1
|
Grosu-Bularda A, Hodea FV, Zamfirescu D, Stoian A, Teodoreanu RN, Lascăr I, Hariga CS. Exploring Costimulatory Blockade-Based Immunologic Strategies in Transplantation: Are They a Promising Immunomodulatory Approach for Organ and Vascularized Composite Allotransplantation? J Pers Med 2024; 14:322. [PMID: 38541064 PMCID: PMC10971463 DOI: 10.3390/jpm14030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
The field of transplantation, including the specialized area of vascularized composite allotransplantation (VCA), has been transformed since the first hand transplant in 1998. The major challenge in VCA comes from the need for life-long immunosuppressive therapy due to its non-vital nature and a high rate of systemic complications. Ongoing research is focused on immunosuppressive therapeutic strategies to avoid toxicity and promote donor-specific tolerance. This includes studying the balance between tolerance and effector mechanisms in immune modulation, particularly the role of costimulatory signals in T lymphocyte activation. Costimulatory signals during T cell activation can have either stimulatory or inhibitory effects. Interfering with T cell activation through costimulation blockade strategies shows potential in avoiding rejection and prolonging the survival of transplanted organs. This review paper aims to summarize current data on the immunologic role of costimulatory blockade in the field of transplantation. It focuses on strategies that can be applied in vascularized composite allotransplantation, offering insights into novel methods for enhancing the success and safety of these procedures.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Florin-Vlad Hodea
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | | | | | - Răzvan Nicolae Teodoreanu
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Ioan Lascăr
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Cristian Sorin Hariga
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
2
|
Sun J(A, Adil A, Biniazan F, Haykal S. Immunogenicity and tolerance induction in vascularized composite allotransplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1350546. [PMID: 38993748 PMCID: PMC11235364 DOI: 10.3389/frtra.2024.1350546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 07/13/2024]
Abstract
Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissues such as skin, muscle, bone, nerve, and vessels, as a functional unit (i.e., hand or face) to patients suffering from major tissue trauma and functional deficits. Though the surgical feasibility has been optimized, issues regarding graft rejection remains. VCA rejection involves a diverse population of cells but is primarily driven by both donor and recipient lymphocytes, antigen-presenting cells, macrophages, and other immune as well as donor-derived cells. In addition, it is commonly understood that different tissues within VCA, such as the skin, elicits a stronger rejection response. Currently, VCA recipients are required to follow potent and lifelong immunosuppressing regimens to maximize graft survival. This puts patients at risk for malignancies, opportunistic infections, and cancers, thereby posing a need for less perilous methods of inducing graft tolerance. This review will provide an overview of cell populations and mechanisms, specific tissue involved in VCA rejection, as well as an updated scope of current methods of tolerance induction.
Collapse
Affiliation(s)
- Jiahui (Angela) Sun
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aisha Adil
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Felor Biniazan
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Siemionow M, Kulahci Y, Zor F. Novel cell-based strategies for immunomodulation in vascularized composite allotransplantation. Curr Opin Organ Transplant 2023; 28:431-439. [PMID: 37800652 DOI: 10.1097/mot.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA) has become a clinical reality in the past two decades. However, its routine clinical applications are limited by the risk of acute rejection, and the side effects of the lifelong immunosuppression. Therefore, there is a need for new protocols to induce tolerance and extend VCA survival. Cell- based therapies have emerged as an attractive strategy for tolerance induction in VCA. This manuscript reviews the current strategies and applications of cell-based therapies for tolerance induction in VCA. RECENT FINDINGS Cellular therapies, including the application of bone marrow cells (BMC), mesenchymal stem cells (MSC), adipose stem cells, regulatory T cells (Treg) cells, dendritic cells and donor recipient chimeric cells (DRCC) show promising potential as a strategy to induce tolerance in VCA. Ongoing basic science research aims to provide insights into the mechanisms of action, homing, functional specialization and standardization of these cellular therapies. Additionally, translational preclinical and clinical studies are underway, showing encouraging outcomes. SUMMARY Cellular therapies hold great potential and are supported by preclinical studies and clinical trials demonstrating safety and efficacy. However, further research is needed to develop novel cell-based immunosuppressive protocol for VCA.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopeadics, University of Illinois at Chicago, Chicago, Illinois
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Fatih Zor
- Department of Plastic Surgery, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Perspectives et voies de recherche dans les allotransplantations composites vasculaires. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2022. [DOI: 10.1016/j.banm.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Clinical and preclinical tolerance protocols for vascularized composite allograft transplantation. Arch Plast Surg 2021; 48:703-713. [PMID: 34818720 PMCID: PMC8627932 DOI: 10.5999/aps.2021.00927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022] Open
Abstract
The field of vascularized composite allografts (VCAs) has undergone significant advancement in recent decades, and VCAs are increasingly common and accepted in the clinical setting, bringing hope of functional recovery to patients with debilitating injuries. A major obstacle facing the widespread application of VCAs is the side effect profile associated with the current immunosuppressive regimen, which can cause a wide array of complications such as infection, malignancy, and even death. Significant concerns remain regarding whether the treatment outweighs the risk. The potential solution to this dilemma would be achieving VCA tolerance, which would allow recipients to receive allografts without significant immunosuppression and its sequelae. Promising tolerance protocols are being studied in kidney transplantation; four major trials have attempted to withdraw immunosuppressive treatment with various successes. The common theme in all four trials is the use of radiation treatment and donor cell transplantation. The knowledge gained from these trials can provide valuable insight into the development of a VCA tolerance protocol. Despite similarities, VCAs present additional barriers compared to kidney allografts regarding tolerance induction. VCA donors are likely to be deceased, which limits the time for significant pre-conditioning. VCA donors are also more likely to be human leukocyte antigen–mismatched, which means that tolerance must be induced across major immunological barriers. This review also explores adjunct therapies studied in large animal models that could be the missing element in establishing a safe and stable tolerance induction method.
Collapse
|
6
|
Lellouch AG, Taveau CB, Andrews AR, Molde J, Ng ZY, Tratnig-Frankl P, Rosales IA, Goutard M, Lupon E, Lantieri LA, Colvin RB, Randolph MA, Kohn J, Cetrulo CL. Local FK506 implants in non-human primates to prevent early acute rejection in vascularized composite allografts. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1070. [PMID: 34422982 PMCID: PMC8339839 DOI: 10.21037/atm-21-313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/28/2021] [Indexed: 11/13/2022]
Abstract
Background Previous vascularized composite allograft (VCA) studies from our laboratory have shown that topical FK506 delivery in non-human primates (NHPs) was limited by inadequate dermal penetration and rejection persisted. Herein, we report the first utilization of FK506 via subcutaneously implanted discs to mitigate VCA rejection in NHPs. Methods Full major histocompatibility complex (MHC)-mismatched NHP pairs underwent partial-face VCA and FK506 disc implantation along the suture line. All allotransplants were maintained post-operatively for two months on the FK506 discs, methylprednisolone, mycophenolate mofetil, and supplemented with intramuscular FK506 if necessary. Group 1 (n=4) was used for optimization of the implant, while Group 2 (n=3) underwent delayed bone marrow transplantation (DBMT) after two months. VCA skin biopsies and peripheral blood samples were obtained for serial assessment of rejection and mixed chimerism by histopathology and flow cytometry respectively. Results In Group 1, two technical failures occurred. Of the remaining two NHPs, one developed supratherapeutic levels of FK506 (50–120 ng/mL) and had to be euthanized on postoperative day (POD) 12. Reformulation of the implant resulted in stable FK506 levels (20–30 ng/mL) up to POD12 when further intramuscular (IM) FK506 injections were necessitated. In Group 2, two NHPs survived to undergo conditioning and one successfully developed chimerism at 2–3 weeks post-DBMT (96–97% granulocytes and 7–11% lymphocytes of recipient-origin). However, all three NHPs had to be terminated from study at POD64, 77 and 86 due to underlying post-transplant lymphoproliferative disorder. All VCAs remained rejection-free up to study endpoint otherwise. Conclusions This study shows preliminary results of local FK506 implants in potentially mitigating VCA acute rejection for tolerance protocols based on mixed chimerism approach.
Collapse
Affiliation(s)
- Alexandre G Lellouch
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Corentin B Taveau
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Alec R Andrews
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Molde
- Department of Life Sciences, The New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, Piscataway, NJ, USA
| | - Zhi Yang Ng
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Plastic Surgery, School of Surgery, Oxford, UK
| | - Philipp Tratnig-Frankl
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Plastic, Reconstructive and Aesthetic Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Ivy A Rosales
- MGH Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marion Goutard
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Elise Lupon
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurent A Lantieri
- Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Robert B Colvin
- MGH Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joachim Kohn
- Department of Life Sciences, The New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, Piscataway, NJ, USA
| | - Curtis L Cetrulo
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Shriners Hospital for Children, Boston, MA, USA
| |
Collapse
|
7
|
Matar AJ, Crepeau RL, Mundinger GS, Cetrulo CL, Torabi R. Large Animal Models of Vascularized Composite Allotransplantation: A Review of Immune Strategies to Improve Allograft Outcomes. Front Immunol 2021; 12:664577. [PMID: 34276656 PMCID: PMC8278218 DOI: 10.3389/fimmu.2021.664577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
Over the past twenty years, significant technical strides have been made in the area of vascularized composite tissue allotransplantation (VCA). As in solid organ transplantation, the allogeneic immune response remains a significant barrier to long-term VCA survival and function. Strategies to overcome acute and chronic rejection, minimize immunosuppression and prolong VCA survival have important clinical implications. Historically, large animals have provided a valuable model for testing the clinical translatability of immune modulating approaches in transplantation, including tolerance induction, co-stimulation blockade, cellular therapies, and ex vivo perfusion. Recently, significant advancements have been made in these arenas utilizing large animal VCA models. In this comprehensive review, we highlight recent immune strategies undertaken to improve VCA outcomes with a focus on relevant preclinical large animal models.
Collapse
Affiliation(s)
- Abraham J Matar
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Rebecca L Crepeau
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Gerhard S Mundinger
- Department of Surgery, Division of Plastic and Reconstructive Surgery, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Curtis L Cetrulo
- Department of Surgery, Division of Plastic Surgery, Massachusetts General Hospital, Boston, MA, United States.,Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Shriner's Hospital for Children, Department of Plastic and Reconstructive Surgery, Boston, MA, United States
| | - Radbeh Torabi
- Department of Surgery, Division of Plastic and Reconstructive Surgery, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
8
|
Johnstone BH, Messner F, Brandacher G, Woods EJ. A Large-Scale Bank of Organ Donor Bone Marrow and Matched Mesenchymal Stem Cells for Promoting Immunomodulation and Transplant Tolerance. Front Immunol 2021; 12:622604. [PMID: 33732244 PMCID: PMC7959805 DOI: 10.3389/fimmu.2021.622604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Induction of immune tolerance for solid organ and vascular composite allografts is the Holy Grail for transplantation medicine. This would obviate the need for life-long immunosuppression which is associated with serious adverse outcomes, such as infections, cancers, and renal failure. Currently the most promising means of tolerance induction is through establishing a mixed chimeric state by transplantation of donor hematopoietic stem cells; however, with the exception of living donor renal transplantation, the mixed chimerism approach has not achieved durable immune tolerance on a large scale in preclinical or clinical trials with other solid organs or vascular composite allotransplants (VCA). Ossium Health has established a bank of cryopreserved bone marrow (BM), termed "hematopoietic progenitor cell (HPC), Marrow," recovered from deceased organ donor vertebral bodies. This new source for hematopoietic cell transplant will be a valuable resource for treating hematological malignancies as well as for inducing transplant tolerance. In addition, we have discovered and developed a large source of mesenchymal stem (stromal) cells (MSC) tightly associated with the vertebral body bone fragment byproduct of the HPC, Marrow recovery process. Thus, these vertebral bone adherent MSC (vBA-MSC) are matched to the banked BM obtained from each donor, as opposed to third-party MSC, which enhances safety and potentially efficacy. Isolation and characterization of vBA-MSC from over 30 donors has demonstrated that the cells are no different than traditional BM-MSC; however, their abundance is >1,000-fold higher than obtainable from living donor BM aspirates. Based on our own unpublished data as well as reports published by others, MSC facilitate chimerism, especially at limiting hematopoietic stem and progenitor cell (HSPC) numbers and increase safety by controlling and/or preventing graft-vs.-host-disease (GvHD). Thus, vBA-MSC have the potential to facilitate mixed chimerism, promote complementary peripheral immunomodulatory functions and increase safety of BM infusions. Both HPC, Marrow and vBA-MSC have potential use in current VCA and solid organ transplant (SOT) tolerance clinical protocols that are amenable to "delayed tolerance." Current trials with HPC, Marrow are planned with subsequent phases to include vBA-MSC for tolerance of both VCA and SOT.
Collapse
Affiliation(s)
- Brian H. Johnstone
- Ossium Health, Indianapolis, IN, United States
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, United States
| | - Franka Messner
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erik J. Woods
- Ossium Health, Indianapolis, IN, United States
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Grajek M, Bula D, Zeman M, Maciejewski A. Limitations and limits and of vascularized composite allotransplantations: can we reach the holy grail? Curr Opin Organ Transplant 2020; 25:609-614. [PMID: 33105202 DOI: 10.1097/mot.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In recent times, vascularized composite allotransplantation (VCA) have been gaining more attention and applications. Currently, VCA are at the highest level of the reconstruction pyramid, and thus the effects expected after them are intended to outweigh what the 'classical' reconstructive surgery can offer us, including even the most advanced microsurgical techniques. RECENT FINDINGS Over 40 patients have received a partial or full-face transplant. Others have received penis, uterus, larynx, abdominal wall, and lower extremity transplants. Each type of VCA has its own problems and limitations. However, resolving the limits defined by immunosuppression and improved donor selection would revolutionize all of them. SUMMARY Defining the limits and limitations of given procedures will not only allow for better preparation of transplant teams but will also help in determining the direction of future research.
Collapse
Affiliation(s)
- Maciej Grajek
- Oncological and Reconstructive Surgery Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | | | | |
Collapse
|
10
|
Matar AJ, Crepeau RL, Duran-Struuck R. Cellular Immunotherapies in Preclinical Large Animal Models of Transplantation. Transplant Cell Ther 2020; 27:36-44. [PMID: 33017660 DOI: 10.1016/j.bbmt.2020.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation and solid organ transplantation remain the only curative options for many hematologic malignancies and end-stage organ diseases. Unfortunately, the sequelae of long-term immunosuppression, as well as acute and chronic rejection, carry significant morbidities, including infection, malignancy, and graft loss. Numerous murine models have demonstrated the efficacy of adjunctive cellular therapies using HSCs, regulatory T cells, mesenchymal stem cells, and regulatory dendritic cells in modulating the alloimmune response in favor of graft tolerance; however, translation of such murine approaches to other preclinical models and in the clinic has yielded mixed results. Large animals, including nonhuman primates, swine, and canines, provide a more immunologically rigorous model in which to test the clinical translatability of these cellular therapies. Here, we highlight the contributions of large animal models to the development and optimization of HSCs and additional cellular therapies to improve organ transplantation outcomes.
Collapse
Affiliation(s)
- Abraham J Matar
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Rebecca L Crepeau
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|