University, Sweden; Department of Surgical and Perioperative Sciences, Umeå University, Umeå 907 37, Sweden.
| | - Rojda Gümüscü
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå 907 37, Sweden
| | - Rebecca Wiberg
- Department of Integrative Medical Biology, Umeå University, Sweden; Department of Surgical and Perioperative Sciences, Umeå University, Umeå 907 37, Sweden
| | - Maria Brohlin
- Department of Clinical Microbiology, Infection and Immunity, Umeå University, Sweden
| | - Peyman Kelk
- Department of Integrative Medical Biology, Umeå University, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Umeå University, Sweden; Department of Surgical and Perioperative Sciences, Umeå University, Umeå 907 37, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, Sweden
| |
Collapse
|
39
|
Sowa Y, Kishida T, Louis F, Sawai S, Seki M, Numajiri T, Takahashi K, Mazda O. Direct Conversion of Human Fibroblasts into Adipocytes Using a Novel Small Molecular Compound: Implications for Regenerative Therapy for Adipose Tissue Defects. Cells 2021; 10:cells10030605. [PMID: 33803331 PMCID: PMC8000077 DOI: 10.3390/cells10030605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
There is a need in plastic surgery to prepare autologous adipocytes that can be transplanted in patients to reconstruct soft tissue defects caused by tumor resection, including breast cancer, and by trauma and other diseases. Direct conversion of somatic cells into adipocytes may allow sufficient functional adipocytes to be obtained for use in regeneration therapy. Chemical libraries of 10,800 molecules were screened for the ability to induce lipid accumulation in human dermal fibroblasts (HDFs) in culture. Chemical compound-mediated directly converted adipocytes (CCCAs) were characterized by lipid staining, immunostaining, and qRT-PCR, and were also tested for adipokine secretion and glucose uptake. CCCAs were also implanted into mice to examine their distribution in vivo. STK287794 was identified as a small molecule that induced the accumulation of lipid droplets in HDFs. CCCAs expressed adipocyte-related genes, secreted adiponectin and leptin, and abundantly incorporated glucose. After implantation in mice, CCCAs resided in granulation tissue and remained adipose-like. HDFs were successfully converted into adipocytes by adding a single chemical compound, STK287794. C/EBPα and PPARγ were upregulated in STK287794-treated cells, which strongly suggests involvement of these adipocyte-related transcription factors in the chemical direct conversion. Our method may be useful for the preparation of autogenous adipocytes for transplantation therapy for soft tissue defects and fat tissue atrophy.
Collapse
Affiliation(s)
- Yoshihiro Sowa
- Departments of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5730; Fax: +81-75-251-5732
| | - Tsunao Kishida
- Immunology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.K.); (O.M.)
| | - Fiona Louis
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan;
| | - Seiji Sawai
- Orthopaedics Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.S.); (K.T.)
| | - Makoto Seki
- CellAxia Inc, Nihonbashi, Tokyo 103-0012, Japan;
| | - Toshiaki Numajiri
- Departments of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Kenji Takahashi
- Orthopaedics Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.S.); (K.T.)
| | - Osam Mazda
- Immunology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.K.); (O.M.)
| |
Collapse
|
40
|
He T, Yang J, Liu P, Xu L, Lü Q, Tan Q. [Research progress of adipose-derived stem cells in skin scar prevention and treatment]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:234-240. [PMID: 33624480 DOI: 10.7507/1002-1892.202007083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of adipose-derived stem cells (ADSCs) in skin scar prevention and treatment. Methods The related literature was extensively reviewed and analyzed. The recent in vitroand in vivo experiments and clinical studies on the role of ADSCs in skin scar prevention and treatment, and the possible mechanisms and biomaterials to optimize the effect of ADSCs were summarized. Results As demonstrated by in vitro and in vivo experiments and clinical studies, ADSCs participate in the whole process of skin wound healing and may prevent and treat skin scars by reducing inflammation, promoting angiogenesis, or inhibiting (muscle) fibroblasts activity to reduce collagen deposition through the p38/mitogen-activated protein kinase, peroxisome proliferator activated receptor γ, transforming growth factor β 1/Smads pathways. Moreover, bioengineered materials such as hydrogel from acellular porcine adipose tissue, porcine small-intestine submucosa, and poly (3-hydroxybutyrate-co-hydroxyvalerate) scaffold may further enhance the efficacy of ADSCs in preventing and treating skin scars. Conclusion Remarkable progress has been made in the application of ADSCs in skin scar prevention and treatment. While, further studies are still needed to explore the application methods of ADSCs in the clinic.
Collapse
Affiliation(s)
- Tao He
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jiqiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Pengcheng Liu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Li Xu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Qing Lü
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Qiuwen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
41
|
Mamsen FP, Munthe-Fog L, Kring MKM, Duscher D, Taudorf M, Katz AJ, Kølle SFT. Differences of embedding adipose-derived stromal cells in natural and synthetic scaffolds for dermal and subcutaneous delivery. Stem Cell Res Ther 2021; 12:68. [PMID: 33468240 PMCID: PMC7814704 DOI: 10.1186/s13287-020-02132-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background In recent years, adipose-derived stromal cells (ASCs) have been heavily studied for soft tissue regeneration, augmentation, and dermal wound healing. Methods In this review, we investigated the trends in injectable scaffolds for ASC delivery in the dermis, and injectable or implantable scaffolds for ASC delivery in the subcutis. A total of 547 articles were screened across three databases; of these, 22 studies were found to be eligible and were included. The scaffolds were subdivided and analyzed based on their tissue placement (dermis or subcutis), delivery method (injected or implanted), and by the origin of the materials (natural, synthetic, and combinatory). Results ASCs embedded in scaffolds generally showed improved viability. Neovascularization in the transplanted tissue was greater when undifferentiated ASCs were embedded in a combinatory scaffold or if differentiated ASCs were embedded in a natural scaffold. ASCs embedded in natural materials underwent more adipogenic differentiation than ASCs embedded in synthetic scaffolds, indicating an etiologically unknown difference that has yet to be described. Increased mechanical strength of the scaffold material correlated with improved outcome measurements in the investigated studies. Wound healing studies reported reduced healing time in all except one article due to contraction of the control wounds. Conclusions In future clinical trials, we recommend embedding ASCs in injectable and implantable scaffolds for enhanced protection, retained viability, and improved therapeutic effects. Trial registration This review was registered with PROSPERO: ID=CRD42020171534. Graphical abstract The use of scaffolds as a vehicle for ASC delivery generally improved cell viability, angiogenesis, and wound healing in vivo compared to utilizing ASCs alone. ASCs embedded in natural materials induced more adipogenesis than ASCs embedded in synthetic materials. Adipogenic-induced ASCs further increased this effect. The included studies indicate that the seeded scaffold material influences the differentiation of ASCs in vivo. All studies investigating the mechanical strength of ASC scaffolds reported improved outcome measurements with improved mechanical strength. The results suggest that scaffolds, in general, are favorable for ASC delivery. We recommend initiating clinical studies using scaffolds based on mechanical properties and tunability to improve ASC viability. For fat regeneration, natural scaffolds are recommended.
![]()
Collapse
Affiliation(s)
- Frederik Penzien Mamsen
- Department of Plastic Surgery, Stemform, Gyngemose Parkvej 74, DK-2860, Copenhagen, Denmark.
| | - Lea Munthe-Fog
- Department of Plastic Surgery, Stemform, Gyngemose Parkvej 74, DK-2860, Copenhagen, Denmark
| | | | - Dominik Duscher
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaningerstrasse 22, 81675, Munich, Germany
| | - Mikkel Taudorf
- Department of Radiology, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Adam J Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | | |
Collapse
|
42
|
Crawford K, Endara M. Lipotransfer Strategies and Techniques to Achieve Successful Breast Reconstruction in the Radiated Breast. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E516. [PMID: 33019768 PMCID: PMC7599742 DOI: 10.3390/medicina56100516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
Radiation therapy is frequently a critical component of breast cancer care but carries with it side effects that are particularly damaging to reconstructive efforts. Autologous lipotransfer has the ability to improve radiated skin throughout the body due to the pluripotent stem cells and multiple growth factors transferred therein. The oncologic safety of lipotransfer to the breasts is demonstrated in the literature and is frequently considered an adjunctive procedure for improving the aesthetic outcomes of breast reconstruction. Using lipotransfer as an integral rather than adjunctive step in the reconstructive process for breast cancer patients requiring radiation results in improved complication rates equivalent to those of nonradiated breasts, expanding options in these otherwise complicated cases. Herein, we provide a detailed review of the cellular toxicity conferred by radiotherapy and describe at length our approach to autologous lipotransfer in radiated breasts.
Collapse
Affiliation(s)
- Kristina Crawford
- Resident Physician, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Matthew Endara
- Plastic Surgeon, Maury Regional Medical Group, Columbia, TN 38401, USA
| |
Collapse
|
43
|
Hong KY. Fat grafts enriched with adipose-derived stem cells. Arch Craniofac Surg 2020; 21:211-218. [PMID: 32867409 PMCID: PMC7463121 DOI: 10.7181/acfs.2020.00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Autologous fat grafts are widely used in soft-tissue augmentation and reconstruction. To reduce the unpredictability of fat grafts and to improve their long-term survival, cell-assisted lipotransfer (CAL) was introduced. In this alternative method, autologous fat is mixed and grafted with stromal vascular fraction cells or adipose-derived stem/stromal cells (ASCs). In regenerative medicine, ASCs exhibit excellent therapeutic potential and are also simple to harvest. Although the efficacy of CAL has been demonstrated in experimental and clinical research, studies on its safety in terms of oncologic risk have reported inconclusive results. In order to establish CAL as a viable stem cell therapeutic approach, it will be necessary to demonstrate its oncologic safety in basic and clinical studies. Doing so could transform the paradigm of clinical strategy and practice for the treatment of a wide variety of diseases.
Collapse
Affiliation(s)
- Ki Yong Hong
- Department of Plastic and Reconstructive Surgery, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
44
|
Abstract
Fat grafting has been shown to improve diseased soft issue. Although the mechanism behind fat grafting’s regenerative properties is currently debated, published studies agree that there is an associated vasculogenic effect. A systematic literature review was conducted to elucidate the biochemical pathways responsible for establishing neo-vasculature to grafted fat.
Collapse
|
45
|
|
46
|
Supplementation with Extracellular Vesicles Derived from Adipose-Derived Stem Cells Increases Fat Graft Survival and Browning in Mice: A Cell-Free Approach to Construct Beige Fat from White Fat Grafting. Plast Reconstr Surg 2020; 145:1183-1195. [DOI: 10.1097/prs.0000000000006740] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Abstract
PURPOSE OF REVIEW It has been increasingly common to use adipose tissue for regenerative and reconstructive purposes. Applications of autologous fat transfer and different stem cell therapies have significant limitations and adipose tissue engineering may have the potential to be an important strategy in the reconstruction of large tissue defects. A better understanding of adipogenesis will help to develop strategies to make adipose tissue more effective for repairing volumetric defects. RECENT FINDINGS We provide an overview of the current applications of adipose tissue transfer and cellular therapy methods for soft tissue reconstruction, cellular physiology, and factors influencing adipogenesis, and adipose tissue engineering. Furthermore, we discuss mechanical properties and vascularization strategies of engineered adipose tissue, and its potential applications in the clinical settings. SUMMARY Autologous fat tissue transfer is the standard of care technique for the majority of surgeons; however, high resorption rates, poor perfusion within a large volume fat graft and widely inconsistent graft survival are the main limitations. Adipose tissue engineering is a promising field to reach the first goal of producing adipose tissue which has more predictable survival and higher graft retention rates. Advancements of scaffold and vascularization strategies will contribute to metabolically and functionally more relevant adipose tissue engineering.
Collapse
|
48
|
Zhu Y, Zhang J, Hu X, Wang Z, Wu S, Yi Y. Extracellular vesicles derived from human adipose-derived stem cells promote the exogenous angiogenesis of fat grafts via the let-7/AGO1/VEGF signalling pathway. Sci Rep 2020; 10:5313. [PMID: 32210269 PMCID: PMC7093512 DOI: 10.1038/s41598-020-62140-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/09/2020] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) derived from human adipose-derived stem cells (hADSCs) possess the proangiogenic potential for ischaemic diseases. Thus, our study aimed to evaluate the therapeutic effects of hADSC-EVs on fat grafting and explore the mechanism of hADSC-EVs promoting angiogenesis. The EVs released by hADSCs incubated under normal or hypoxic conditions were employed to supplement fat grafting in a nude mouse model. The proliferation, migration, tube formation and vascular endothelial growth factor (VEGF) secretion of vascular endothelial cells co-cultured with two kinds of hADSC-EVs were analysed. MicroRNA sequencing was performed to reveal the species and content of microRNAs in hADSC-EVs, the key microRNAs were blocked, and their effect in promoting angiogenesis was detected via above protocols as a reverse proof. The results demonstrate that hADSC-EVs could improve the survival of fat grafts by promoting exogenous angiogenesis and enhance the proliferation, migration, tube formation and VEGF secretion of vascular endothelial cells. In addition, the pro-angiogenic effect of hADSC-EVs in vivo and vitro could be enhanced by hypoxic pre-treatment. We found that the let-7 family, a kind of hypoxic-related microRNA, is enriched in hypoxic hADSC-EVs that contribute to angiogenesis via the let-7/argonaute 1 (AGO1)/VEGF signalling pathway.
Collapse
Affiliation(s)
- Yuanzheng Zhu
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China
| | - Jing Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China
| | - Xuan Hu
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China
| | - Zhaohui Wang
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China
| | - Shu Wu
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China
| | - Yangyan Yi
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China.
| |
Collapse
|
49
|
Reply: Systemic Administration of Adipose-Derived Stromal Cells Concurrent with Fat Grafting. Plast Reconstr Surg 2020; 145:457e-458e. [PMID: 31985686 DOI: 10.1097/prs.0000000000006452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Hong KY, Kim IK, Park SO, Jin US, Chang H. Reply: Systemic Administration of Adipose-Derived Stromal Cells Concurrent with Fat Grafting. Plast Reconstr Surg 2019; 144:1115e-1116e. [PMID: 31764690 DOI: 10.1097/prs.0000000000006218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ki Yong Hong
- Department of Plastic and Reconstructive Surgery, Dongguk University Medical Center, Goyang, Republic of Korea
| | - Il-Kug Kim
- Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Seong Oh Park
- Department of Plastic and Reconstructive Surgery, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Ung Sik Jin
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|