1
|
Borgo GM, Rutishauser RL. Generating and measuring effective vaccine-elicited HIV-specific CD8 + T cell responses. Curr Opin HIV AIDS 2023; 18:331-341. [PMID: 37751362 PMCID: PMC10552829 DOI: 10.1097/coh.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW There is growing consensus that eliciting CD8 + T cells in addition to antibodies may be required for an effective HIV vaccine for both prevention and cure. Here, we review key qualities of vaccine-elicited CD8 + T cells as well as major CD8 + T cell-based delivery platforms used in recent HIV vaccine clinical trials. RECENT FINDINGS Much progress has been made in improving HIV immunogen design and delivery platforms to optimize CD8 + T cell responses. With regards to viral vectors, recent trials have tested newer chimp and human adenovirus vectors as well as a CMV vector. DNA vaccine immunogenicity has been increased by delivering the vaccines by electroporation and together with adjuvants as well as administering them as part of a heterologous regimen. In preclinical models, self-amplifying RNA vaccines can generate durable tissue-based CD8 + T cells. While it may be beneficial for HIV vaccines to recapitulate the functional and phenotypic features of HIV-specific CD8 + T cells isolated from elite controllers, most of these features are not routinely measured in HIV vaccine clinical trials. SUMMARY Identifying a vaccine capable of generating durable T cell responses that target mutationally vulnerable epitopes and that can rapidly intercept infecting or rebounding virus remains a challenge for HIV. Comprehensive assessment of HIV vaccine-elicited CD8 + T cells, as well as comparisons between different vaccine platforms, will be critical to advance our understanding of how to design better CD8 + T cell-based vaccines for HIV.
Collapse
Affiliation(s)
- Gina M Borgo
- Department of Medicine, University of California, San Francisco, California, USA
| | | |
Collapse
|
2
|
van Duijn J, Stieh D, Fernandez N, King D, Gilmour J, Tolboom J, Callewaert K, Willems W, Pau MG, De Rosa SC, McElrath MJ, Barouch DH, Hayes P. Mosaic HIV-1 vaccination induces anti-viral CD8 + T cell functionality in the phase 1/2a clinical trial APPROACH. J Virol 2023; 97:e0112623. [PMID: 37811993 PMCID: PMC10617392 DOI: 10.1128/jvi.01126-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE The functionality of CD8+ T cells against human immunodeficiency virus-1 (HIV-1) antigens is indicative of HIV-progression in both animal models and people living with HIV. It is, therefore, of interest to assess CD8+ T cell responses in a prophylactic vaccination setting, as this may be an important component of the immune system that inhibits HIV-1 replication. T cell responses induced by the adenovirus serotype 26 (Ad26) mosaic vaccine regimen were assessed previously by IFN-γ ELISpot and flow cytometric assays, yet these assays only measure cytokine production but not the capacity of CD8+ T cells to inhibit replication of HIV-1. In this study, we demonstrate direct anti-viral function of the clinical Ad26 mosaic vaccine regimen through ex vivo inhibition of replication of diverse clades of HIV-1 isolates in the participant's own CD4+ T cells.
Collapse
Affiliation(s)
| | - Daniel Stieh
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| | - Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jeroen Tolboom
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| | | | | | - Maria G. Pau
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
3
|
Michelo CM, Fiore-Gartland A, Dalel JA, Hayes P, Tang J, McGowan E, Kilembe W, Fernandez N, Gilmour J, Hunter E. Cohort-Specific Peptide Reagents Broaden Depth and Breadth Estimates of the CD8 T Cell Response to HIV-1 Gag Potential T Cell Epitopes. Vaccines (Basel) 2023; 11:472. [PMID: 36851349 PMCID: PMC9961105 DOI: 10.3390/vaccines11020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
An effective HIV vaccine will need to stimulate immune responses against the sequence diversity presented in circulating virus strains. In this study, we evaluate breadth and depth estimates of potential T-cell epitopes (PTEs) in transmitted founder virus sequence-derived cohort-specific peptide reagents against reagents representative of consensus and global sequences. CD8 T-cells from twenty-six HIV-1+ PBMC donor samples, obtained at 1-year post estimated date of infection, were evaluated. ELISpot assays compared responses to 15mer consensus (n = 121), multivalent-global (n = 320), and 10mer multivalent cohort-specific (n = 300) PTE peptides, all mapping to the Gag antigen. Responses to 38 consensus, 71 global, and 62 cohort-specific PTEs were confirmed, with sixty percent of common global and cohort-specific PTEs corresponding to consensus sequences. Both global and cohort-specific peptides exhibited broader epitope coverage compared to commonly used consensus reagents, with mean breadth estimates of 3.2 (global), 3.4 (cohort) and 2.2 (consensus) epitopes. Global or cohort peptides each identified unique epitope responses that would not be detected if these peptide pools were used alone. A peptide set designed around specific virologic and immunogenetic characteristics of a target cohort can expand the detection of CD8 T-cell responses to epitopes in circulating viruses, providing a novel way to better define the host response to HIV-1 with implications for vaccine development.
Collapse
Affiliation(s)
- Clive M. Michelo
- Center for Family Health Research Zambia, PostNet 412, P/Bag E891, B22/737 Bwembelelo, Emmasdale, Lusaka 10101, Zambia
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jama A. Dalel
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Edward McGowan
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - William Kilembe
- Center for Family Health Research Zambia, PostNet 412, P/Bag E891, B22/737 Bwembelelo, Emmasdale, Lusaka 10101, Zambia
| | - Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Eric Hunter
- Center for Family Health Research Zambia, PostNet 412, P/Bag E891, B22/737 Bwembelelo, Emmasdale, Lusaka 10101, Zambia
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
- Emory National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| |
Collapse
|
4
|
Fernandez N, Hayes P, Makinde J, Hare J, King D, Xu R, Rehawi O, Mezzell AT, Kato L, Mugaba S, Serwanga J, Chemweno J, Nduati E, Price MA, Osier F, Ochsenbauer C, Yue L, Hunter E, Gilmour J. Assessment of a diverse panel of transmitted/founder HIV-1 infectious molecular clones in a luciferase based CD8 T-cell mediated viral inhibition assay. Front Immunol 2022; 13:1029029. [PMID: 36532063 PMCID: PMC9751811 DOI: 10.3389/fimmu.2022.1029029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Immunological protection against human immunodeficiency virus-1 (HIV-1) infection is likely to require both humoral and cell-mediated immune responses, the latter involving cytotoxic CD8 T-cells. Characterisation of CD8 T-cell mediated direct anti-viral activity would provide understanding of potential correlates of immune protection and identification of critical epitopes associated with HIV-1 control. Methods The present report describes a functional viral inhibition assay (VIA) to assess CD8 T-cell-mediated inhibition of replication of a large and diverse panel of 45 HIV-1 infectious molecular clones (IMC) engineered with a Renilla reniformis luciferase reporter gene (LucR), referred to as IMC-LucR. HIV-1 IMC replication in CD4 T-cells and CD8 T-cell mediated inhibition was characterised in both ART naive subjects living with HIV-1 covering a broad human leukocyte antigen (HLA) distribution and compared with uninfected subjects. Results & discussion CD4 and CD8 T-cell lines were established from subjects vaccinated with a candidate HIV-1 vaccine and provided standard positive controls for both assay quality control and facilitating training and technology transfer. The assay was successfully established across 3 clinical research centres in Kenya, Uganda and the United Kingdom and shown to be reproducible. This IMC-LucR VIA enables characterisation of functional CD8 T-cell responses providing a tool for rational T-cell immunogen design of HIV-1 vaccine candidates and evaluation of vaccine-induced T-cell responses in HIV-1 clinical trials.
Collapse
Affiliation(s)
- Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,*Correspondence: Natalia Fernandez, ; Peter Hayes,
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,*Correspondence: Natalia Fernandez, ; Peter Hayes,
| | - Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom,IAVI, New York, NY, United States
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Rui Xu
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ola Rehawi
- University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Laban Kato
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Susan Mugaba
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Jennifer Serwanga
- Uganda Virus Research Institute, Entebbe, Uganda,Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - James Chemweno
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Eunice Nduati
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Matt A. Price
- IAVI, New York, NY, United States,Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, United States
| | - Faith Osier
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Jill Gilmour
- Department of Infectious Diseases, Imperial College, London, United Kingdom
| | | |
Collapse
|
5
|
Hayes P, Fernandez N, Ochsenbauer C, Dalel J, Hare J, King D, Black L, Streatfield C, Kakarla V, Macharia G, Makinde J, Price M, Hunter E, Gilmour J. Breadth of CD8 T-cell mediated inhibition of replication of diverse HIV-1 transmitted-founder isolates correlates with the breadth of recognition within a comprehensive HIV-1 Gag, Nef, Env and Pol potential T-cell epitope (PTE) peptide set. PLoS One 2021; 16:e0260118. [PMID: 34788349 PMCID: PMC8598018 DOI: 10.1371/journal.pone.0260118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
Full characterisation of functional HIV-1-specific T-cell responses, including identification of recognised epitopes linked with functional antiviral responses, would aid development of effective vaccines but is hampered by HIV-1 sequence diversity. Typical approaches to identify T-cell epitopes utilising extensive peptide sets require subjects' cell numbers that exceed feasible sample volumes. To address this, CD8 T-cells were polyclonally expanded from PBMC from 13 anti-retroviral naïve subjects living with HIV using CD3/CD4 bi-specific antibody. Assessment of recognition of individual peptides within a set of 1408 HIV-1 Gag, Nef, Pol and Env potential T-cell epitope peptides was achieved by sequential IFNγ ELISpot assays using peptides pooled in 3-D matrices followed by confirmation with single peptides. A Renilla reniformis luciferase viral inhibition assay assessed CD8 T-cell-mediated inhibition of replication of a cross-clade panel of 10 HIV-1 isolates, including 9 transmitted-founder isolates. Polyclonal expansion from one frozen PBMC vial provided sufficient CD8 T-cells for both ELISpot steps in 12 of 13 subjects. A median of 33 peptides in 16 epitope regions were recognised including peptides located in previously characterised HIV-1 epitope-rich regions. There was no significant difference between ELISpot magnitudes for in vitro expanded CD8 T-cells and CD8 T-cells directly isolated from PBMCs. CD8 T-cells from all subjects inhibited a median of 7 HIV-1 isolates (range 4 to 10). The breadth of CD8 T-cell mediated HIV-1 inhibition was significantly positively correlated with CD8 T-cell breadth of peptide recognition. Polyclonal CD8 T-cell expansion allowed identification of HIV-1 isolates inhibited and peptides recognised within a large peptide set spanning the major HIV-1 proteins. This approach overcomes limitations associated with obtaining sufficient cell numbers to fully characterise HIV-1-specific CD8 T-cell responses by different functional readouts within the context of extreme HIV-1 diversity. Such an approach will have useful applications in clinical development for HIV-1 and other diseases.
Collapse
Affiliation(s)
- Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Lucas Black
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Claire Streatfield
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Vanaja Kakarla
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Gladys Macharia
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Matt Price
- IAVI, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Atlanta, Georgia, United States of America
| | | | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
6
|
Sheerin D, Dold C, O'Connor D, Pollard AJ, Rollier CS. Distinct patterns of whole blood transcriptional responses are induced in mice following immunisation with adenoviral and poxviral vector vaccines encoding the same antigen. BMC Genomics 2021; 22:777. [PMID: 34717548 PMCID: PMC8556829 DOI: 10.1186/s12864-021-08061-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral vectors, including adenovirus (Ad) and modified vaccinia Ankara (MVA), have gained increasing attention as vaccine platforms in recent years due to their capacity to express antigens from a wide array of pathogens, their rapid induction of humoral and cellular protective immune responses, and their relatively low production costs. In particular, the chimpanzee Ad vector, ChAdOx1, has taken centre stage as a leading COVID-19 vaccine candidate. However, despite mounting data, both clinical and pre-clinical, demonstrating effective induction of adaptive immune responses, the innate immune signals that precede the protective responses that make these vectors attractive vaccine platforms remain poorly understood. RESULTS In this study, a mouse immunisation model was used to evaluate whole blood gene expression changes 24 h after either a single dose or heterologous prime-boost regimen of an Ad and/or MVA vaccine. We demonstrate through comparative analysis of Ad vectors encoding different antigens that a transgene product-specific gene signature can be discerned from the vector-induced transcriptional response. Expression of genes involved in TLR2 stimulation and γδ T cell and natural killer cell activation were induced after a single dose of Ad, while MVA led to greater expression of type I interferon genes. The order of prime-boost combinations was found to influence the magnitude of the gene expression changes, with MVA/Ad eliciting greater transcriptional perturbation than Ad/MVA. Contrasting the two regimens revealed significant enrichment of epigenetic regulation pathways and augmented expression of MHC class I and II molecules associated with MVA/Ad. CONCLUSION These data demonstrate that the order in which vaccines from heterologous prime-boost regimens are administered leads to distinct transcriptional responses and may shape the immune response induced by such combinations. The characterisation of early vaccine-induce responses strengthens our understanding of viral vector vaccine mechanisms of action ahead of their characterisation in human clinical trials and are a valuable resource to inform the pre-clinical design of appropriate vaccine constructs for emerging infectious diseases.
Collapse
Affiliation(s)
- Dylan Sheerin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK.
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research (WEHI), Melbourne, Victoria, 3052, Australia.
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| |
Collapse
|
7
|
Zhu G, Han J, Li H, Liu Y, Jia L, Li T, Wang X, Li J, Huang S, Li L. Near Full-Length Genomic Characterization of 16 HIV-1 CRF01_AE Primary Isolates from Guangxi, China. AIDS Res Hum Retroviruses 2021; 37:572-579. [PMID: 33287627 DOI: 10.1089/aid.2020.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Isolation and culture of human immunodeficiency virus (HIV) are an important basis for acquired immune deficiency syndrome (AIDS) etiology, immunology, drug screening, clinical treatment, and vaccine research. CRF01_AE is one of the predominant strains of HIV-1 in China. However, there are few HIV-1 CRF01_AE isolates that have been reported. In this study, 16 HIV-1 CRF01_AE strains from Guangxi, China, were isolated, and the near full-length genomes were reverse transcribed and amplified in two halves with the 1 kb overlapping region. The polymerase chain reaction products were sequenced directly. The phylogenetic analysis results showed that all of the 16 isolated strains were CRF01_AE recombinant form, and two clusters were set up in the phylogenetic tree. The tropic prediction of 16 strains showed that 2 isolates were CCR5 tropic, and the others are CXCR4 tropic. Eight of the isolated strains are drug resistant according to the genetic prediction. These 16 near full-length characterized CRF01_AE isolates obtained in this study will provide valuable genomic and phenotypic information on HIV-1 strains circulating in China for related researches.
Collapse
Affiliation(s)
- Guoxin Zhu
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shenghai Huang
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, China
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
8
|
Michelo CM, Dalel JA, Hayes P, Fernandez N, Fiore-Gartland A, Kilembe W, Tang J, Streatfield C, Gilmour J, Hunter E. Comprehensive epitope mapping using polyclonally expanded human CD8 T cells and a two-step ELISpot assay for testing large peptide libraries. J Immunol Methods 2021; 491:112970. [PMID: 33529681 PMCID: PMC8008507 DOI: 10.1016/j.jim.2021.112970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 02/01/2023]
Abstract
The genetic diversity of circulating HIV-1 strains poses a major barrier to the design, development and evaluation of HIV-1 vaccines. The assessment of both vaccine- and natural infection-elicited T cell responses is commonly done with multivalent peptides that are designed to maximally capture the diversity of potential T cell epitopes (PTEs) observed in natural circulating sequences. However, depending on the sequence diversity of viral subtypes and number of the HIV immunogens under investigation, PTE estimates, including HLA-guided computational methods, can easily generate enormous peptide libraries. Evaluation of T cell epitope specificity using such extensive peptide libraries is usually limited by sample availability, even for high-throughput and robust epitope mapping techniques like ELISpot assays. Here we describe a novel, two-step protocol for in-vitro polyclonal expansion of CD8 T cells from a single vial of frozen PBMC, which facilitated the screening 441 HIV-1 Gag peptides for immune responses among 32 HIV-1 positive subjects and 40 HIV-1 negative subjects for peptide qualification. Using a pooled-peptide mapping strategy, epitopes were mapped in two sequential ELISpot assays; the first ELISpot screened 33 large peptide pools using CD8 T cells expanded for 7 days, while the second step tested pool-matrix peptides to identify individual peptides using CD8 T cells expanded for 10 days. This comprehensive epitope screening established the breadth and magnitude of HIV-1 Gag-specific CD8 T cells and further revealed the extent of immune responses to variable/polymorphic epitopes.
Collapse
Affiliation(s)
- Clive M Michelo
- Zambia Emory HIV Research Project, B22/737 Mwembelelo, Emmasdale, Lusaka, Zambia
| | - Jama A Dalel
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Natalia Fernandez
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - William Kilembe
- Zambia Emory HIV Research Project, B22/737 Mwembelelo, Emmasdale, Lusaka, Zambia
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Claire Streatfield
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Eric Hunter
- Zambia Emory HIV Research Project, B22/737 Mwembelelo, Emmasdale, Lusaka, Zambia; Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| |
Collapse
|
9
|
Korber B, Fischer W. T cell-based strategies for HIV-1 vaccines. Hum Vaccin Immunother 2020; 16:713-722. [PMID: 31584318 PMCID: PMC7227724 DOI: 10.1080/21645515.2019.1666957] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Despite 30 years of effort, we do not have an effective HIV-1 vaccine. Over the past decade, the HIV-1 vaccine field has shifted emphasis toward antibody-based vaccine strategies, following a lack of efficacy in CD8+ T-cell-based vaccine trials. Several lines of evidence, however, suggest that improved CD8+ T-cell-directed strategies could benefit an HIV-1 vaccine. First, T-cell responses often correlate with good outcomes in non-human primate (NHP) challenge models. Second, subgroup studies of two no-efficacy human clinical vaccine trials found associations between CD8+ T-cell responses and protective effects. Finally, improved strategies can increase the breadth and potency of CD8+ T-cell responses, direct them toward preferred epitopes (that are highly conserved and/or associated with viral control), or both. Optimized CD8+ T-cell vaccine strategies are promising in both prophylactic and therapeutic settings. This commentary briefly outlines some encouraging findings from T-cell vaccine studies, and then directly compares key features of some T-cell vaccine candidates currently in the clinical pipeline.
Collapse
Affiliation(s)
- Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Will Fischer
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
10
|
Cross-Reactive CD8 T-Cell Responses Elicited by Adenovirus Type 5-Based HIV-1 Vaccines Contributed to Early Viral Evolution in Vaccine Recipients Who Became Infected. J Virol 2020; 94:JVI.01632-19. [PMID: 31645444 DOI: 10.1128/jvi.01632-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022] Open
Abstract
Because of HIV's vast sequence diversity, the ability of the CD8 T-cell response to recognize several variants of a single epitope is an important consideration for vaccine design. Cross-recognition of viral epitopes by CD8 T cells is associated with viral control during HIV-1 infection, but little is known about CD8 cross-reactivity in the context of HIV-1 vaccination. Here, we evaluated vaccine-induced CD8 cross-reactivity in two preventative HIV-1 vaccine efficacy trials, the MRKAd5 and DNA/rAd5 studies. Cross-reactive CD8 responses elicited by vaccination were similar in magnitude and frequency to those induced during acute HIV-1 infection. Although responses directed against variant epitopes were less avid than responses to vaccine-matched epitopes, we did not detect any difference in response polyfunctionality (the proportion of cells producing multiple effector molecules). And while depth, or the frequency of cross-reactive responses, did not correlate with viral loads in recipients who became infected, cross-reactivity did appear to influence early viral evolution. In comparing viral sequences of placebo versus vaccine recipients, we found that viral sequences from vaccinees encoded CD8 epitopes with more substitutions and greater biochemical dissimilarity. In other words, breakthrough sequences of vaccinees would be less cross-recognized by vaccine-induced responses. Additionally, vaccine-induced CD8 T cells poorly cross-recognized variant epitopes encoding HLA-I-associated adaptations, further supporting our conclusion that these responses play a role in driving early HIV-1 viral evolution.IMPORTANCE HIV-1 has exceptionally high sequence diversity, much of which is found within CD8 epitopes. Therefore, the ability of CD8 T cells to recognize multiple versions of a single epitope could be important for an effective vaccine. Here, we show that two previously tested vaccines induced a similar level of CD8 cross-reactivity to that seen in acute HIV-1 infection. Although this cross-reactivity did not seem to affect viral control in vaccine recipients who became infected, we identified several ways in which CD8 cross-reactivity appeared to influence HIV-1 viral evolution. First, we saw that strains isolated from infected vaccine recipients would likely be poorly cross-recognized by the vaccine-induced response. Second, we saw that adapted CD8 epitopes were poorly cross-recognized in both vaccination and infection. Collectively, we believe these results show that CD8 cross-reactivity could be an important consideration in future HIV-1 vaccine design.
Collapse
|
11
|
Fu HY, Li X, Li HJ, Du YR, Zhou YJ, Tang XQ, Jiao GP, Luo Y, Gao JP. Single-factor and multifactor analysis of immune function and nucleic acid negative time in patients with COVID-19. EUR J INFLAMM 2020; 18:205873922093503. [DOI: 10.1177/2058739220935032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
To analyse the differential indicators of COVID-19 in severe and mild cases and to study the factors affecting the immune function of patients and the time required for oropharyngeal swabs to become negative. Age, albumin (ALB) levels, prealbumin (PAB) levels, high-sensitivity C-reactive protein (hs-CRP) levels, platelet counts, lymphocyte counts, neutrophil counts, CD3+, CD4+, CD8+ T cell counts and the time for oropharyngeal swabs to become negative were collected from 37 patients with COVID-19; the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were calculated as indicators of inflammation. An independent-sample t test was used to analyse differences between the severe and mild groups, and factors affecting the CD3+, CD4+ and CD8+ T cell counts and the time for the nucleic acid tests of oropharyngeal to convert to negative were identified by single-factor and multifactor analyses. Lymphocyte, ALB, PAB, CD3+, CD4+ and CD8+ T cell levels in the severe group were lower than those in the mild group, the P values were 0.048, 0.004, 0.033, 0.033, 0.015 and 0.013, respectively. The neutrophil count and PLR were higher in the severe group compared with that in the patients of mild group; the P values were all 0.000. Single-factor analysis showed that age, ALB level, PAB level, hs-CRP level, platelet count, the NLR, the PLR and the time to a negative nucleic acid test were the main factors influencing CD3+ T cells; the P values were 0.001, 0.031, 0.001, 0.010, 0.005, 0.002, 0.000 and 0.048, respectively. Age, ALB level, PAB level, hs-CRP level, platelet count, the NLR, the PLR and time to a negative nucleic acid test were the main factors influencing CD8+ T cells; the P values were 0.000, 0.012, 0.000, 0.005, 0.002, 0.004, 0.005 and 0.003, respectively. Age, PAB level, hs-CRP level, platelet count, the NLR and the PLR were the main factors influencing CD4+ T cells; the P values were 0.001, 0.006, 0.030, 0.041, 0.005 and 0.001, respectively. Age, ALB level, PAB level, hs-CRP level, platelet count, the NLR, CD3+ T cell count and CD8+ T cell count were the main factors influencing the time to a negative nucleic acid test in oropharyngeal swabs, and the P values were 0.032, 0.043, 0.013, 0.016, 0.042, 0.049, 0.048 and 0.003, respectively. Multivariate analysis showed that the PLR and platelet count were the main factors influencing CD3+ T cells. The P values were all 0.000. The PLR and platelet count were the main factors influencing CD4+ T cells. The P values were 0.000 and 0.001, respectively. The PLR and platelet count were also the main factors influencing CD8+ T cells. The P values were 0.004 and 0.001. CD8+ T cells affected the time to a negative nucleic acid test in oropharyngeal swab samples, and the P value was 0.002. There were differences in the PLR, PAB level, ALB level and T cells between the severe and mild groups. The platelet count and PLR were the main factors influencing the immune function of patients with COVID-19, and CD8+ T cells influenced the negative conversion time of the nucleic acid test in oropharyngeal swabs.
Collapse
Affiliation(s)
- Hai-Yan Fu
- Isolation Area, The Third People’s Hospital of Kunming, The Sixth Affiliated Hospital of Dali University, China
| | - Xiang Li
- Department of Radiology, The Third People’s Hospital of Kunming, The Sixth Affiliated Hospital of Dali University, China
| | - Hong-Juan Li
- Isolation Area, The Third People’s Hospital of Kunming, The Sixth Affiliated Hospital of Dali University, China
| | - Ying-Rong Du
- Isolation Area, The Third People’s Hospital of Kunming, The Sixth Affiliated Hospital of Dali University, China
| | - Yu-Jun Zhou
- Isolation Area, The Third People’s Hospital of Kunming, The Sixth Affiliated Hospital of Dali University, China
| | - Xiao-Qing Tang
- Isolation Area, The Third People’s Hospital of Kunming, The Sixth Affiliated Hospital of Dali University, China
| | - Guan-Ping Jiao
- Department of Radiology, The Third People’s Hospital of Kunming, The Sixth Affiliated Hospital of Dali University, China
| | - Yu Luo
- Isolation Area, The Third People’s Hospital of Kunming, The Sixth Affiliated Hospital of Dali University, China
| | - Jian-Peng Gao
- Isolation Area, The Third People’s Hospital of Kunming, The Sixth Affiliated Hospital of Dali University, China
| |
Collapse
|
12
|
Hanke T. Aiming for protective T-cell responses: a focus on the first generation conserved-region HIVconsv vaccines in preventive and therapeutic clinical trials. Expert Rev Vaccines 2019; 18:1029-1041. [PMID: 31613649 DOI: 10.1080/14760584.2019.1675518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Despite life-saving antiretroviral drugs, an effective HIV-1 vaccine is the best solution and likely a necessary component of any strategy for halting the AIDS epidemic. The currently prevailing aim is to pursue antibody-mediated vaccine protection. With ample evidence for the ability of T cells to control HIV-1 replication, their protective potential should be also harnessed by vaccination. The challenge is to elicit not just any, but protective T cells.Areas covered: This article reviews the clinical experience with the first-generation conserved-region immunogen HIVconsv delivered by combinations of plasmid DNA, simian adenovirus, and poxvirus MVA. The aim of our strategy is to induce strong and broad T cells targeting functionally important parts of HIV-1 proteins common to global variants. These vaccines were tested in eight phase 1/2 preventive and therapeutic clinical trials in Europe and Africa, and induced high frequencies of broadly specific CD8+ T cells capable of in vitro inhibition of four major HIV-1 clades A, B, C and D, and in combination with latency-reactivating agent provided a signal of drug-free virological control in early treated patients.Expert opinion: A number of critical T-cell traits have to come together at the same time to achieve control over HIV-1.
Collapse
Affiliation(s)
- Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
13
|
Claiborne DT, Scully EP, Palmer CD, Prince JL, Macharia GN, Kopycinski J, Michelo CM, Wiener HW, Parker R, Nganou-Makamdop K, Douek D, Altfeld M, Gilmour J, Price MA, Tang J, Kilembe W, Allen SA, Hunter E. Protective HLA alleles are associated with reduced LPS levels in acute HIV infection with implications for immune activation and pathogenesis. PLoS Pathog 2019; 15:e1007981. [PMID: 31449552 PMCID: PMC6730937 DOI: 10.1371/journal.ppat.1007981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/06/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
Despite extensive research on the mechanisms of HLA-mediated immune control of HIV-1 pathogenesis, it is clear that much remains to be discovered, as exemplified by protective HLA alleles like HLA-B*81 which are associated with profound protection from CD4+ T cell decline without robust control of early plasma viremia. Here, we report on additional HLA class I (B*1401, B*57, B*5801, as well as B*81), and HLA class II (DQB1*02 and DRB1*15) alleles that display discordant virological and immunological phenotypes in a Zambian early infection cohort. HLA class I alleles of this nature were also associated with enhanced immune responses to conserved epitopes in Gag. Furthermore, these HLA class I alleles were associated with reduced levels of lipopolysaccharide (LPS) in the plasma during acute infection. Elevated LPS levels measured early in infection predicted accelerated CD4+ T cell decline, as well as immune activation and exhaustion. Taken together, these data suggest novel mechanisms for HLA-mediated immune control of HIV-1 pathogenesis that do not necessarily involve significant control of early viremia and point to microbial translocation as a direct driver of HIV-1 pathogenesis rather than simply a consequence. During acute HIV infection, there exists a complex interplay between the host immune response and the virus, and the balance of these interactions dramatically affects disease trajectory in infected individuals. Variations in Human Leukocyte Antigen (HLA) alleles dictate the potency of the cellular immune response to HIV, and certain well-studied alleles (HLA-B*57, B*27) are associated with control of HIV viremia. However, though plasma viral load is indicative of disease progression, the number of CD4+ T cells in the blood is a better measurement of disease severity. Through analysis of a large Zambian acute infection cohort, we identified HLA alleles that were associated with protection for CD4+ T cell loss, without dramatic affect on early plasma viremia. We further link these favorable HLA alleles to reduction in a well-known contributor to HIV pathogenesis, the presence of microbial products in the blood, which is indicative of damage to the gastrointestinal tract, a process which accelerates disease progression in HIV infected individuals. Ultimately, these results suggest a new mechanism by which the cellular immune response can combat HIV-associated pathogenesis, and further highlight the contribution of gut damage and microbial translocation to accelerating disease progression, even at early stages in HIV infection.
Collapse
Affiliation(s)
- Daniel T. Claiborne
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Eileen P. Scully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christine D. Palmer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jessica L. Prince
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Gladys N. Macharia
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Jakub Kopycinski
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | | | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rachel Parker
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Krystelle Nganou-Makamdop
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcus Altfeld
- Virus Immunology Unit, Heinrich-Pette-Institut, Hamburg, Germany
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Matt A. Price
- International AIDS Vaccine Initiative, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, United States of America
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Susan A. Allen
- Zambia-Emory HIV Research Project, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Munusamy Ponnan S, Pattabiram S, Thiruvengadam K, Goyal R, Singla N, Mukherjee J, Chatrath S, Bergin P, T. Kopycinski J, Gilmour J, Kumar S, Muthu M, Subramaniam S, Swaminathan S, Prasad Tripathy S, Luke HE. Induction and maintenance of bi-functional (IFN-γ + IL-2+ and IL-2+ TNF-α+) T cell responses by DNA prime MVA boosted subtype C prophylactic vaccine tested in a Phase I trial in India. PLoS One 2019; 14:e0213911. [PMID: 30921340 PMCID: PMC6438518 DOI: 10.1371/journal.pone.0213911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/04/2019] [Indexed: 01/09/2023] Open
Abstract
Effective vaccine design relies on accurate knowledge of protection against a pathogen, so as to be able to induce relevant and effective protective responses against it. An ideal Human Immunodeficiency virus (HIV) vaccine should induce humoral as well as cellular immune responses to prevent initial infection of host cells or limit early events of viral dissemination. A Phase I HIV-1 prophylactic vaccine trial sponsored by the International AIDS Vaccine Initiative (IAVI) was conducted in India in 2009.The trial tested a HIV-1 subtype C vaccine in a prime-boost regimen, comprising of a DNA prime (ADVAX) and Modified Vaccine Ankara (MVA) (TBC-M4) boost. The trial reported that the vaccine regimen was safe, well tolerated, and resulted in enhancement of HIV-specific immune responses. However, preliminary immunological studies were limited to vaccine-induced IFN-γ responses against the Env and Gag peptides. The present study is a retrospective study to characterize in detail the nature of the vaccine-induced cell mediated immune responses among volunteers, using Peripheral Blood Mononuclear Cells (PBMC) that were archived during the trial. ELISpot was used to measure IFN-γ responses and polyfunctional T cells were analyzed by intracellular multicolor flow cytometry. It was observed that DNA priming and MVA boosting induced Env and Gag specific bi-functional and multi-functional CD4+ and CD8+ T cells expressing IFN-γ, TNF-α and IL-2. The heterologous prime-boost regimen appeared to be slightly superior to the homologous prime-boost regimen in inducing favorable cell mediated immune responses. These results suggest that an in-depth analysis of vaccine-induced cellular immune response can aid in the identification of correlates of an effective immunogenic response, and inform future design of HIV vaccines.
Collapse
Affiliation(s)
- Sivasankaran Munusamy Ponnan
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Sathyamurthy Pattabiram
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Kannan Thiruvengadam
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Rajat Goyal
- International AIDS Vaccine Initiative, New Delhi, India
| | - Nikhil Singla
- International AIDS Vaccine Initiative, New Delhi, India
| | | | | | - Philip Bergin
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Sriram Kumar
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Malathy Muthu
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Sudha Subramaniam
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Soumya Swaminathan
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Srikanth Prasad Tripathy
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Hanna Elizabeth Luke
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
- * E-mail:
| |
Collapse
|
15
|
Lebedeva E, Bagaev A, Pichugin A, Chulkina M, Lysenko A, Tutykhina I, Shmarov M, Logunov D, Naroditsky B, Ataullakhanov R. The differences in immunoadjuvant mechanisms of TLR3 and TLR4 agonists on the level of antigen-presenting cells during immunization with recombinant adenovirus vector. BMC Immunol 2018; 19:26. [PMID: 30055563 PMCID: PMC6064145 DOI: 10.1186/s12865-018-0264-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Agonists of TLR3 and TLR4 are effective immunoadjuvants for different types of vaccines. The mechanisms of their immunostimulatory action differ significantly; these differences are particularly critical for immunization with non-replicating adenovirus vectors (rAds) based vaccines. Unlike traditional vaccines, rAd based vaccines are not designed to capture vaccine antigens from the external environment by antigen presenting cells (APCs), but rather they are targeted to the de novo synthesis of vaccine antigens in APCs transfected with rAd. To date, there is no clear understanding about approaches to improve the efficacy of rAd vaccinations with immunoadjuvants. In this study, we investigated the immunoadjuvant effect of TLR3 and TLR4 agonists on the level of activation of APCs during vaccination with rAds. RESULTS We demonstrated that TLR3 and TLR4 agonists confer different effects on the molecular processes in APCs that determine the efficacy of antigen delivery and activation of antigen-specific CD4+ and CD8+ T cells. APCs activated with agonists of TLR4 were characterized by up-regulated production of target antigen mRNA and protein encoded in rAd, as well as enhanced expression of the co-activation receptors CD80, CD86 and CD40, and pro-inflammatory cytokines TNF-α, IL6 and IL12. These effects of TLR4 agonists have provided a significant increase in the number of antigen-specific CD4+ and CD8+ T cells. TLR3 agonist, on the contrary, inhibited transcription and synthesis of rAd-encoded antigens, but improved expression of CD40 and IFN-β in APCs. The cumulative effect of TLR3 agonist have resulted in only a slight improvement in the activation of antigen-specific T cells. Also, we demonstrated that IFN-β and TNF-α, secreted by APCs in response to TLR3 and TLR4 agonists, respectively, have an opposite effect on the transcription of the targeted gene encoded in rAd. Specifically, IFN-β inhibited, and TNF-α stimulated the expression of target vaccine antigens in APCs. CONCLUSIONS Our data demonstrate that agonists of TLR4 but not TLR3 merit further study as adjuvants for development of vaccines based on recombinant adenoviral vectors.
Collapse
Affiliation(s)
- Ekaterina Lebedeva
- National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - Alexander Bagaev
- National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Alexey Pichugin
- National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Marina Chulkina
- National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Andrei Lysenko
- Federal Research Centre of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health, Moscow, Russia
| | - Irina Tutykhina
- Federal Research Centre of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health, Moscow, Russia
| | - Maxim Shmarov
- Federal Research Centre of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health, Moscow, Russia
| | - Denis Logunov
- Federal Research Centre of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health, Moscow, Russia
| | - Boris Naroditsky
- Federal Research Centre of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health, Moscow, Russia
| | - Ravshan Ataullakhanov
- National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| |
Collapse
|
16
|
Li P, Feng F, Pan E, Fan X, Yang Q, Guan M, Chen L, Sun C. Scavenger receptor-mediated Ad5 entry and acLDL accumulation in monocytes/macrophages synergistically trigger innate responses against viral infection. Virology 2018; 519:86-98. [PMID: 29680370 DOI: 10.1016/j.virol.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/29/2018] [Accepted: 04/10/2018] [Indexed: 01/12/2023]
Abstract
Adenovirus serotype 5 (Ad5) is a common cause of respiratory tract infection, and populations worldwide have high prevalence of anti-Ad5 antibodies, implying extensively prior infection. Ad5 infection potently activates the host innate defense and inflammation, but the molecular mechanisms are not completely clarified. We report here that monocytes from Ad5-seropositive subjects upregulates the expression of scavenger receptor A (SR-A), and the increased SR-A promote the susceptibility of Ad5 entry and subsequent innate signaling activation. SR-A is also known as major receptor for lipid uptake, we therefore observed that monocytes from Ad5-seropositive subjects accumulated the acetylated low-density lipoprotein (acLDL) and had the elevated cellular stress to induce the activation of monocyte/macrophages. These findings demonstrate that SR-A-mediated Ad5 entry, innate signaling activation and acLDL accumulation synergistically trigger the robust antiviral innate and inflammatory responses, which are helpful to our understanding of the pathogenesis of adenovirus infection.
Collapse
Affiliation(s)
- Pingchao Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Fengling Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Enxiang Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Xiaozhen Fan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Qing Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Min Guan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
17
|
Tomaras GD, Plotkin SA. Complex immune correlates of protection in HIV-1 vaccine efficacy trials. Immunol Rev 2017; 275:245-261. [PMID: 28133811 DOI: 10.1111/imr.12514] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of an efficacious HIV-1 vaccine is a major priority for improving human health worldwide. Vaccine-mediated protection against human pathogens can be achieved through elicitation of protective innate, humoral, and cellular responses. Identification of specific immune responses responsible for pathogen protection enables vaccine development and provides insights into host defenses against pathogens and the immunological mechanisms that most effectively fight infection. Defining immunological correlates of transmission risk in preclinical and clinical HIV-1 vaccine trials has moved the HIV-1 vaccine development field forward and directed new candidate vaccine development. Immune correlate studies are providing novel hypotheses about immunological mechanisms that may be responsible for preventing HIV-1 acquisition. Recent results from HIV-1 immune correlates work has demonstrated that there are multiple types of immune responses that together, comprise an immune correlate-thus implicating polyfunctional immune control of HIV-1 transmission. An in depth understanding of these complex immunological mechanisms of protection against HIV-1 will accelerate the development of an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
- Georgia D Tomaras
- Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Duke Human Vaccine Institute, Durham, NC, USA
| | - Stanley A Plotkin
- Vaxconsult, Doylestown, PA, USA.,University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
18
|
Nyombayire J, Anzala O, Gazzard B, Karita E, Bergin P, Hayes P, Kopycinski J, Omosa-Manyonyi G, Jackson A, Bizimana J, Farah B, Sayeed E, Parks CL, Inoue M, Hironaka T, Hara H, Shu T, Matano T, Dally L, Barin B, Park H, Gilmour J, Lombardo A, Excler JL, Fast P, Laufer DS, Cox JH. First-in-Human Evaluation of the Safety and Immunogenicity of an Intranasally Administered Replication-Competent Sendai Virus-Vectored HIV Type 1 Gag Vaccine: Induction of Potent T-Cell or Antibody Responses in Prime-Boost Regimens. J Infect Dis 2016; 215:95-104. [PMID: 28077588 PMCID: PMC5225252 DOI: 10.1093/infdis/jiw500] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/13/2016] [Indexed: 11/22/2022] Open
Abstract
Background. We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)–vectored, human immunodeficiency virus type 1 (HIV-1) vaccine. Methods. Sixty-five HIV-1–uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35–vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (SLA); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (SHA); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (ASH); and priming and boosting with a higher-dose SeV-Gag given intranasally (SHSH). Results. All vaccine regimens were well tolerated. Gag-specific IFN-γ enzyme-linked immunospot–determined response rates and geometric mean responses were higher (96% and 248 spot-forming units, respectively) in groups primed with SeV-Gag and boosted with Ad35-GRIN (SLA and SHA) than those after a single dose of Ad35-GRIN (56% and 54 spot-forming units, respectively) or SeV-Gag (55% and 59 spot-forming units, respectively); responses persisted for ≥8 months after completion of the prime-boost regimen. Functional CD8+ T-cell responses with greater breadth, magnitude, and frequency in a viral inhibition assay were also seen in the SLA and SHA groups after Ad35-GRIN boost, compared with those who received either vaccine alone. SeV-Gag did not boost T-cell counts in the ASH group. In contrast, the highest Gag-specific antibody titers were seen in the ASH group. Mucosal antibody responses were sporadic. Conclusions. SeV-Gag primed functional, durable HIV-specific T-cell responses and boosted antibody responses. The prime-boost sequence appears to determine which arm of the immune response is stimulated. Clinical Trials Registration. NCT01705990.
Collapse
Affiliation(s)
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative Institute of Clinical Research, Nairobi
| | - Brian Gazzard
- Chelsea and Westminster Healthcare NHS Foundation Trust
| | | | - Philip Bergin
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Jakub Kopycinski
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | | | - Akil Jackson
- Chelsea and Westminster Healthcare NHS Foundation Trust
| | | | - Bashir Farah
- Kenya AIDS Vaccine Initiative Institute of Clinical Research, Nairobi
| | - Eddy Sayeed
- International AIDS Vaccine Initiative, New York, New York
| | | | | | | | | | | | - Tetsuro Matano
- University of Tokyo.,National Institute of Infectious Diseases, Tokyo, Japan
| | - Len Dally
- Emmes Corporation, Rockville, Maryland
| | | | - Harriet Park
- International AIDS Vaccine Initiative, New York, New York
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | | | | | - Patricia Fast
- International AIDS Vaccine Initiative, New York, New York
| | - Dagna S Laufer
- International AIDS Vaccine Initiative, New York, New York
| | | | | |
Collapse
|
19
|
Mutua G, Farah B, Langat R, Indangasi J, Ogola S, Onsembe B, Kopycinski JT, Hayes P, Borthwick NJ, Ashraf A, Dally L, Barin B, Tillander A, Gilmour J, De Bont J, Crook A, Hannaman D, Cox JH, Anzala O, Fast PE, Reilly M, Chinyenze K, Jaoko W, Hanke T, HIV-CORE 004 study group T. Broad HIV-1 inhibition in vitro by vaccine-elicited CD8(+) T cells in African adults. Mol Ther Methods Clin Dev 2016; 3:16061. [PMID: 27617268 PMCID: PMC5006719 DOI: 10.1038/mtm.2016.61] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes) of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8(+) T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication. Here and for the first time, we tested this strategy in low risk HIV-1-negative adults in Africa. We showed that the vaccines were well tolerated and induced high frequencies of broadly HIVconsv-specific plurifunctional T cells, which inhibited in vitro viruses from four major clades A, B, C, and D. Because sub-Saharan Africa is globally the region most affected by HIV-1/AIDS, trial HIV-CORE 004 represents an important stage in the path toward efficacy evaluation of this highly rational and promising vaccine strategy.
Collapse
Affiliation(s)
- Gaudensia Mutua
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Bashir Farah
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Robert Langat
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | | | - Simon Ogola
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Brian Onsembe
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Jakub T Kopycinski
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | | | - Ambreen Ashraf
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Len Dally
- Emmes Corporation, Rockville, Maryland, USA
| | - Burc Barin
- Emmes Corporation, Rockville, Maryland, USA
| | | | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Jan De Bont
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | - Alison Crook
- Jenner Institute, University of Oxford, Oxford, UK
| | - Drew Hannaman
- ICHOR Medical Systems, Inc., San Diego, California, USA
| | - Josephine H Cox
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College, London, UK
| | - Omu Anzala
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Patricia E Fast
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | | | - Kundai Chinyenze
- International AIDS Vaccine Initiative-New York, New York, New York, USA
| | - Walter Jaoko
- KAVI-Institute of Clinical Research, University of Nairobi, Kenya
| | - Tomáš Hanke
- Jenner Institute, University of Oxford, Oxford, UK
- International Research Center for Medical Sciences, Kumamoto University, Japan
| | | |
Collapse
|