1
|
Vyas H, Mohi A, Boyce M, Durham EL, Cray JJ. In utero nicotine exposure affects murine palate development. Orthod Craniofac Res 2024; 27:967-973. [PMID: 39092604 PMCID: PMC11540726 DOI: 10.1111/ocr.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Despite data linking smoking to increased risk of fetal morbidity and mortality, 11% of pregnant women continue to smoke or use alternative nicotine products. Studies confirm that nicotine exposure during pregnancy increases the incidence of birth defects; however, little research has focused on specific anatomic areas based on timing of exposure. We aim to determine critical in utero and postnatal periods of nicotine exposure that affect craniofacial development, specifically palate growth. Malformation of the palatal structures can result in numerous complications including facial growth disturbance, or impeding airway function. We hypothesized that both in utero and postnatal nicotine exposure will alter palate development. MATERIALS AND METHODS We administered pregnant C57BL6 mice water supplemented with 100 μg/mL nicotine during early pregnancy, throughout pregnancy, during pregnancy and lactation, or lactation only. Postnatal day 15 pups underwent micro-computed tomography (μCT) analyses specific to the palate. RESULTS Resultant pups revealed significant differences in body weight from lactation-only nicotine exposure, and μCT investigation revealed several dimensions affected by lactation-only nicotine exposure, including palate width, palate and cranial base lengths, and mid-palatal suture width. CONCLUSIONS These results demonstrate the direct effects of nicotine on the developing palate beyond simple tobacco use. Nicotine exposure through tobacco alternatives, cessation methods, and electronic nicotine delivery systems (ENDS) may disrupt normal growth and development of the palate during development and the postnatal periods of breastfeeding. Due to the recent dramatic increase in the use of ENDS, future research will focus specifically on this nicotine delivery method.
Collapse
Affiliation(s)
- Heema Vyas
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Amr Mohi
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Mark Boyce
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Emily L Durham
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - James J Cray
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
2
|
Wu M, Vossough A, Massenburg BB, Romeo DJ, Ng JJ, Napoli JA, Swanson JW, Bartlett SP, Taylor JA. Mystery of the Muenke midface: spheno-occipital synchondrosis fusion and craniofacial skeletal patterns. Childs Nerv Syst 2024; 40:3683-3691. [PMID: 38992185 DOI: 10.1007/s00381-024-06518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE The spheno-occipital synchondrosis (SOS) is an important site of endochondral ossification in the cranial base that closes prematurely in Apert, Crouzon, and Pfeiffer syndromes, which contributes to varying degrees of midface hypoplasia. The facial dysmorphology of Muenke syndrome, in contrast, is less severe with low rates of midface hypoplasia. We thus evaluated the timing of SOS fusion and cephalometric landmarks in patients with Muenke syndrome compared to normal controls. METHODS Patients with Muenke syndrome who had at least one fine-cut head computed tomography scan performed from 2000 to 2020 were retrospectively reviewed. A case-control study was performed of patient scans and age- and sex-matched control scans. SOS fusion status was evaluated as open, partially closed, or closed. RESULTS We included 28 patients and compared 77 patient scans with 77 control scans. Kaplan-Meier analysis demonstrated an insignificantly earlier timeline of SOS fusion in Muenke syndrome (p = 0.300). Mean sella-orbitale (SO) distance was shorter (44.0 ± 6.6 vs. 47.7 ± 6.7 mm, p < 0.001) and mean sella-nasion-Frankfort horizontal (SN-FH) angle was greater (12.1° ± 3.8° vs. 10.1° ± 3.2°, p < 0.001) in the Muenke group, whereas mean sella-nasion-A point (SNA) angle was similar and normal (81.1° ± 5.7° vs. 81.4° ± 4.7°, p = 0.762). CONCLUSION Muenke syndrome is characterized by mild and often absent midfacial hypoplasia, with the exception of slight retropositioning of the infraorbital rim. Interestingly, SOS fusion patterns in these patients are not significantly different from age- and sex-matched controls despite an increased odds of fusion. It is possible that differences in timing of SOS fusion may manifest phenotypically at the infraorbital rim rather than at the maxilla.
Collapse
Affiliation(s)
- Meagan Wu
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arastoo Vossough
- Department of Radiology, University of Pennsylvania, Pennsylvania, PA, USA
| | - Benjamin B Massenburg
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dominic J Romeo
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jinggang J Ng
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph A Napoli
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jordan W Swanson
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott P Bartlett
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jesse A Taylor
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Geng J, Zhao G, Gu Y. Feasibility of spheno-occipital synchondrosis fusion stages as an indicator for the assessment of maxillomandibular growth: A mixed longitudinal study. Orthod Craniofac Res 2024; 27:589-597. [PMID: 38409951 DOI: 10.1111/ocr.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES This study aimed to assess the relative growth rates (RGRs) of the maxilla and mandible at varying fusion stages of the spheno-occipital synchondrosis (SOS), thereby elucidating the potential of SOS stages in predicting maxillomandibular growth. MATERIALS AND METHODS A total of 320 subjects (171 boys and 149 girls), aged 6 to 18 years, were retrospectively included. Each subject had a minimum of two longitudinal cone-beam computed tomography (CBCT) images, with no more than one interval of SOS fusion stage change between the two scans. Subjects were categorized based on their SOS fusion stages and genders. The RGRs of the maxilla and mandible at various SOS fusion stages were measured and compared using longitudinal CBCT images. RESULTS Significant statistical differences were observed in maxillomandibular RGRs across various SOS fusion stages. In girls, the sagittal growth of the maxilla remained stable and active until SOS 3, subsequently exhibited deceleration in SOS 4-5 (compared to SOS 3-4, P < .05) and continued to decrease in SOS 5-6. Whereas in boys, the sagittal growth of the maxilla remained stable until SOS 4, and a deceleration trend emerged starting from SOS 5 to 6 (P < .01 compared to SOS 4-5). Mandibular growth patterns in both genders exhibited a progression of increasing-accelerating-decelerating rates from SOS 2 to 6. The highest RGRs for total mandibular length were observed in SOS 3-4 and SOS 4-5. CONCLUSION Spheno-occipital synchondrosis fusion stages can serve as a valid indicator of maxillomandibular growth maturation.
Collapse
Affiliation(s)
- Jing Geng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Guangpu Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
4
|
Ng JJ, Massenburg BB, Wu M, Romeo DJ, Swanson JW, Taylor JA, Bartlett SP. Delayed Postnatal Synostosis without Spheno-occipital Synchondrosis Fusion: A Curious Case of Apert Syndrome. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5558. [PMID: 38264445 PMCID: PMC10805437 DOI: 10.1097/gox.0000000000005558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024]
Abstract
Apert syndrome classically presents with craniosynostosis at birth, most commonly of the bilateral coronal sutures, which may lead to cephalocranial disproportion and elevated intracranial pressure, the latter of which is associated with optic atrophy, visual loss, and developmental delays. A small number of patients with syndromic craniosynostosis demonstrate open sutures at birth; however, all previously reported patients of this subtype have been reported to develop premature suture fusion in the early postnatal period and/or require cranial vault expansion for increased intracranial pressure. Here, we report on a patient with Apert syndrome who did not have closed sutures at birth, and only began to demonstrate unilateral coronal suture fusion between ages 4 and 6 years, yet neither developed phenotypic signs of craniosynostosis nor evidence of intracranial hypertension. Moreover, despite demonstrating patency of the spheno-occipital synchondrosis, the patient developed progressive midface hypoplasia, requiring a subcranial Le Fort 3 advancement with external distraction at age 9. Now at skeletal maturity, this patient has a normal cranial shape and will likely never require cranial vault surgery for functional or aesthetic concerns. We are not aware of any prior reports of a patient with Apert syndrome who did not require intracranial surgery over long-term follow-up.
Collapse
Affiliation(s)
- Jinggang J. Ng
- From the Division of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - Benjamin B. Massenburg
- From the Division of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - Meagan Wu
- From the Division of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - Dominic J. Romeo
- From the Division of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - Jordan W. Swanson
- From the Division of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - Jesse A. Taylor
- From the Division of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - Scott P. Bartlett
- From the Division of Plastic, Reconstructive, and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pa
| |
Collapse
|
5
|
Hoshino Y, Takechi M, Moazen M, Steacy M, Koyabu D, Furutera T, Ninomiya Y, Nuri T, Pauws E, Iseki S. Synchondrosis fusion contributes to the progression of postnatal craniofacial dysmorphology in syndromic craniosynostosis. J Anat 2023; 242:387-401. [PMID: 36394990 PMCID: PMC9919486 DOI: 10.1111/joa.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Syndromic craniosynostosis (CS) patients exhibit early, bony fusion of calvarial sutures and cranial synchondroses, resulting in craniofacial dysmorphology. In this study, we chronologically evaluated skull morphology change after abnormal fusion of the sutures and synchondroses in mouse models of syndromic CS for further understanding of the disease. We found fusion of the inter-sphenoid synchondrosis (ISS) in Apert syndrome model mice (Fgfr2S252W/+ ) around 3 weeks old as seen in Crouzon syndrome model mice (Fgfr2cC342Y/+ ). We then examined ontogenic trajectories of CS mouse models after 3 weeks of age using geometric morphometrics analyses. Antero-ventral growth of the face was affected in Fgfr2S252W/+ and Fgfr2cC342Y/+ mice, while Saethre-Chotzen syndrome model mice (Twist1+/- ) did not show the ISS fusion and exhibited a similar growth pattern to that of control littermates. Further analysis revealed that the coronal suture synostosis in the CS mouse models induces only the brachycephalic phenotype as a shared morphological feature. Although previous studies suggest that the fusion of the facial sutures during neonatal period is associated with midface hypoplasia, the present study suggests that the progressive postnatal fusion of the cranial synchondrosis also contributes to craniofacial dysmorphology in mouse models of syndromic CS. These morphological trajectories increase our understanding of the progression of syndromic CS skull growth.
Collapse
Affiliation(s)
- Yukiko Hoshino
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Office of New Drug V, Pharmaceuticals and Medical Devices Agency (PMDA)TokyoJapan
| | - Masaki Takechi
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| | - Mehran Moazen
- Department of UCL Mechanical EngineeringUniversity College LondonLondonUK
| | - Miranda Steacy
- Institute of Child Health, Great Ormond StreetUniversity College LondonLondonUK
| | - Daisuke Koyabu
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Research and Development Center for Precision MedicineTsukuba UniversityTsukubaJapan
| | - Toshiko Furutera
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| | - Youichirou Ninomiya
- Research Organization of Information and SystemsNational Institute of InformaticsTokyoJapan
| | - Takashi Nuri
- Department of Plastic and Reconstructive SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Erwin Pauws
- Institute of Child Health, Great Ormond StreetUniversity College LondonLondonUK
| | - Sachiko Iseki
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
6
|
Mohamed FF, Ge C, Hallett SA, Bancroft AC, Cowling RT, Ono N, Binrayes AA, Greenberg B, Levi B, Kaartinen VM, Franceschi RT. Control of craniofacial development by the collagen receptor, discoidin domain receptor 2. eLife 2023; 12:e77257. [PMID: 36656123 PMCID: PMC9977278 DOI: 10.7554/elife.77257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Development of the craniofacial skeleton requires interactions between progenitor cells and the collagen-rich extracellular matrix (ECM). The mediators of these interactions are not well-defined. Mutations in the discoidin domain receptor 2 gene (DDR2), which encodes a non-integrin collagen receptor, are associated with human craniofacial abnormalities, such as midface hypoplasia and open fontanels. However, the exact role of this gene in craniofacial morphogenesis is not known. As will be shown, Ddr2-deficient mice exhibit defects in craniofacial bones including impaired calvarial growth and frontal suture formation, cranial base hypoplasia due to aberrant chondrogenesis and delayed ossification at growth plate synchondroses. These defects were associated with abnormal collagen fibril organization, chondrocyte proliferation and polarization. As established by localization and lineage-tracing studies, Ddr2 is expressed in progenitor cell-enriched craniofacial regions including sutures and synchondrosis resting zone cartilage, overlapping with GLI1 + cells, and contributing to chondrogenic and osteogenic lineages during skull growth. Tissue-specific knockouts further established the requirement for Ddr2 in GLI +skeletal progenitors and chondrocytes. These studies establish a cellular basis for regulation of craniofacial morphogenesis by this understudied collagen receptor and suggest that DDR2 is necessary for proper collagen organization, chondrocyte proliferation, and orientation.
Collapse
Affiliation(s)
- Fatma F Mohamed
- Department of Periodontics & Oral Medicine, University of Michigan School of DentistryAnn ArborUnited States
| | - Chunxi Ge
- Department of Periodontics & Oral Medicine, University of Michigan School of DentistryAnn ArborUnited States
| | - Shawn A Hallett
- Department of Periodontics & Oral Medicine, University of Michigan School of DentistryAnn ArborUnited States
| | - Alec C Bancroft
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas SouthwesternDallasUnited States
| | - Randy T Cowling
- Division of Cardiovascular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of DentistryHoustonUnited States
| | - Abdul-Aziz Binrayes
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud UniversityRiyadhSaudi Arabia
| | - Barry Greenberg
- Division of Cardiovascular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas SouthwesternDallasUnited States
| | - Vesa M Kaartinen
- Department of Biologic & Materials Science, University of Michigan School of DentistryAnn ArborUnited States
| | - Renny T Franceschi
- Department of Periodontics & Oral Medicine, University of Michigan School of DentistryAnn ArborUnited States
- Department of Biological Chemistry, School of Medicine, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| |
Collapse
|
7
|
Smith TD, Ruf I, DeLeon VB. Ontogenetic transformation of the cartilaginous nasal capsule in mammals, a review with new observations on bats. Anat Rec (Hoboken) 2023. [PMID: 36647334 DOI: 10.1002/ar.25152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The nasal capsule, as the most rostral part of the chondrocranium, is a critical point of connection with the facial skeleton. Its fate may influence facial form, and the varied fates of cartilage may be a vehicle contributing to morphological diversity. Here, we review ontogenetic changes in the cartilaginous nasal capsule of mammals, and make new observations on perinatal specimens of two chiropteran species of different suborders. Our observations reveal some commonalities between Rousettus leschenaultii and Desmodus rotundus, such as perinatal ossification of the first ethmoturbinal. However, in Rousettus, ossification of turbinals is demonstrated as either perichondrial or endochondral. In Desmodus, perichondrial and endochondral ossification of the posterior nasal cupula is observed at birth, a part of the nasal capsule previously shown to persist as cartilage into infancy in Rousettus. Combined with prior findings on cranial cartilages we identify several diverse transformational mechanisms by which cartilage as a tissue type may contribute to morphological diversity of the cranium. First, cartilage differentiates in an iterative fashion to increase nasal complexity, but still retains the capacity for later elaboration via de novo bone emanating outward before or after cartilage ossifies. Second, cartilage acts as a driver of growth at growth centers, or via interstitial growth (e.g., septal cartilage). Finally, cartilage as a tissue may influence the timing of ossification and union of the facial and basicranial skeleton. In particular, cartilage at certain points of ontogeny may "model" via selective resorption, showing some similarity to bone.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Irina Ruf
- Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Hallett SA, Ono W, Franceschi RT, Ono N. Cranial Base Synchondrosis: Chondrocytes at the Hub. Int J Mol Sci 2022; 23:7817. [PMID: 35887171 PMCID: PMC9317907 DOI: 10.3390/ijms23147817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 01/04/2023] Open
Abstract
The cranial base is formed by endochondral ossification and functions as a driver of anteroposterior cranial elongation and overall craniofacial growth. The cranial base contains the synchondroses that are composed of opposite-facing layers of resting, proliferating and hypertrophic chondrocytes with unique developmental origins, both in the neural crest and mesoderm. In humans, premature ossification of the synchondroses causes midfacial hypoplasia, which commonly presents in patients with syndromic craniosynostoses and skeletal Class III malocclusion. Major signaling pathways and transcription factors that regulate the long bone growth plate-PTHrP-Ihh, FGF, Wnt, BMP signaling and Runx2-are also involved in the cranial base synchondrosis. Here, we provide an updated overview of the cranial base synchondrosis and the cell population within, as well as its molecular regulation, and further discuss future research opportunities to understand the unique function of this craniofacial skeletal structure.
Collapse
Affiliation(s)
- Shawn A. Hallett
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (S.A.H.); (R.T.F.)
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA;
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (S.A.H.); (R.T.F.)
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA
| |
Collapse
|
9
|
Han JT, Egbert MA, Ettinger RE, Kapadia H, Susarla SM. Orthognathic Surgery in Patients with Syndromic Craniosynostosis. Oral Maxillofac Surg Clin North Am 2022; 34:477-487. [PMID: 35787829 DOI: 10.1016/j.coms.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Patients with syndromic and nonsyndromic synostosis may have end-stage skeletal discrepancies involving the lower midface and mandible, with associated malocclusion. While orthognathic surgical procedures in this population can be reliably executed, the surgeon must be aware of the unique morphologic characteristics that accompany the primary diagnoses as well as the technical challenges associated with performing Le Fort I osteotomies in patients who have undergone prior subcranial midface distraction.
Collapse
Affiliation(s)
- Jesse T Han
- Department of Oral and Maxillofacial Surgery, University of Washington School of Dentistry, Seattle, WA, USA
| | - Mark A Egbert
- Department of Oral and Maxillofacial Surgery, University of Washington School of Dentistry, Seattle, WA, USA; Department of Surgery, Division of Plastic Surgery, University of Washington School of Medicine, Seattle, WA, USA; Craniofacial Center, Seattle Children's Hospital, Seattle, WA, USA
| | - Russell E Ettinger
- Department of Surgery, Division of Plastic Surgery, University of Washington School of Medicine, Seattle, WA, USA; Craniofacial Center, Seattle Children's Hospital, Seattle, WA, USA
| | - Hitesh Kapadia
- Department of Surgery, Division of Plastic Surgery, University of Washington School of Medicine, Seattle, WA, USA; Craniofacial Center, Seattle Children's Hospital, Seattle, WA, USA
| | - Srinivas M Susarla
- Department of Oral and Maxillofacial Surgery, University of Washington School of Dentistry, Seattle, WA, USA; Department of Surgery, Division of Plastic Surgery, University of Washington School of Medicine, Seattle, WA, USA; Craniofacial Center, Seattle Children's Hospital, Seattle, WA, USA.
| |
Collapse
|
10
|
Abstract
SUMMARY Facial sutures contribute significantly to postnatal facial development, but their potential role in craniofacial disease is understudied. Since interest in their development and physiology peaked in the mid-twentieth century, facial sutures have not garnered nearly the same clinical research interest as calvarial sutures or cranial base endochondral articulations. In addition to reinforcing the complex structure of the facial skeleton, facial sutures absorb mechanical stress and generally remain patent into and beyond adolescence, as they mediate growth and refine the shape of facial bones. However, premature closure of these sites of postnatal osteogenesis leads to disrupted growth vectors and consequent dysmorphologies. Although abnormality in individual sutures results in isolated facial deformities, we posit that generalized abnormality across multiple sutures may be involved in complex craniofacial conditions such as syndromic craniosynostosis. In this work, the authors comprehensively review 27 key facial sutures, including physiologic maturation and closure, contributions to postnatal facial development, and clinical consequences of premature closure.
Collapse
|
11
|
Mcdonald SW, Miller J. When does the spheno-occipital synchondrosis close? Clin Anat 2022; 35:512-525. [PMID: 35141949 DOI: 10.1002/ca.23847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/07/2021] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
In forensic work, the spheno-occipital synchondrosis helps identify the deceased as a child or young adult. In the past, it was generally held that the synchondrosis closed between the late teens and 25 years, but recent studies have suggested closure in adolescence. There are also suggestions that the age at closure recorded might be influenced by ancestry and the technique used to study the joint. This comprehensive review of the literature of the past 60 years concludes that the age of closure of the spheno-occipital synchondrosis is very variable, from childhood to the mid-twenties, with no obvious association with the geographical location of the study population. We note that some studies on bony specimens indicated later closure than others using clinical images and draw attention to a possible misinterpretation of the so-called "fusion scar" which might explain this incongruity. Despite an increasing acceptance that the synchondrosis usually closes in adolescence, we are concerned that insufficient heed is being paid to reports of closure in childhood and in the early to mid-twenties. We conclude that, for forensic purposes, it is unwise to declare that the synchondrosis closes in adolescence. It would be safer to state that a closed synchondrosis indicates a person 6 years or over and that an open synchondrosis may be seen up to the mid-twenties. Clearly, for younger individuals, the dentition and, for all individuals in this age range, documentation of unfused postcranial epiphyses would be important in attempting to narrow this very broad estimation of age.
Collapse
Affiliation(s)
- Stuart W Mcdonald
- Department of Chemistry and Forensics, Nottingham Trent University, Clifton Campus, Clifton Lane, Nottingham, United Kingdom
| | - Jennifer Miller
- Department of Chemistry and Forensics, Nottingham Trent University, Clifton Campus, Clifton Lane, Nottingham, United Kingdom
| |
Collapse
|
12
|
Layton RG, Pontier JF, Bins GP, Sucher BJ, Runyan CM. Morphology of the Occipital Bones and Foramen Magnum Resulting From Premature Minor Suture Fusion in Crouzon Syndrome. Cleft Palate Craniofac J 2022; 60:591-600. [PMID: 35044263 DOI: 10.1177/10556656211072762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To identify skull-base growth patterns in Crouzon syndrome, we hypothesized premature minor suture fusion restricts occipital bone development, secondarily limiting foramen magnum expansion. Skull-base suture closure degree and cephalometric measurements were retrospectively studied using preoperative computed tomography (CT) scans and multiple linear regression analysis. Evaluation of multi-institutional CT images and 3D reconstructions from Wake Forest's Craniofacial Imaging Database (WFCID). Sixty preoperative patients with Crouzon syndrome under 12 years-old were selected from WFCID. The control group included 60 age- and sex-matched patients without craniosynostosis or prior craniofacial surgery. None. 2D and 3D cephalometric measurements. 3D volumetric evaluation of the basioccipital, exo-occipital, and supraoccipital bones revealed decreased growth in Crouzon syndrome, attributed solely to premature minor suture fusion. Spheno-occipital (β = -398.75; P < .05) and petrous-occipital (β = -727.5; P < .001) suture fusion reduced growth of the basioccipital bone; lambdoid suture (β = -14 723.1; P < .001) and occipitomastoid synchondrosis (β = -16 419.3; P < .001) fusion reduced growth of the supraoccipital bone; and petrous-occipital suture (β = -673.3; P < .001), anterior intraoccipital synchondrosis (β = -368.47; P < .05), and posterior intraoccipital synchondrosis (β = -6261.42; P < .01) fusion reduced growth of the exo-occipital bone. Foramen magnum morphology is restricted in Crouzon syndrome but not directly caused by early suture fusion. Premature minor suture fusion restricts the volume of developing occipital bones providing a plausible mechanism for observed foramen magnum anomalies.
Collapse
Affiliation(s)
- Ryan G Layton
- 12279Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Joshua F Pontier
- 12279Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Griffin P Bins
- Department of Plastic and Reconstructive Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Brandon J Sucher
- Department of Biostatistics and Bioinformatics, 12277Duke University School of Medicine, Durham, NC, USA
| | - Christopher M Runyan
- Department of Plastic and Reconstructive Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| |
Collapse
|
13
|
"What is the Role of Midfacial Sutures in the Development of Maxillary Hypoplasia in Children With Cleft Palate?". J Craniofac Surg 2022; 33:827-829. [PMID: 35034086 DOI: 10.1097/scs.0000000000008469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Maxillary hypoplasia is common in patients with cleft lip and palate (CL/P), and its etiology is incompletely understood. The purpose of this study is to evaluate facial suture patency in patients with CL/P and maxillary hypoplasia. The authors hypothesize that patients with CL/P will demonstrate higher rates of premature midfacial suture fusion in comparison to unaffected controls. Skeletally mature patients with CL/P and midface hypoplasia were identified, along with a cohort of unaffected age- and sex-matched controls. High-resolution facial computed tomography scans were evaluated for the presence of facial suture fusion. Utilizing a previously published suture fusion grading scale, the facial sutures were classified as open, partially open, closed, or pathologically absent. Thirty-one CL/P patients with midface hypoplasia were identified, with age and sex-matched controls. The frequency of intermaxillary suture fusion did not differ between patients with CL/P and unaffected controls (P > 0.05.) Pathologic absence of the midpalatal suture was more commonly present in patients with CL/P and midface hypoplasia in comparison to unaffected controls (P < 0.05.) The role of midfacial sutures in the development of midfacial hypoplasia seen in CLP has not previously been studied or described. Our data show that the midpalatal suture is frequently pathologically absent in patients with CL/P and maxillary hypoplasia. The authors did not identify statistically significant differences in other midfacial sutures between patients with CL/P and controls, leading us to conclude that midfacial sutures may not play a key role in the development of midfacial hypoplasia.
Collapse
|
14
|
Wang MM, Haveles CS, Zukotynski BK, Reid RR, Lee JC. Facial Suture Pathology in Syndromic Craniosynostosis: Human and Animal Studies. Ann Plast Surg 2021; 87:589-599. [PMID: 34699435 PMCID: PMC8667083 DOI: 10.1097/sap.0000000000002822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Facial deformities in syndromic craniosynostosis are not only functionally, psychosocially, and aesthetically impairing but also notoriously challenging to reconstruct. Whether facial suture synostosis plays a significant role in the pathogenesis of these deformities is inadequately studied in human patients. METHODS The MEDLINE database was queried using a methodologically generated search term inventory. Article inclusion was adjudicated by 2 authors after independent review. Articles provided insight into facial suture involvement in either syndromic craniosynostosis patients or animal models of disease. RESULTS Comprehensive review yielded 19 relevant articles meeting inclusion criteria. Mid-20th century craniofacial biologists characterized how patent facial sutures are essential for normal postnatal facial development. They also posited that premature ossification disrupts growth vectors, causing significant dysmorphologies. Recently, facial suture synostosis was found to cause midfacial deformities independent of cranial base pathology in mouse models of syndromic craniosynostosis. Few recent studies have begun exploring facial suture involvement in patients, and although they have paved the way for future research, they bear significant limitations. CONCLUSIONS The hypothesis that facial suture synostosis acts in conjunction with cranial base pathology to produce the prominent, multifocal facial deformities in syndromic craniosynostosis may fundamentally alter surgical management and warrants further investigation. Methodically evaluating the literature, this review synthesizes all basic science and human clinical research thus far on the role of facial sutures in syndromic craniosynostosis and elucidates important topics for future research. We ultimately identify the need for rigorous imaging studies that longitudinally evaluate facial osteology across patients with various craniosynostosis syndromes.
Collapse
Affiliation(s)
- Maxwell M. Wang
- Division of Plastic and Reconstructive Surgery; University of California, Los Angeles, California
| | - Christos S. Haveles
- Division of Plastic and Reconstructive Surgery; University of California, Los Angeles, California
| | - Brian K. Zukotynski
- Division of Plastic and Reconstructive Surgery; University of California, Los Angeles, California
| | - Russell R. Reid
- Section of Plastic and Reconstructive Surgery; University of Chicago, Chicago, Illinois
| | - Justine C. Lee
- Division of Plastic and Reconstructive Surgery; University of California, Los Angeles, California
| |
Collapse
|
15
|
den Ottelander BK, Dremmen MHG, de Planque CA, van der Oest MJW, Mathijssen IMJ, van Veelen MLC. Does the association between abnormal anatomy of the skull base and cerebellar tonsillar position also exist in syndromic craniosynostosis? J Plast Reconstr Aesthet Surg 2021; 75:797-805. [PMID: 34799294 DOI: 10.1016/j.bjps.2021.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/28/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Cerebellar tonsillar herniation (TH) occurs frequently in syndromic craniosynostosis; however, the exact pathogenesis is unknown. This study evaluates the association between skull base deformities and TH in syndromic craniosynostosis. METHODS Retrospective study MRI study comparing syndromic craniosynostosis to controls. Measured parameters included clivus length, skull base angle, Boogard's angle, foramen magnum area, and cerebellar tonsillar position (TP). The association between skull base parameters and TP was evaluated with linear mixed models, correcting for age and risk factors for TH in craniosynostosis (hydrocephalus, intracranial hypertension, craniocerebral disproportion, and lambdoid synostosis). RESULTS Two hundred and eighty-two scans in 145 patients were included, and 146 scans in 146 controls. The clivus was smaller at birth, and its growth was retarded in all syndromes. The skull base angle was smaller at birth in Apert and Crouzon syndromes, and the evolution through time was normal. Boogard's angle was smaller at birth in Apert syndrome, and its evolution was disturbed in Apert and Saethre-Chotzen syndromes. The foramen magnum was smaller at birth in Crouzon and Saethre-Chotzen syndromes, and its growth was disturbed in Apert, Crouzon, and Saethre-Chotzen syndromes. TP was higher at birth in Apert syndrome, but lowered faster. In Crouzon syndrome, TP was lower at birth and throughout life. A smaller clivus and larger foramen magnum were associated with a lower TP in controls (p<0.001, p=0.007), and in Crouzon syndrome, this applied to only foramen magnum size (p=0.004). CONCLUSION The skull base and its growth are significantly different in syndromic craniosynostosis compared to controls. However, only foramen magnum area is associated with TP in Crouzon syndrome.
Collapse
Affiliation(s)
- Bianca K den Ottelander
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Marjolein H G Dremmen
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Radiology, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Catherine A de Planque
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Mark J W van der Oest
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Irene M J Mathijssen
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Marie-Lise C van Veelen
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Neurosurgery, Room SK-1204, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Respective Roles of Craniosynostosis and Syndromic Influences on Cranial Fossa Development. Plast Reconstr Surg 2021; 148:145-156. [PMID: 34181610 DOI: 10.1097/prs.0000000000008101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Little is known about the detailed growth of the cranial fossae, even though they provide an important structural connection between the cranial vault and the facial skeleton. This study details the morphologic development of isolated cranial vault synostosis and associated syndromes on cranial fossa development. METHODS A total of 125 computed tomographic scans were included (nonsyndromic bicoronal synostosis, n = 36; Apert syndrome associated with bicoronal synostosis, n = 24; Crouzon syndrome associated with bicoronal synostosis, n = 11; and controls, n = 54). Three-dimensional analyses were produced using Materialise software. RESULTS The regional anterior and middle cranial fossae volumes of nonsyndromic bicoronal synostosis are characterized by significant increases of 43 percent (p < 0.001) and 60 percent (p < 0.001), respectively, and normal posterior cranial fossa volume. The cranial fossae depths of nonsyndromic bicoronal synostosis were increased, by 37, 42, and 21 percent (all p < 0.001) for anterior, middle, and posterior cranial fossae, respectively, accompanying the shortened cranial fossae lengths. The volume and morphology of all cranial fossae in Apert syndrome nearly paralleled nonsyndromic bicoronal synostosis. However, Crouzon syndrome had reduced depths of cranial fossae, and more restricted fossa volumes than both Apert syndrome and nonsyndromic bicoronal synostosis. CONCLUSIONS Cranial vault suture synostosis is likely to be more influential on cranial fossae development than other associated influences (genetic, morphologic) in Apert and Crouzon syndromes. Isolated Apert syndrome pathogenesis is associated with an elongation of the anterior cranial fossa length in infants, whereas in Crouzon syndrome, there is a tendency to reduce cranial fossa depth, suggesting individual adaptability in cranial fossae development related to vault synostosis.
Collapse
|
17
|
Cephalocranial Disproportionate Fossa Volume and Normal Skull Base Angle in Pfeiffer Syndrome. J Craniofac Surg 2021; 32:581-586. [PMID: 33704985 DOI: 10.1097/scs.0000000000007203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pfeiffer syndrome is a rare syndromic craniosynostosis disorder, with a wide range of clinical manifestations. This study aims to investigate the structural abnormalities of cranial fossa and skull base development in Pfeiffer patients, to provide an anatomic basis for surgical interventions. METHOD Thirty preoperative CT scans of Pfeiffer syndrome patients were compared to 35 normal controls. Subgroup comparisons, related to differing suture synostosis, were performed. RESULTS Overall, the volume of anterior and middle cranial fossae in Pfeiffer patients were increased by 31% (P < 0.001) and 19% (P = 0.004), versus controls. Volume of the posterior fossa in Pfeiffer patients was reduced by 14% (P = 0.026). When only associated with bicoronal synostosis, Pfeiffer syndrome patients developed enlarged anterior (68%, P = 0.001) and middle (40%, P = 0.031) fossae. However, sagittal synostosis cases only developed an enlarged anterior fossa (47%, P < 0.001). The patients with solely bilateral squamosal synostosis, developed simultaneous reduced anterior, middle and posterior cranial fossae volume (all P ≤ 0.002). The overall skull base angulation, measured on both intracranial and subcranial surfaces, grew normally. CONCLUSION Enlarged anterior cranial fossae in Pfeiffer syndrome children is evident, except for the squamosal synostosis cases which developed reduced volume in all fossae. Volume of the middle cranial fossa is influenced by associated cranial vault suture synostosis, specifically, sagittal synostosis cases develop normal middle fossa volume, while the bicoronal cases develop increased middle fossa volume. Posterior cranial fossa development is restricted by shortened posterior cranial base length. Surgical intervention in Pfeiffer syndrome patients optimally should be indexed to different suture synostosis.
Collapse
|
18
|
Chen J, Tang W, Lin C, Hong Y, Mao C, Lai Y, Liao C, Lin M, Chen W. Defining the critical period of hedgehog pathway inhibitor-induced cranial base dysplasia in mice. Dev Dyn 2021; 250:527-541. [PMID: 33165989 DOI: 10.1002/dvdy.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The hedgehog signaling pathway is critical for developmental patterning of the limb, craniofacial and axial skeleton. Disruption of this pathway in mice leads to a series of structural malformations, but the exact role and critical period of the Hh pathway in the early development of the cranial base have been rarely described. RESULTS Embryos exposed to vismodegib from E7.5, E9.5, and E10.5 had a higher percentage of cranial base fenestra. The peak incidence of hypoplasia in sphenoid winglets and severe craniosynostosis in cranial base synchondroses was observed when vismodegib was administered between E9.5 and E10.5. Cranial base craniosynostosis results from accelerating terminal differentiation of chondrocytes and premature osteogenesis. CONCLUSIONS We define the critical periods for the induction of cranial base deformity by vismodegib administration at a meticulous temporal resolution. Our findings suggest that the Hh pathway may play a vital role in the early development of the cranial base. This research also establishes a novel and easy-to-establish mouse model of synostosis in the cranial base using a commercially available pathway-selective inhibitor.
Collapse
Affiliation(s)
- Jiangping Chen
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenbing Tang
- Department of Stomatology, Central Hospital of Guangdong Nongken, Zhanjiang, Guangdong, China
| | - Chengquan Lin
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuhang Hong
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chuanqing Mao
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Caiyu Liao
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Minkui Lin
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Weihui Chen
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian, China
| |
Collapse
|
19
|
den Ottelander BK, de Goederen R, de Planque CA, Baart SJ, van Veelen MLC, Corel LJA, Joosten KFM, Mathijssen IMJ, Dremmen MHG. Cervical Spinal Cord Compression and Sleep-Disordered Breathing in Syndromic Craniosynostosis. AJNR Am J Neuroradiol 2020; 42:201-205. [PMID: 33272949 DOI: 10.3174/ajnr.a6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Cerebellar tonsillar herniation arises frequently in syndromic craniosynostosis and causes central and obstructive apneas in other diseases through spinal cord compression. The purposes of this study were the following: 1) to determine the prevalence of cervical spinal cord compression in syndromic craniosynostosis, and 2) to evaluate its connection with sleep-disordered breathing. MATERIALS AND METHODS This was a cross-sectional study including patients with syndromic craniosynostosis who underwent MR imaging and polysomnography. Measures encompassed the compression ratio at the level of the odontoid process and foramen magnum and the cervicomedullary angle. MR imaging studies of controls were included. Linear mixed models were developed to compare patients with syndromic craniosynostosis with controls and to evaluate the association between obstructive and central sleep apneas and MR imaging parameters. RESULTS One hundred twenty-two MR imaging scans and polysomnographies in 89 patients were paired; 131 MR imaging scans in controls were included. The mean age at polysomnography was 5.7 years (range, 0.02-18.9 years). The compression ratio at the level of the odontoid process was comparable with that in controls; the compression ratio at the level of the foramen magnum was significantly higher in patients with Crouzon syndrome (+27.1, P < .001). The cervicomedullary angle was significantly smaller in Apert, Crouzon, and Saethre-Chotzen syndromes (-4.4°, P = .01; -10.2°, P < .001; -5.2°, P = .049). The compression ratios at the level of the odontoid process and the foramen magnum, the cervicomedullary angle, and age were not associated with obstructive apneas (P > .05). Only age was associated with central apneas (P = .02). CONCLUSIONS The prevalence of cervical spinal cord compression in syndromic craniosynostosis is low and is not correlated to sleep disturbances. However, considering the high prevalence of obstructive sleep apnea in syndromic craniosynostosis and the low prevalence of compression and central sleep apnea in our study, we would, nevertheless, recommend a polysomnography in case of compression on MR imaging studies.
Collapse
Affiliation(s)
- B K den Ottelander
- From the Dutch Craniofacial Center (B.K.d.O., R.D.G., C.A.d.P., I.M.J.M.), Department of Plastic and Reconstructive Surgery and Hand Surgery
| | - R de Goederen
- From the Dutch Craniofacial Center (B.K.d.O., R.D.G., C.A.d.P., I.M.J.M.), Department of Plastic and Reconstructive Surgery and Hand Surgery
| | - C A de Planque
- From the Dutch Craniofacial Center (B.K.d.O., R.D.G., C.A.d.P., I.M.J.M.), Department of Plastic and Reconstructive Surgery and Hand Surgery
| | - S J Baart
- Department of Biostatistics (S.J.B.), Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - L J A Corel
- Pediatric Intensive Care Unit (L.J.A.C., K.F.M.J.)
| | | | - I M J Mathijssen
- From the Dutch Craniofacial Center (B.K.d.O., R.D.G., C.A.d.P., I.M.J.M.), Department of Plastic and Reconstructive Surgery and Hand Surgery
| | - M H G Dremmen
- Department of Radiology (M.H.G.D.), Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
20
|
Vale F, Francisco I, Lucas A, Roseiro A, Caramelo F, Sobral A. Timing of Spheno-Occipital Synchondrosis Ossification in Children and Adolescents with Cleft Lip and Palate: A Retrospective Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238889. [PMID: 33260492 PMCID: PMC7731241 DOI: 10.3390/ijerph17238889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Background: Cleft lip and palate (CLP) can affect the development of the maxilla; which may create a midfacial deficiency as well as an interference of the facial growth pattern and dentofacial esthetics. Objective: This study aimed to estimate the chronological age of complete fusion of the spheno-occipital synchondrosis (SOS) in cleft lip and palate patients and a control group; using cone beam computed tomography (CBCT) images. Methods: In this retrospective study; 125 patients were enrolled (cleft lip and palate group (n = 91); control group (n = 34)). Age comparison was made with a chi-square test; and a Kaplan–Meier analysis determined the median time to reach complete fusion of the spheno-occipital synchondrosis (p < 0.05). Results: The experimental group showed statistically significant differences in the median time for complete ossification between males and females (p = 0.019). The median time for complete ossification of the spheno-occipital synchondrosis was; for males; 15.0 years in both groups; for females; it was 14.0 years and 13.0 years in the experimental group and in the control group; respectively. Both for males and females; there were no statistically significant differences between experimental and control groups (p = 0.104). Conclusions: The present study showed no differences in the ossification of the spheno-occipital synchondrosis between individuals with and without cleft lip and/or palate.
Collapse
Affiliation(s)
- Francisco Vale
- Faculty of Medicine, Institute of Orthodontics, University of Coimbra, 3000-075 Coimbra, Portugal; (I.F.); (A.L.); (A.R.); (A.S.)
- Correspondence:
| | - Inês Francisco
- Faculty of Medicine, Institute of Orthodontics, University of Coimbra, 3000-075 Coimbra, Portugal; (I.F.); (A.L.); (A.R.); (A.S.)
| | - António Lucas
- Faculty of Medicine, Institute of Orthodontics, University of Coimbra, 3000-075 Coimbra, Portugal; (I.F.); (A.L.); (A.R.); (A.S.)
| | - Ana Roseiro
- Faculty of Medicine, Institute of Orthodontics, University of Coimbra, 3000-075 Coimbra, Portugal; (I.F.); (A.L.); (A.R.); (A.S.)
| | - Francisco Caramelo
- Faculty of Medicine, Institute of Clinical and Biomedical Research of Coimbra (iCBR), University of Coimbra, 3000-075 Coimbra, Portugal;
| | - Adriana Sobral
- Faculty of Medicine, Institute of Orthodontics, University of Coimbra, 3000-075 Coimbra, Portugal; (I.F.); (A.L.); (A.R.); (A.S.)
| |
Collapse
|
21
|
Abstract
PURPOSE It is known from both anatomic and radiographic studies that the majority of cranial sutures begin fusing in early adulthood and are fused by late adulthood. However, most of the studies focus on the cranial vault rather than the cranial base. Most clinicians treating patients with craniosynostosis are interpreting the behavior of cranial sutures on CT imaging. Therefore, the purpose of this study was to further clarify the radiographic appearance of cranial base sutures over the natural human life span. METHODS Thirty CT scans of the head and face were reviewed for each decade starting at 1 year of life up to age 90. Scans were evaluated for the appearance of the occipitomastoid, petrosoocciptial, sphenosquamous, sphenopetrosal, frontosphenoidal, sphenozygomatic, petrososquamosal, frontoethmoidal, sphenoethmoidal and sphenoccipital sutures. Sutures were categorized as obliterated, present with fusion, present without fusion and unable to visualize. RESULTS The majority of cranial base sutures are visible up through the eighth decade, although evidence of ossification across the suture starts as early as the second decade. Some sutures such as the occipitomastoid appeared > 90% open even as late as the ninth decade. Other sutures such as the sphenosquamosal and frontozygomatic are mostly fused by that age. CONCLUSION Cranial base sutures appear to behave radiographically similar, to the cranial vault sutures in that they largely remain visible throughout adulthood but show varying amounts of ossification. There are some cranial base sutures which appear to remain open throughout life although the significance of this has yet to be determined.
Collapse
|
22
|
Tonello C, Cevidanes LHS, Ruellas ACO, Alonso N. Midface Morphology and Growth in Syndromic Craniosynostosis Patients Following Frontofacial Monobloc Distraction. J Craniofac Surg 2020; 32:87-91. [PMID: 33136785 DOI: 10.1097/scs.0000000000006997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Facial advancement represents the essence of the surgical treatment of syndromic craniosynostosis. Frontofacial monobloc distraction is an effective surgical approach to correct midface retrusion although someone consider it very hazardous procedure. The authors evaluated a group of patients who underwent frontofacial monobloc distraction with the aim to identify the advancement results performed in immature skeletal regarding the midface morphologic characteristics and its effects on growth. METHODS Sixteen patients who underwent frontofacial monobloc distraction with pre- and postsurgical computed tomography (CT) scans were evaluated and compared to a control group of 9 nonsyndromic children with CT scans at 1-year intervals during craniofacial growth. Three-dimensional measurements and superimposition of the CT scans were used to evaluate midface morphologic features and longitudinal changes during the craniofacial growth and following the advancement. Presurgical growth was evaluated in 4 patients and postsurgical growth was evaluated in 9 patients. RESULTS Syndromic maxillary width and length were reduced and the most obtuse facial angles showed a lack in forward projection of the central portion in these patients. Three-dimensional distances and images superimposition demonstrated the age did not influence the course of abnormal midface growth. CONCLUSION The syndromic midface is hypoplastic and the sagittal deficiency is associated to axial facial concavity. The advancement performed in mixed dentition stages allowed the normalization of facial position comparable to nonsyndromic group. However, the procedure was not able to change the abnormal midface architecture and craniofacial growth.
Collapse
Affiliation(s)
- Cristiano Tonello
- Craniofacial Department, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, São Paulo, Brazil
| | - Lucia H S Cevidanes
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Antonio C O Ruellas
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI.,Federal University of Rio de Janeiro, Rio de Janeiro
| | - Nivaldo Alonso
- Department of Plastic Surgery, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
What Is the Difference in Cranial Base Morphology in Isolated and Syndromic Bicoronal Synostosis? Plast Reconstr Surg 2020; 146:599-610. [DOI: 10.1097/prs.0000000000007068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Friedrich RE, Kohlrusch FK, Grzyska U. Vestiges of Ossified Spheno-occipital Suture in an Elderly Patient With Down Syndrome and Lateral Skull Base Fracture. In Vivo 2020; 34:1427-1432. [PMID: 32354941 DOI: 10.21873/invivo.11924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Down syndrome (DS) patients often show characteristic changes in the skull, e.g. short cranial base. The synchondroses of the skull base have a significant influence on the shape of the skull. The sphenooccipital synchondrosis (SOS) is the last of the basal synchondroses to ossify. This report is about residual ossification of SOS in an elderly patient with DS. CASE REPORT The 65-year-old DS patient was polytraumatized by a fall. In the course of treatment, a purulent otitis externa on the right side was diagnosed, which had developed as a result of the fracture of the fossa glenoidalis. Computed tomograms of the skull base showed the fracture of the mandibular condyle, glenoid fossa and vestiges of SOS. CONCLUSION The coincidental finding of vestiges of SOS in an elderly patient with DS raises the question of whether cross-sectional skull base images can show differences in the ossification of SOS between DS patients and a normal population.
Collapse
Affiliation(s)
- Reinhard E Friedrich
- Department of Oral and Craniomaxillofacial Surgery, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany
| | - Felix K Kohlrusch
- Department of Oral and Craniomaxillofacial Surgery, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany
| | - Ulrich Grzyska
- Department of Neuroradiology, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany
| |
Collapse
|
25
|
den Ottelander BK, de Goederen R, van Veelen MLC, van de Beeten SDC, Lequin MH, Dremmen MHG, Loudon SE, Telleman MAJ, de Gier HHW, Wolvius EB, Tjoa STH, Versnel SL, Joosten KFM, Mathijssen IMJ. Muenke syndrome: long-term outcome of a syndrome-specific treatment protocol. J Neurosurg Pediatr 2019; 24:415-422. [PMID: 31323628 DOI: 10.3171/2019.5.peds1969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The authors evaluated the long-term outcome of their treatment protocol for Muenke syndrome, which includes a single craniofacial procedure. METHODS This was a prospective observational cohort study of Muenke syndrome patients who underwent surgery for craniosynostosis within the first year of life. Symptoms and determinants of intracranial hypertension were evaluated by longitudinal monitoring of the presence of papilledema (fundoscopy), obstructive sleep apnea (OSA; with polysomnography), cerebellar tonsillar herniation (MRI studies), ventricular size (MRI and CT studies), and skull growth (occipital frontal head circumference [OFC]). Other evaluated factors included hearing, speech, and ophthalmological outcomes. RESULTS The study included 38 patients; 36 patients underwent fronto-supraorbital advancement. The median age at last follow-up was 13.2 years (range 1.3-24.4 years). Three patients had papilledema, which was related to ophthalmological disorders in 2 patients. Three patients had mild OSA. Three patients had a Chiari I malformation, and tonsillar descent < 5 mm was present in 6 patients. Tonsillar position was unrelated to papilledema, ventricular size, or restricted skull growth. Ten patients had ventriculomegaly, and the OFC growth curve deflected in 3 patients. Twenty-two patients had hearing loss. Refraction anomalies were diagnosed in 14/15 patients measured at ≥ 8 years of age. CONCLUSIONS Patients with Muenke syndrome treated with a single fronto-supraorbital advancement in their first year of life rarely develop signs of intracranial hypertension, in accordance with the very low prevalence of its causative factors (OSA, hydrocephalus, and restricted skull growth). This illustrates that there is no need for a routine second craniofacial procedure. Patient follow-up should focus on visual assessment and speech and hearing outcomes.
Collapse
Affiliation(s)
- Bianca K den Ottelander
- Departments of1Plastic and Reconstructive Surgery and Hand Surgery, Dutch Craniofacial Center, and
| | - Robbin de Goederen
- Departments of1Plastic and Reconstructive Surgery and Hand Surgery, Dutch Craniofacial Center, and
| | | | | | - Maarten H Lequin
- 3Department of Radiology, University Medical Center-Wilhelmina Children's Hospital, Utrecht; and
| | | | | | | | | | - Eppo B Wolvius
- 7Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics; and
| | - Stephen T H Tjoa
- 7Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics; and
| | - Sarah L Versnel
- Departments of1Plastic and Reconstructive Surgery and Hand Surgery, Dutch Craniofacial Center, and
| | - Koen F M Joosten
- 8Pediatric Intensive Care Unit, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Irene M J Mathijssen
- Departments of1Plastic and Reconstructive Surgery and Hand Surgery, Dutch Craniofacial Center, and
| |
Collapse
|
26
|
The growth of the posterior cranial fossa in FGFR2-induced faciocraniosynostosis: A review. Neurochirurgie 2019; 65:221-227. [PMID: 31557489 DOI: 10.1016/j.neuchi.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/25/2019] [Accepted: 09/12/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND The growth of the posterior fossa in syndromic craniostenosis was studied in many papers. However, few studies described the pathophysiological growth mechanisms in non-operated infants with fibroblast growth factor receptor (FGFR) type 2 mutation (Crouzon, Apert or Pfeiffer syndrome), although these are essential to understanding cranial vault expansion and hydrocephalus treatment in these syndromes. OBJECTIVE A review of the medical literature was performed, to understand the physiological and pathological growth mechanisms of the posterior fossa in normal infants and infants with craniostenosis related to FGFR2 mutation. DISCUSSION Of the various techniques for measuring posterior fossa volume, direct slice-by-slice contouring is the most precise and sensitive. Posterior fossa growth follows a bi-phasic pattern due to opening of the petro-occipital, occipitomastoidal and spheno-occipital sutures. Some studies reported smaller posterior fossae in syndromic craniostenosis, whereas direct contouring studies reported no difference between normal and craniostenotic patients. In Crouzon syndrome, synchondrosis fusion occurs earlier than in normal subjects, and follows a precise pattern. This premature fusion in Crouzon syndrome leads to a stenotic foramen magnum and facial retrusion.
Collapse
|
27
|
Effects of nicotine exposure on murine mandibular development. PLoS One 2019; 14:e0218376. [PMID: 31194840 PMCID: PMC6564027 DOI: 10.1371/journal.pone.0218376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Nicotine is known to affect cell proliferation and differentiation, two processes vital to proper development of the mandible. The mandible, the lower jaw in mammals and fish, plays a crucial role in craniofacial development. Malformation of the jaw can precipitate a plethora of complications including disrupting development of the upper jaw, the palate, and or impeding airway function. The purpose of this study was to test the hypothesis that in utero nicotine exposure alters the development of the murine mandible in a dose dependent manner. To test this hypothesis, wild type C57BL6 mice were used to produce in utero nicotine exposed litters by adding nicotine to the drinking water of pregnant dams at concentrations of 0 μg/ml (control), 50 μg/ml (low), 100 μg/ml (medium), 200 μg/ml (high) throughout pregnancy to birth of litters mimicking clinically relevant nicotine exposures. Resultant pups revealed no significant differences in body weight however, cephalometric investigation revealed several dimensions affected by nicotine exposure including mandibular ramus height, mandibular body height, and molar length. Histological investigation of molars revealed an increase in proliferation and a decrease in apoptosis with nicotine exposure. These results demonstrate the direct effects of nicotine on the developing mandible outside the context of tobacco use, indicating that nicotine use including tobacco alternatives, cessation methods, and electronic nicotine delivering products may disrupt normal growth and development of the craniofacial complex.
Collapse
|
28
|
Chen W, Gardner PA, Branstetter BF, Liu SD, Chang YF, Snyderman CH, Goldstein JA, Tyler-Kabara EC, Schuster LA. Long-term impact of pediatric endoscopic endonasal skull base surgery on midface growth. J Neurosurg Pediatr 2019; 23:523-530. [PMID: 30641836 DOI: 10.3171/2018.8.peds18183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/29/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cranial base development plays a large role in anterior and vertical maxillary growth through 7 years of age, and the effect of early endonasal cranial base surgery on midface growth is unknown. The authors present their experience with pediatric endoscopic endonasal surgery (EES) and long-term midface growth. METHODS This is a retrospective review of cases where EES was performed from 2000 to 2016. Patients who underwent their first EES of the skull base before age 7 (prior to cranial suture fusion) and had a complete set of pre- and postoperative imaging studies (CT or MRI) with at least 1 year of follow-up were included. A radiologist performed measurements (sella-nasion [S-N] distance and angles between the sella, nasion, and the most concave points of the anterior maxilla [A point] or anterior mandibular synthesis [B point], the SNA, SNB, and ANB angles), which were compared to age- and sex-matched Bolton standards. A Z-score test was used; significance was set at p < 0.05. RESULTS The early surgery group had 11 patients, with an average follow-up of 5 years; the late surgery group had 33 patients. Most tumors were benign; 1 patient with a panclival arteriovenous malformation was a significant outlier for all measurements. Comparing the measurements obtained in the early surgery group to Bolton standard norms, the authors found no significant difference in postoperative SNA (p = 0.10), SNB (p = 0.14), or ANB (0.67) angles. The S-N distance was reduced both pre- and postoperatively (SD 1.5, p = 0.01 and p = 0.009). Sex had no significant effect. Compared to patients who had surgery after the age of 7 years, the early surgery group demonstrated no significant difference in pre- to postoperative changes with regard to S-N distance (p = 0.87), SNA angle (p = 0.89), or ANB angle (p = 0.14). Lesion type (craniopharyngioma, angiofibroma, and other types) had no significant effect in either age group. CONCLUSIONS Though our cohort of patients with skull base lesions demonstrated some abnormal measurements in the maxillary-mandibular relationship before their operation, their postoperative cephalometrics fell within the normal range and showed no significant difference from those of patients who underwent operations at an older age. Therefore, there appears to be no evidence of impact of endoscopic endonasal skull base surgery on craniofacial development within the growth period studied.
Collapse
Affiliation(s)
| | - Paul A Gardner
- 2Neurosurgery
- 3Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Shih-Dun Liu
- 5University of Pittsburgh School of Medicine; and
| | | | | | | | | | | |
Collapse
|
29
|
Durham E, Howie RN, Warren G, LaRue A, Cray J. Direct Effects of Nicotine Exposure on Murine Calvaria and Calvarial Cells. Sci Rep 2019; 9:3805. [PMID: 30846819 PMCID: PMC6405741 DOI: 10.1038/s41598-019-40796-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/22/2019] [Indexed: 01/03/2023] Open
Abstract
Despite the link between adverse birth outcomes due to pre- and peri-natal nicotine exposure, research suggests 11% of US women continue to smoke or use alternative nicotine products throughout pregnancy. Maternal smoking has been linked to incidence of craniofacial anomalies. We hypothesized that pre-natal nicotine exposure may directly alter craniofacial development independent of the other effects of cigarette smoking. To test this hypothesis, we administered pregnant C57BL6 mice drinking water supplemented with 0, 50, 100 or 200 μg/ml nicotine throughout pregnancy. On postnatal day 15 pups were sacrificed and skulls underwent micro-computed tomography (µCT) and histological analyses. Specific nicotinic acetylcholine receptors, α3, α7, β2, β4 were identified within the calvarial growth sites (sutures) and centers (synchondroses). Exposing murine calvarial suture derived cells and isotype cells to relevant circulating nicotine levels alone and in combination with nicotinic receptor agonist and antagonists resulted in cell specific effects. Most notably, nicotine exposure increased proliferation in calvarial cells, an effect that was modified by receptor agonist and antagonist treatment. Currently it is unclear what component(s) of cigarette smoke is causative in birth defects, however these data indicate that nicotine alone is capable of disrupting growth and development of murine calvaria.
Collapse
Affiliation(s)
- Emily Durham
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Graham Warren
- Departments of Radiation Oncology and Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Amanda LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 99 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - James Cray
- Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, 279 Hamilton Hall, 1645 Neil Ave, Columbus, Ohio, 43210, USA.
| |
Collapse
|
30
|
Katsube M, Yamada S, Yamaguchi Y, Takakuwa T, Yamamoto A, Imai H, Saito A, Shimizu A, Suzuki S. Critical Growth Processes for the Midfacial Morphogenesis in the Early Prenatal Period. Cleft Palate Craniofac J 2019; 56:1026-1037. [PMID: 30773047 DOI: 10.1177/1055665619827189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Congenital midfacial hypoplasia often requires intensive treatments and is a typical condition for the Binder phenotype and syndromic craniosynostosis. The growth trait of the midfacial skeleton during the early fetal period has been assumed to be critical for such an anomaly. However, previous embryological studies using 2-dimensional analyses and specimens during the late fetal period have not been sufficient to reveal it. OBJECTIVE To understand the morphogenesis of the midfacial skeleton in the early fetal period via 3-dimensional quantification of the growth trait and investigation of the developmental association between the growth centers and midface. METHODS Magnetic resonance images were obtained from 60 human fetuses during the early fetal period. Three-dimensional shape changes in the craniofacial skeleton along growth were quantified and visualized using geometric morphometrics. Subsequently, the degree of development was computed. Furthermore, the developmental association between the growth centers and the midfacial skeleton was statistically investigated and visualized. RESULTS The zygoma expanded drastically in the anterolateral dimension, and the lateral part of the maxilla developed forward until approximately 13 weeks of gestation. The growth centers such as the nasal septum and anterior portion of the sphenoid were highly associated with the forward growth of the midfacial skeleton (RV = 0.589; P < .001). CONCLUSIONS The development of the midface, especially of the zygoma, before 13 weeks of gestation played an essential role in the midfacial development. Moreover, the growth centers had a strong association with midfacial forward growth before birth.
Collapse
Affiliation(s)
- Motoki Katsube
- 1 Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigehito Yamada
- 2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,3 Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Yamaguchi
- 2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Takakuwa
- 3 Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Yamamoto
- 4 Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohiko Imai
- 5 Department of Systems Science, Kyoto University Graduate School of Informatics, Kyoto, Japan
| | - Atsushi Saito
- 6 Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akinobu Shimizu
- 6 Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shigehiko Suzuki
- 1 Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
31
|
Yang JH, Cha BK, Choi DS, Park JH, Jang I. Time and pattern of the fusion of the spheno-occipital synchondrosis in patients with skeletal Class I and Class III malocclusion. Angle Orthod 2018; 89:470-479. [PMID: 30516418 DOI: 10.2319/052218-386.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To investigate the time and pattern of fusion of the spheno-occipital synchondrosis in patients with skeletal Class I and Class III malocclusion using cone-beam computed tomography (CBCT). MATERIALS AND METHODS A total of 262 CBCT images were collected: 140 skeletal Class I (0° < ANB < 4°; 71 males, 69 females) and 122 skeletal Class III (ANB ≤ 0°; 61 males and 61 females). The fusion stages were identified using CBCT images of a six-stage system defined by the appearance of osseous cores and ossifying vestige in the synchondrosis. The age distributions of each stage and the pattern of fusion were evaluated. RESULTS The stages of fusion progressed with increasing age (P < .05, r = .824), and the age distributions in the female groups were generally 1 to 3 years younger than those in the male groups. However, no significant differences were observed between the skeletal Class I and Class III groups regarding the time of ossification of the synchondrosis. The osseous cores appeared most frequently in the supero-center part, followed by the mid-center part of the synchondrosis. CONCLUSIONS The time and pattern of fusion of the spheno-occipital synchondrosis are not apparently different between patients with Class I malocclusion and those with Class III malocclusion. The osseous cores appear frequently in the supero-center and mid-center of the synchondrosis with various patterns before the end of the pubertal growth spurt period.
Collapse
|
32
|
Mansour TA, Lucot K, Konopelski SE, Dickinson PJ, Sturges BK, Vernau KL, Choi S, Stern JA, Thomasy SM, Döring S, Verstraete FJM, Johnson EG, York D, Rebhun RB, Ho HYH, Brown CT, Bannasch DL. Whole genome variant association across 100 dogs identifies a frame shift mutation in DISHEVELLED 2 which contributes to Robinow-like syndrome in Bulldogs and related screw tail dog breeds. PLoS Genet 2018; 14:e1007850. [PMID: 30521570 PMCID: PMC6303079 DOI: 10.1371/journal.pgen.1007850] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/21/2018] [Accepted: 11/24/2018] [Indexed: 12/30/2022] Open
Abstract
Domestic dog breeds exhibit remarkable morphological variations that result from centuries of artificial selection and breeding. Identifying the genetic changes that contribute to these variations could provide critical insights into the molecular basis of tissue and organismal morphogenesis. Bulldogs, French Bulldogs and Boston Terriers share many morphological and disease-predisposition traits, including brachycephalic skull morphology, widely set eyes and short stature. Unlike other brachycephalic dogs, these breeds also exhibit vertebral malformations that result in a truncated, kinked tail (screw tail). Whole genome sequencing of 100 dogs from 21 breeds identified 12.4 million bi-allelic variants that met inclusion criteria. Whole Genome Association of these variants with the breed defining phenotype of screw tail was performed using 10 cases and 84 controls and identified a frameshift mutation in the WNT pathway gene DISHEVELLED 2 (DVL2) (Chr5: 32195043_32195044del, p = 4.37 X 10-37) as the most strongly associated variant in the canine genome. This DVL2 variant was fixed in Bulldogs and French Bulldogs and had a high allele frequency (0.94) in Boston Terriers. The DVL2 variant segregated with thoracic and caudal vertebral column malformations in a recessive manner with incomplete and variable penetrance for thoracic vertebral malformations between different breeds. Importantly, analogous frameshift mutations in the human DVL1 and DVL3 genes cause Robinow syndrome, a congenital disorder characterized by similar craniofacial, limb and vertebral malformations. Analysis of the canine DVL2 variant protein showed that its ability to undergo WNT-induced phosphorylation is reduced, suggesting that altered WNT signaling may contribute to the Robinow-like syndrome in the screwtail breeds.
Collapse
Affiliation(s)
- Tamer A. Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- Department of Clinical Pathology, School of Medicine, University of Mansoura, Mansoura Egypt
| | - Katherine Lucot
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA, United States of America
| | - Sara E. Konopelski
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA, United States of America
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Beverly K. Sturges
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Karen L. Vernau
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Shannon Choi
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA, United States of America
| | - Joshua A. Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Sophie Döring
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Frank J. M. Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Eric G. Johnson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Daniel York
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Robert B. Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA, United States of America
| | - C. Titus Brown
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- Genome Center, University of California Davis, Davis, CA, United States of America
| | - Danika L. Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- Genome Center, University of California Davis, Davis, CA, United States of America
| |
Collapse
|
33
|
Lu X, Forte AJ, Sawh-Martinez R, Wu R, Cabrejo R, Steinbacher DM, Alperovich M, Alonso N, Persing JA. Normal angulation of skull base in Apert syndrome. J Craniomaxillofac Surg 2018; 46:2042-2051. [DOI: 10.1016/j.jcms.2018.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/31/2018] [Accepted: 09/24/2018] [Indexed: 11/17/2022] Open
|
34
|
Neubauer S, Gunz P, Leakey L, Leakey M, Hublin JJ, Spoor F. Reconstruction, endocranial form and taxonomic affinity of the early Homo calvaria KNM-ER 42700. J Hum Evol 2018; 121:25-39. [DOI: 10.1016/j.jhevol.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
|
35
|
|
36
|
Reduced Intercarotid Artery Distance in Syndromic and Isolated Brachycephaly. Pediatr Neurol 2018; 79:3-7. [PMID: 29290519 DOI: 10.1016/j.pediatrneurol.2017.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The morphology of the skull base can be altered in craniosynostoses. The objective of this study is to evaluate the reduced intercarotid artery distance in the lacerum segment in patients with syndromic and isolated brachycephaly. MATERIALS AND METHODS The distances between the inner walls of the carotid canal at the lacerum segment were measured on high-resolution CT scans in children with Crouzon (25), Pfeiffer (21), Apert (26), Saethre-Chotzen (7) syndromes, isolated bicoronal synostosis (9), and compared to an age-matched control group (30). RESULTS A significantly smaller mean distance between carotid canal walls was observed in Crouzon (11.1 ± 4.9 mm), Pfeiffer (9.6 ± 5.1 mm), Apert (12.3 ± 4.3 mm), Saethre-Chotzen (14.8 ± 3.0 mm) syndromes, and isolated bicoronal synostosis (14.9 ± 3.7 mm) as compared to the control group (19.7 ± 2.4 mm, P < 0.001, P < 0.001, P < 0.001, P = 0.005, and P = 0.002, respectively). There was no statistically significant difference in intercarotid canal distance among the Apert, Saethre-Chotzen and isolated bicoronal synostosis groups. Overall, the brachycephalic group showed reduced intercarotid canal distance comparing to controls (P < 0.001). DISCUSSION AND CONCLUSIONS There is significant reduction of the distance between carotid canals in brachycephalic patients. This distance is more significantly altered in FGFR-related brachycephaly syndromes (especially Crouzon and Pfeiffer syndromes), than Saethre-Chotzen syndrome (TWIST1 mutation) and isolated non-syndromic bicoronal synostosis. This study highlights the importance of FGFRs in shaping the skull base. Altered vascular course of the internal carotid arteries can have important implications in planning skull base surgery in brachycephalic patients.
Collapse
|
37
|
Pattern of Closure of Skull Base Synchondroses in Crouzon Syndrome. World Neurosurg 2018; 109:e460-e467. [DOI: 10.1016/j.wneu.2017.09.208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 12/18/2022]
|
38
|
|
39
|
Durham E, Howie RN, Parsons T, Bennfors G, Black L, Weinberg SM, Elsalanty M, Yu JC, Cray JJ. Thyroxine Exposure Effects on the Cranial Base. Calcif Tissue Int 2017; 101:300-311. [PMID: 28391432 PMCID: PMC5545063 DOI: 10.1007/s00223-017-0278-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/03/2017] [Indexed: 01/19/2023]
Abstract
Thyroid hormone is important for skull bone growth, which primarily occurs at the cranial sutures and synchondroses. Thyroid hormones regulate metabolism and act in all stages of cartilage and bone development and maintenance by interacting with growth hormone and regulating insulin-like growth factor. Aberrant thyroid hormone levels and exposure during development are exogenous factors that may exacerbate susceptibility to craniofacial abnormalities potentially through changes in growth at the synchondroses of the cranial base. To elucidate the direct effect of in utero therapeutic thyroxine exposure on the synchondroses in developing mice, we provided scaled doses of the thyroid replacement drug, levothyroxine, in drinking water to pregnant C57BL6 wild-type dams. The skulls of resulting pups were subjected to micro-computed tomography analysis revealing less bone volume relative to tissue volume in the synchondroses of mouse pups exposed in utero to levothyroxine. Histological assessment of the cranial base area indicated more active synchondroses as measured by metabolic factors including Igf1. The cranial base of the pups exposed to high levels of levothyroxine also contained more collagen fiber matrix and an increase in markers of bone formation. Such changes due to exposure to exogenous thyroid hormone may drive overall morphological changes. Thus, excess thyroid hormone exposure to the fetus during pregnancy may lead to altered craniofacial growth and increased risk of anomalies in offspring.
Collapse
Affiliation(s)
- Emily Durham
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, BS 230B, Charleston, SC, 29425, USA
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, BS 230B, Charleston, SC, 29425, USA
| | - Trish Parsons
- Department of Oral Biology, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15213, USA
| | - Grace Bennfors
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, BS 230B, Charleston, SC, 29425, USA
| | - Laurel Black
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, BS 230B, Charleston, SC, 29425, USA
| | - Seth M Weinberg
- Department of Oral Biology, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15213, USA
| | - Mohammed Elsalanty
- Departments of Oral Biology, Cellular Biology and Anatomy, Orthopaedic Surgery and Oral and Maxillofacial Surgery, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Institute for Regenerative and Reparative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jack C Yu
- Institute for Regenerative and Reparative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Division of Plastic Surgery, Department of Surgery, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, BS 230B, Charleston, SC, 29425, USA.
| |
Collapse
|
40
|
Driessen C, Rijken BF, Doerga PN, Dremmen MH, Joosten KF, Mathijssen IM. The effect of early fusion of the spheno-occipital synchondrosis on midface hypoplasia and obstructive sleep apnea in patients with Crouzon syndrome. J Craniomaxillofac Surg 2017; 45:1069-1073. [DOI: 10.1016/j.jcms.2017.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022] Open
|
41
|
Assessing the midface in Muenke syndrome: A cephalometric analysis and review of the literature. J Plast Reconstr Aesthet Surg 2016; 69:1285-90. [PMID: 27449747 DOI: 10.1016/j.bjps.2016.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Max Muenke included midface hypoplasia as part of the clinical syndrome caused by the Pro250Arg FGFR3 mutation that now bears his name. Murine models have demonstrated midface hypoplasia in homozygous recessive mice only, with heterozygotes having normal midfaces; as the majority of humans with the syndrome are heterozygotes, we investigated the incidence of midface hypoplasia in our institution's clinical cohort. METHODS We retrospectively reviewed all patients with a genetic and clinical diagnosis of Muenke syndrome from 1990 to 2014. Review of clinical records and photographs included skeletal Angle Class, dental occlusion, and incidence of orthognathic intervention. Cephalometric evaluation of our patients was compared to the Eastman Standard Values. RESULTS 18 patients met inclusion criteria - 7 females and 11 males, with average follow-up of 11.2 years (1.0-23.1). Cephalometric analysis revealed an average sella-nasion-A point angle (SNA) of 82.5 (67.8-88.8) and an average sella-nasion-B point angle (SNB) of 77.9 (59.6-84.1). The SNA of our cohort was found to be significantly different from the Eastman Standards (p = 0.017); subgroup analysis revealed that this was due to the mixed dentition group which had a higher than average SNA. 12 patients were noted to be in Class I occlusion, 4 in Class II malocclusion, and 2 in Class III malocclusion. Only one patient (6%) underwent orthognathic surgery for Class III malocclusion. CONCLUSIONS While a part of the original description of Muenke syndrome, clinically significant midface hypoplasia is not a common feature. This data is important, as it allows more accurate counseling of patients and families. LEVEL OF EVIDENCE III.
Collapse
|
42
|
Li J, Li S. The Phenotypes of Spheno-Occipital Synchondrosis in Patients With Crouzon Syndrome. J Craniofac Surg 2016; 27:1244-6. [DOI: 10.1097/scs.0000000000002732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Orbital Dysmorphology in Untreated Children with Crouzon and Apert Syndromes. Plast Reconstr Surg 2015; 136:1054-1062. [DOI: 10.1097/prs.0000000000001693] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Brown MS, Okada H, Valiathan M, Lakin GE. 45 Years of Simultaneous Le Fort III and Le Fort I Osteotomies: A Systematic Literature Review. Cleft Palate Craniofac J 2015; 52:471-9. [DOI: 10.1597/14-005r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective To review and collectively summarize our knowledge of simultaneous Le Fort III and Le Fort I osteotomies. Design A PubMed search using “Le Fort III,” “simultaneous Le Fort III and Le Fort I,” “combined Le Fort III and Le Fort I,” “dual midface,” and “segmental midface” was performed. Articles with relevant abstracts were obtained for formal review. A new case of simultaneous Le Fort III and Le Fort I is presented to describe and discuss specific operative indications and surgical decisions. Results There were 14 articles that met inclusion criteria with reports of simultaneous Le Fort III and Le Fort I osteotomies. A total of 20 cases were present in the literature. No major complications were reported. We performed combined Le Fort III with Le Fort I osteotomies in a 25-year-old patient with Crouzon syndrome who had undergone a previous Le Fort III at the age of 4 years. The patient tolerated the procedure well, and postoperatively, her exophthalmos and class III malocclusion were corrected. Conclusions Simultaneous Le Fort III and Le Fort I can correct differential upper and lower midface hypoplasia and is a well-tolerated procedure in the mature facial skeleton. This systematic review improves our understanding of the surgical technique and indications for a procedure that can correct complex midfacial deformities.
Collapse
Affiliation(s)
- Matthew S. Brown
- Department of Orthodontics, Case Western Reserve University, Cleveland, Ohio
| | - Haruko Okada
- Department of Orthodontics, Case Western Reserve University, Cleveland, Ohio
| | - Manish Valiathan
- Department of Orthodontics, Case Western Reserve University, Cleveland, Ohio
| | - Gregory E. Lakin
- Department of Plastic Surgery, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
45
|
Ekizoglu O, Hocaoglu E, Can IO, Inci E, Aksoy S, Sayin I. Spheno-occipital synchondrosis fusion degree as a method to estimate age: a preliminary, magnetic resonance imaging study. AUST J FORENSIC SCI 2015. [DOI: 10.1080/00450618.2015.1042047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
The formation of the foramen magnum and its role in developing ventriculomegaly and Chiari I malformation in children with craniosynostosis syndromes. J Craniomaxillofac Surg 2015; 43:1042-8. [PMID: 26051848 DOI: 10.1016/j.jcms.2015.04.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECT Craniosynostosis syndromes are characterized by prematurely fused skull sutures, however, less is known about skull base synchondroses. This study evaluates how foramen magnum (FM) size, and closure of its intra-occipital synchondroses (IOS) differ between patients with different craniosynostosis syndromes and control subjects; and whether this correlates to ventriculomegaly and/or Chiari malformation type I (CMI), intracranial disturbances often described in these patients. METHODS Surface area and anterior-posterior (A-P) diameter were measured in 175 3D-CT scans of 113 craniosynostosis patients, and in 53 controls (0-10 years old). Scans were aligned in a 3D multiplane-platform. The frontal and occipital horn ratio was used as an indicator of ventricular volume, and the occurrence of CMI was recorded. Synchondroses were studied in scans with a slice thickness ≤1.25 mm. A generalized linear mixed model and a repeated measures ordinal logistic regression model were used to study differences. RESULTS At birth, patients with craniosynostosis syndromes have a smaller FM than controls (p < 0.05). This is not related to the presence of CMI (p = 0.36). In Crouzon-Pfeiffer patients the anterior and posterior IOS fused prematurely (p < 0.01), and in Apert patients only the posterior IOS fused prematurely (p = 0.028). CONCLUSION The FM is smaller in patients with craniosynostosis syndromes than in controls, and is already smaller at birth. In addition to the timing of IOS closure, other factors may influence FM size.
Collapse
|
47
|
Earlier Evidence of Spheno-Occipital Synchondrosis Fusion Correlates with Severity of Midface Hypoplasia in Patients with Syndromic Craniosynostosis. Plast Reconstr Surg 2014; 134:504-510. [DOI: 10.1097/prs.0000000000000419] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
|
49
|
The Spheno-Occipital Synchondrosis Fuses Prematurely in Patients With Crouzon Syndrome and Midface Hypoplasia Compared With Age- and Gender-Matched Controls. J Oral Maxillofac Surg 2014; 72:1173-9. [DOI: 10.1016/j.joms.2013.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
50
|
Heuzé Y, Singh N, Basilico C, Jabs EW, Holmes G, Richtsmeier JT. Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in neural crest- or mesoderm-derived tissues. Bone 2014; 63:101-9. [PMID: 24632501 PMCID: PMC4018479 DOI: 10.1016/j.bone.2014.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 11/20/2022]
Abstract
Bones of the craniofacial skeleton are derived from two distinct cell lineages, cranial neural crest and mesoderm, and articulate at sutures and synchondroses which represent major bone growth sites. Premature fusion of cranial suture(s) is associated with craniofacial dysmorphogenesis caused in part by alteration in the growth potential at sutures and can occur as an isolated birth defect or as part of a syndrome, such as Apert syndrome. Conditional expression of the Apert FGFR2 S252W mutation in cells derived from mesoderm was previously shown to be necessary and sufficient to cause coronal craniosynostosis. Here we used micro computed tomography images of mice expressing the Apert mutation constitutively in either mesoderm- or neural crest-derived cells to quantify craniofacial shape variation and suture fusion patterns, and to identify shape changes in craniofacial bones derived from the lineage not expressing the mutation, referred to here as secondary shape changes. Our results show that at postnatal day 0: (i) conditional expression of the FGFR2 S252W mutation in neural crest-derived tissues causes a more severe craniofacial phenotype than when expressed in mesoderm-derived tissues; and (ii) both mesoderm- and neural crest-specific mouse models display secondary shape changes. We also show that premature suture fusion is not necessarily dependent on the expression of the FGFR2 S252W mutation in the sutural mesenchyme. More specifically, it appears that suture fusion patterns in both mouse models are suture-specific resulting from a complex combination of the influence of primary abnormalities of biogenesis or signaling within the sutures, and timing.
Collapse
Affiliation(s)
- Yann Heuzé
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Nandini Singh
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Claudio Basilico
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|