1
|
Edwards ESJ, Bosco JJ, Aui PM, Stirling RG, Cameron PU, Chatelier J, Hore-Lacy F, O'Hehir RE, van Zelm MC. Predominantly Antibody-Deficient Patients With Non-infectious Complications Have Reduced Naive B, Treg, Th17, and Tfh17 Cells. Front Immunol 2019; 10:2593. [PMID: 31803177 PMCID: PMC6873234 DOI: 10.3389/fimmu.2019.02593] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Patients with predominantly antibody deficiency (PAD) suffer from severe and recurrent infections that require lifelong immunoglobulin replacement and prophylactic antibiotic treatment. Disease incidence is estimated to be 1:25,000 worldwide, and up to 68% of patients develop non-infectious complications (NIC) including autoimmunity, which are difficult to treat, causing high morbidity, and early mortality. Currently, the etiology of NIC is unknown, and there are no diagnostic and prognostic markers to identify patients at risk. Objectives: To identify immune cell markers that associate with NIC in PAD patients. Methods: We developed a standardized 11-color flow cytometry panel that was utilized for in-depth analysis of B and T cells in 62 adult PAD patients and 59 age-matched controls. Results: Nine males had mutations in Bruton's tyrosine kinase (BTK) and were defined as having X-linked agammaglobulinemia. The remaining 53 patients were not genetically defined and were clinically diagnosed with agammaglobulinemia (n = 1), common variable immunodeficiency (CVID) (n = 32), hypogammaglobulinemia (n = 13), IgG subclass deficiency (n = 1), and specific polysaccharide antibody deficiency (n = 6). Of the 53, 30 (57%) had one or more NICs, 24 patients had reduced B-cell numbers, and 17 had reduced T-cell numbers. Both PAD–NIC and PAD+NIC groups had significantly reduced Ig class-switched memory B cells and naive CD4 and CD8 T-cell numbers. Naive and IgM memory B cells, Treg, Th17, and Tfh17 cells were specifically reduced in the PAD+NIC group. CD21lo B cells and Tfh cells were increased in frequencies, but not in absolute numbers in PAD+NIC. Conclusion: The previously reported increased frequencies of CD21lo B cells and Tfh cells are the indirect result of reduced naive B-cell and T-cell numbers. Hence, correct interpretation of immunophenotyping of immunodeficiencies is critically dependent on absolute cell counts. Finally, the defects in naive B- and T-cell numbers suggest a mild combined immunodeficiency in PAD patients with NIC. Together with the reductions in Th17, Treg, and Tfh17 numbers, these key differences could be utilized as biomarkers to support definitive diagnosis and to predict for disease progression.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Pei M Aui
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia
| | - Robert G Stirling
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Paul U Cameron
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Josh Chatelier
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Fiona Hore-Lacy
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Ghosh A, Mondal RK, Romani S, Bagchi S, Cairo C, Pauza CD, Kottilil S, Poonia B. Persistent gamma delta T-cell dysfunction in chronic HCV infection despite direct-acting antiviral therapy induced cure. J Viral Hepat 2019; 26:1105-1116. [PMID: 31074195 PMCID: PMC7152509 DOI: 10.1111/jvh.13121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/18/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Immune dysfunction is a hallmark of chronic HCV infection and viral clearance with direct antivirals recover some of these immune defects. TCRVγ9Vδ2 T-cell dysfunction in treated HCV patients however is not well studied and was the subject of this investigation. Peripheral blood cells from patients who had achieved sustained virologic response (SVR) or those who had relapsed after interferon-free therapy were phenotyped using flow cytometry. Functional potential of Vγ9Vδ2 T cells was tested by measuring proliferation in response to aminobisphosphonate zoledronic acid, and cytotoxicity against HepG2 hepatoma cell line. TCR sequencing was performed to analyse impact of HCV infection on Vδ2 T-cell repertoire. Vγ9Vδ2 cells from patients were activated and therapy resulted in reduction of CD38 expression on these cells in SVR group. Relapsed patients had Vδ2 cells with persistently activated and terminally differentiated cytotoxic phenotype (CD38+ CD45RA+ CD27- CD107a+ ). Irrespective of outcome with therapy, majority of patients had persistently poor Vδ2 T-cell proliferative response to zoledronate along with lower expression of CD56, which identifies anti-tumour cytotoxic subset, relative to healthy controls. There was no association between the number of antigen reactive Vγ2-Jγ1.2 TCR rearrangements at baseline and levels of proliferation indicating nonresponse to zoledronate is not due to depletion of phosphoantigen responding chains. Thus, HCV infection results in circulating Vγ9Vδ2 T cells with a phenotype equipped for immediate effector function but poor cytokine response and expansion in response to antigen, a functional defect that may have implications for susceptibility for carcinogenesis despite HCV cure.
Collapse
Affiliation(s)
- Alip Ghosh
- Institute of Human Virology, University of Maryland School of Medicine
| | - Rajiv K Mondal
- Institute of Human Virology, University of Maryland School of Medicine
| | - Sara Romani
- Institute of Human Virology, University of Maryland School of Medicine
| | - Shashwatee Bagchi
- Institute of Human Virology, University of Maryland School of Medicine
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine
| | - C David Pauza
- American Gene Technologies, Rockville, Maryland 20850
| | | | - Bhawna Poonia
- Institute of Human Virology, University of Maryland School of Medicine
| |
Collapse
|
4
|
Xu H, Ziani W, Shao J, Doyle-Meyers LA, Russell-Lodrigue KE, Ratterree MS, Veazey RS, Wang X. Impaired Development and Expansion of Germinal Center Follicular Th Cells in Simian Immunodeficiency Virus-Infected Neonatal Macaques. THE JOURNAL OF IMMUNOLOGY 2018; 201:1994-2003. [PMID: 30104244 DOI: 10.4049/jimmunol.1800235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022]
Abstract
Germinal center (GC) CD4+ follicular Th (Tfh) cells are critical for cognate B cell help in humoral immune responses to pathogenic infections. Although Tfh cells are expanded or depleted in HIV/SIV-infected adults, the effects of pediatric HIV/SIV infection on Tfh cells remain unclear. In this study, we examined changes in lymphoid follicle formation in lymph nodes focusing on GC Tfh cells, B cell development, and differentiation in SIV-infected neonatal rhesus macaques (Macaca mulatta) compared with age-matched cohorts. Our data showed that follicles and GCs of normal infants rapidly formed in the first few weeks of age, in parallel with increasing GC Tfh cells in various lymphoid tissues. In contrast, GC development and GC Tfh cells were markedly impaired in SIV-infected infants. There was a very low frequency of GC Tfh cells throughout SIV infection in neonates and subsequent infants, accompanied by high viremia, reduction of B cell proliferation/resting memory B cells, and displayed proinflammatory unresponsiveness. These findings indicate neonatal HIV/SIV infection compromises the development of GC Tfh cells, likely contributing to ineffective Ab responses, high viremia, and eventually rapid disease progression to AIDS.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Kasi E Russell-Lodrigue
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Marion S Ratterree
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| |
Collapse
|
6
|
van der Heiden M, van Zelm MC, Bartol SJW, de Rond LGH, Berbers GAM, Boots AMH, Buisman AM. Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females. Sci Rep 2016; 6:26892. [PMID: 27243552 PMCID: PMC4886678 DOI: 10.1038/srep26892] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022] Open
Abstract
The elderly population is more susceptible to infections as a result of an altered immune response, commonly referred to as immunosenescence. Cytomegalovirus (CMV)-infection associated changes in blood lymphocytes are known to impact this process, but the interaction with gender remains unclear. Therefore, we analysed the effects and interaction of gender and CMV on the absolute numbers of a comprehensive set of naive and memory T- and B-cell subsets in people between 50 and 65 years of age. Enumeration and characterisation of lymphocyte subsets by flow cytometry was performed on fresh whole blood samples from 255 middle-aged persons. CMV-IgG serostatus was determined by ELISA. Gender was a major factor affecting immune cell numbers. CMV infection was mainly associated with an expansion of late-differentiated T-cell subsets. CMV+ males carried lower numbers of total CD4+, CD4+ central memory (CM) and follicular helper T-cells than females and CMV- males. Moreover, CMV+ males had significantly lower numbers of regulatory T (Treg)-cells and memory B-cells than CMV+ females. We here demonstrate an interaction between the effects of CMV infection and gender on T- and B-cells in middle-aged individuals. These differential effects on adaptive immunity between males and females may have implications for vaccination strategies at middle-age.
Collapse
Affiliation(s)
- Marieke van der Heiden
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, The Netherlands
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen 9700 RB, The Netherlands
| | - Menno C. van Zelm
- Department of Immunology, Erasmus MC, Rotterdam 3000 CA, The Netherlands
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | | | - Lia G. H. de Rond
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, The Netherlands
| | - Guy A. M. Berbers
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, The Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen 9700 RB, The Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven 3720 BA, The Netherlands
| |
Collapse
|
7
|
Cole AL, Hossain S, Cole AM, Phanstiel O. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg Med Chem 2016; 24:2768-76. [PMID: 27161874 DOI: 10.1016/j.bmc.2016.04.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 01/26/2023]
Abstract
A series of chalcone, flavone, coumaranone and other flavonoid compounds were screened for their anti HIV-1 activity in two cell culture models using TZM-bl and PM1 cells. Within the systems evaluated, the most promising compounds contained either an α- or β-hydroxy-carbonyl motif within their structure (e.g., 8 and 9). Efficacious substituents were identified and used to design new HIV inhibitors with increased potency and lower cytotoxicity. Of the scaffolds evaluated, specific chalcones were found to provide the best balance between anti-HIV potency and low host cell toxicity. Chalcone 8l was shown to inhibit different clinical isolates of HIV in a dose-dependent manner (e.g., IC50 typically⩽5μM). Inhibition of HIV infection experiments using TZM-bl cells demonstrated that chalcone 8l and flavonol 9c had IC50 values of 4.7μM and 10.4μM, respectively. These insights were used to design new chalcones 8o and 8p. Rewardingly, chalcones 8o and 8p (at 10μM) each gave >92% inhibition of viral propagation without impacting PM1 host cell viability. Inhibition of viral propagation significantly increased (60-90%) when PM1 cells were pre-incubated with chalcone 8o, but not with the related flavonol 9c. These results suggested that chalcone 8o may be of value as both a HIV prophylactic and therapy. In summary, O-benzyl-substituted chalcones were identified as promising anti-HIV agents for future investigation.
Collapse
Affiliation(s)
- Amy L Cole
- Burnett School for Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826-3227, United States
| | - Sandra Hossain
- Department of Medical Education, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826-3227, United States
| | - Alex M Cole
- Burnett School for Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826-3227, United States
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826-3227, United States.
| |
Collapse
|