1
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
2
|
Innis EA, Levinger C, Szaniawski MA, Williams ESCP, Alcamí J, Bosque A, Schiffer JT, Coiras M, Spivak AM, Planelles V. Pharmacologic control of homeostatic and antigen-driven proliferation to target HIV-1 persistence. Biochem Pharmacol 2021; 194:114816. [PMID: 34715067 DOI: 10.1016/j.bcp.2021.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
The presence of latent human immunodeficiency virus 1 (HIV-1) in quiescent memory CD4 + T cells represents a major barrier to viral eradication. Proliferation of memory CD4 + T cells is the primary mechanism that leads to persistence of the latent reservoir, despite effective antiretroviral therapy (ART). Memory CD4 + T cells are long-lived and can proliferate through two mechanisms: homeostatic proliferation via γc-cytokine stimulation or antigen-driven proliferation. Therefore, therapeutic modalities that perturb homeostatic and antigen-driven proliferation, combined with ART, represent promising strategies to reduce the latent reservoir. In this study, we investigated a library of FDA-approved oncology drugs to determine their ability to inhibit homeostatic and/or antigen-driven proliferation. We confirmed potential hits by evaluating their effects on proliferation in memory CD4 + T cells from people living with HIV-1 on ART (PLWH) and interrogated downstream signaling of γc-cytokine stimulation. We found that dasatinib and ponatinib, tyrosine kinase inhibitors, and trametinib, a MEK inhibitor, reduced both homeostatic and antigen-driven proliferationby >65%, with a reduction in viability <45%, ex vivo. In memory CD4 + T cells from PLWH, only dasatinib restricted both homeostatic and antigen-driven proliferation and prevented spontaneous rebound, consistent with promoting a smaller reservoir size. We show that dasatinib restricts IL-7 induced proliferation through STAT5 phosphorylation inhibition. Our results establish that the anti-cancer agent dasatinib is an exciting candidate to be used as an anti-proliferative drug in a clinical trial, since it efficiently blocks proliferation and iswell tolerated in patients with chronic myeloid leukemia (CML).
Collapse
Affiliation(s)
- E A Innis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - C Levinger
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, USA
| | - M A Szaniawski
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - E S C P Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - J Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, USA
| | - J T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA 98109, USA
| | - M Coiras
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A M Spivak
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - V Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Zhang LX, Song JW, Zhang C, Fan X, Huang HH, Xu RN, Liu JY, Zhang JY, Wang LF, Zhou CB, Jin L, Shi M, Wang FS, Jiao YM. Dynamics of HIV reservoir decay and naïve CD4 T-cell recovery between immune non-responders and complete responders on long-term antiretroviral treatment. Clin Immunol 2021; 229:108773. [PMID: 34102315 DOI: 10.1016/j.clim.2021.108773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/12/2021] [Accepted: 06/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The dynamics of viral reservoir decay and naïve CD4 T-cell recovery between immunological non-responders (INR) and complete responders (CR) during long-term antiretroviral treatment (ART) are not fully known. METHODS Twenty-eight chronic HIV-infected individuals on 5-year ART were divided into two groups: INR (CD4 counts ≤350 cells/μL, n = 13) and CR (CD4 counts ≥500 cells/μL, n = 15). The levels of HIV DNA and cell-associated HIV RNA (CA-RNA), CD4 counts, naïve CD4 counts and their correlations were analyzed at baseline, years 1, 3 and 5 of ART between the two groups. Expression of PD-1 on CD4 T-cells was quantified by flow cytometry. Linear mixed effect models were used to estimate the change procession in repeated measurements over 5 years. Slopes of the above-mentioned indicators were estimated using participant-specific linear regressions, respectively. RESULTS INR maintained higher levels of HIV DNA and CA-RNA with higher percentages of PD-1+CD4 T-cells compared with CR during 5-year ART, concurrent with lower naïve CD4 T-cells. However, the rates of HIV DNA and CA-RNA decay in INR were not different from that in CR over time, and INR had higher rates of naïve CD4 T-cell percentage recovery. The baseline levels of HIV DNA were positively associated with the 5-year levels of HIV DNA, but negatively associated with the 5-year naïve CD4 counts. CONCLUSIONS INR maintained significantly higher viral reservoir and lower naïve CD4 T-cells compared with CR during 5-year ART, however, the rates of reservoir decay and naïve CD4 T-cell percentage growth within INR were not lower than that in CR over time.
Collapse
Affiliation(s)
- Lu-Xue Zhang
- Infectious Disease Department, Xuanwu Hospital, Capital Medical University, Beijing, China; Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Fan
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruo-Nan Xu
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia-Ye Liu
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li-Feng Wang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Bao Zhou
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Jin
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Zhou MJ, Huang HH, Song JW, Tu B, Fan X, Li J, Jin JH, Cao WJ, Hu W, Yang T, Zhou CB, Yuan JH, Fan J, Zhang JY, Jiao YM, Xu RN, Zhen C, Shi M, Zhang C, Wang FS. Compromised long-lived memory CD8 + T cells are associated with reduced IL-7 responsiveness in HIV-infected immunological nonresponders. Eur J Immunol 2021; 51:2027-2039. [PMID: 33974710 DOI: 10.1002/eji.202149203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Indexed: 11/07/2022]
Abstract
Immune deficiency is one of the hallmarks of HIV infection and a major cause of adverse outcomes in people living with HIV (PLWH). Long-lived memory CD8+ T cells (LLMCs) are essential executors of long-term protective immunity; however, the generation and maintenance of LLMCs during chronic HIV infection are not well understood. In the present study, we analyzed circulating LLMCs in healthy controls (HCs) and PLWH with different disease statuses, including treatment naïve patients (TNs), complete responders (CRs), and immunological nonresponders (INRs). We found that both TNs and INRs showed severely compromised LLMCs compared with HCs and CRs, respectively. The decrease of LLMCs in TNs correlated positively with the reduction of their precursors, namely memory precursor effector T cells (MPECs), which might be associated with elevated pro-inflammatory cytokines. Strikingly, INRs showed an accumulation of MPECs, which exhibited diminished responsiveness to interleukin 7 (IL-7), thereby indicating abrogated differentiation into LLMCs. Moreover, in vitro studies showed that treatment with dexamethasone could improve the IL7-phosphorylated (p)-signal transducer and activator of transcription (STAT5) response by upregulating the expression of the interleukin 7 receptor (IL-7Rα) on MPECs in INRs. These findings provide insights that will encourage the development of novel therapeutics to improve immune function in PLWH.
Collapse
Affiliation(s)
- Ming-Ju Zhou
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bo Tu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jing Li
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- 302 Clinical Medical School, Peking University, Beijing, China
| | - Jie-Hua Jin
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wen-Jing Cao
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Bengbu Medical College, Bengbu, China
| | - Wei Hu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Tao Yang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin Fan
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Cheng Zhen
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- 302 Clinical Medical School, Peking University, Beijing, China
- Bengbu Medical College, Bengbu, China
- Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
5
|
Campos Coelho AV, de Moura RR, Crovella S. Reanalysis of Gene Expression Profiles of CD4+ T Cells Treated with HIV-1 Latency Reversal Agents. Microorganisms 2020; 8:microorganisms8101505. [PMID: 33007800 PMCID: PMC7601709 DOI: 10.3390/microorganisms8101505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) causes a progressive depletion of CD4+ T cells, hampering immune function. Current experimental strategies to fight the virus focus on the reactivation of latent HIV-1 in the viral reservoir to make the virus detectable by the immune system, by searching for latency reversal agents (LRAs). We hypothesize that if common molecular pathways elicited by the presence of LRAs are known, perhaps new, more efficient, “shock-and-kill” strategies can be found. Thus, the objective of the present study is to re-evaluate RNA-Seq assays to find differentially expressed genes (DEGs) during latency reversal via transcriptome analysis. We selected six studies (45 samples altogether: 16 negative controls and 29 LRA-treated CD4+ T cells) and 11 LRA strategies through a systematic search in Gene Expression Omnibus (GEO) and PubMed databases. The raw reads were trimmed, counted, and normalized. Next, we detected consistent DEGs in these independent experiments. AZD5582, romidepsin, and suberanilohydroxamic acid (SAHA) were the LRAs that modulated most genes. We detected 948 DEGs shared by those three LRAs. Gene ontology analysis and cross-referencing with other sources of the literature showed enrichment of cell activation, differentiation and signaling, especially mitogen-activated protein kinase (MAPK) and Rho-GTPases pathways.
Collapse
Affiliation(s)
- Antonio Victor Campos Coelho
- Federal University of Pernambuco, Avenida da Engenharia, Cidade Universitária, Recife 50670-901, Brazil
- Correspondence: ; Tel.: +55-81-2126-8522
| | - Ronald Rodrigues de Moura
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (R.R.d.M.); (S.C.)
| | - Sergio Crovella
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (R.R.d.M.); (S.C.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
6
|
Seddiki N, Picard F, Dupaty L, Lévy Y, Godot V. The Potential of Immune Modulation in Therapeutic HIV-1 Vaccination. Vaccines (Basel) 2020; 8:vaccines8030419. [PMID: 32726934 PMCID: PMC7565497 DOI: 10.3390/vaccines8030419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
We discuss here some of the key immunological elements that are at the crossroads and need to be combined to develop a potent therapeutic HIV-1 vaccine. Therapeutic vaccines have been commonly used to enhance and/or recall pre-existing HIV-1-specific cell-mediated immune responses aiming to suppress virus replication. The current success of immune checkpoint blockers in cancer therapy renders them very attractive to use in HIV-1 infected individuals with the objective to preserve the function of HIV-1-specific T cells from exhaustion and presumably target the persistent cellular reservoir. The major latest advances in our understanding of the mechanisms responsible for virus reactivation during therapy-suppressed individuals provide the scientific basis for future combinatorial therapeutic vaccine development.
Collapse
Affiliation(s)
- Nabila Seddiki
- Inserm, U955, Equipe 16, 94000 Créteil, France; (F.P.); (L.D.); (Y.L.); (V.G.)
- Faculté de médecine, Université Paris Est, 94000 Créteil, France
- Vaccine Research Institute (VRI), 94000 Créteil, France
- INSERM U955 Equipe 16, Université Paris-Est Créteil, Vaccine Research Institute (VRI), 51, Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Correspondence: ; Tel.: +33-01-4981-3902; Fax: +33-01-4981-3709
| | - Florence Picard
- Inserm, U955, Equipe 16, 94000 Créteil, France; (F.P.); (L.D.); (Y.L.); (V.G.)
- Vaccine Research Institute (VRI), 94000 Créteil, France
| | - Léa Dupaty
- Inserm, U955, Equipe 16, 94000 Créteil, France; (F.P.); (L.D.); (Y.L.); (V.G.)
- Vaccine Research Institute (VRI), 94000 Créteil, France
| | - Yves Lévy
- Inserm, U955, Equipe 16, 94000 Créteil, France; (F.P.); (L.D.); (Y.L.); (V.G.)
- Faculté de médecine, Université Paris Est, 94000 Créteil, France
- Vaccine Research Institute (VRI), 94000 Créteil, France
- AP-HP Hôpital H. Mondor—A. Chenevier, Service d’Immunologie clinique et maladies infectieuses, 94010 Créteil, France
| | - Véronique Godot
- Inserm, U955, Equipe 16, 94000 Créteil, France; (F.P.); (L.D.); (Y.L.); (V.G.)
- Faculté de médecine, Université Paris Est, 94000 Créteil, France
- Vaccine Research Institute (VRI), 94000 Créteil, France
| |
Collapse
|
7
|
Definition of Immunological Nonresponse to Antiretroviral Therapy: A Systematic Review. J Acquir Immune Defic Syndr 2020; 82:452-461. [PMID: 31592836 DOI: 10.1097/qai.0000000000002157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Terms and criteria to classify people living with HIV on antiretroviral therapy who fail to achieve satisfactory CD4 T-cell counts are heterogeneous, and need revision and summarization. METHODS We performed a systematic review of PubMed original research articles containing a set of predefined terms, published in English between January 2009 and September 2018. The search retrieved initially 1360 studies, of which 103 were eligible. The representative terminology and criteria were extracted and analyzed. RESULTS Twenty-two terms and 73 criteria to define the condition were identified. The most frequent term was "immunological nonresponders" and the most frequent criterion was "CD4 T-cell count <350 cells/µL after ≥24 months of virologic suppression." Most criteria use CD4+ T-cell counts as a surrogate, either as an absolute value or as a change after a defined period of time [corrected]. Distinct values and time points were used. Only 9 of the 73 criteria were used by more than one independent research team. Herein we propose 2 criteria that could help to reach a consensus. CONCLUSIONS The high disparity in terms and criteria here reported precludes data aggregation and progression of the knowledge on this condition, because it renders impossible to compare data from different studies. This review will foster the discussion of terms and criteria to achieve a consensual definition.
Collapse
|
8
|
Paiardini M, Dhodapkar K, Harper J, Deeks SG, Ahmed R. Editorial: HIV and Cancer Immunotherapy: Similar Challenges and Converging Approaches. Front Immunol 2020; 11:519. [PMID: 32296432 PMCID: PMC7138010 DOI: 10.3389/fimmu.2020.00519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Kavita Dhodapkar
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Steven G Deeks
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
Puronen CE, Ford ES, Uldrick TS. Immunotherapy in People With HIV and Cancer. Front Immunol 2019; 10:2060. [PMID: 31555284 PMCID: PMC6722204 DOI: 10.3389/fimmu.2019.02060] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
HIV infection alters the natural history of several cancers, in large part due to its effect on the immune system. Immune function in people living with HIV may vary from normal to highly dysfunctional and is largely dependent on the timing of initiation (and continuation) of effective antiretroviral therapy (ART). An individual's level of immune function in turn affects their cancer risk, management, and outcomes. HIV-associated lymphocytopenia and immune dysregulation permit immune evasion of oncogenic viruses and premalignant lesions and are associated with inferior outcomes in people with established cancers. Various types of immunotherapy, including monoclonal antibodies, interferon, cytokines, immunomodulatory drugs, allogeneic hematopoietic stem cell transplant, and most importantly ART have shown efficacy in HIV-related cancer. Emerging data suggest that checkpoint inhibitors targeting the PD-1/PD-L1 pathway can be safe and effective in people with HIV and cancer. Furthermore, some cancer immunotherapies may also affect HIV persistence by influencing HIV latency and HIV-specific immunity. Studying immunotherapy in people with HIV and cancer will advance clinical care of all people living with HIV and presents a unique opportunity to gain insight into mechanisms for HIV eradication.
Collapse
Affiliation(s)
- Camille E Puronen
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Emily S Ford
- Division of Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Thomas S Uldrick
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Division of Global Oncology, Department of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW A number studies are currently underway to develop new drugs aimed at reducing the HIV reservoir or achieving ART-free control of HIV infection. Many markers of HIV reservoirs have been proposed, each one having a different meaning. Total HIV DNA dynamics during the course of HIV infection and its predictive value are now well known. This marker allowed to estimate the size of HIV reservoir at different stages of HIV infection in blood, cell subsets and tissues. Therefore, the purpose of this review is timely and relevant, with the objective to discuss how total HIV DNA might be helpful in the clinical settings. RECENT FINDINGS Among the markers, it appears that HIV DNA is the most well studied, and recent articles confirmed that this marker is easy to use and is precise, specific, practical, robust and reproducible. All these characteristics correspond to what is expected from a helpful clinical marker. SUMMARY HIV DNA level could be considered as a global marker, and it is usually included in current clinical studies to describe the persistence and dynamics of the HIV reservoir, mainly in treated patients. HIV DNA might be helpful in designing clinical trials and personalized medication for HIV patients in the future.
Collapse
|