1
|
Zaçe D, Rindi LV, Compagno M, Colagrossi L, Santoro MM, Andreoni M, Perno CF, Sarmati L. Managing low-level HIV viraemia in antiretroviral therapy: a systematic review and meta-analysis. Sex Transm Infect 2024; 100:460-468. [PMID: 39288983 PMCID: PMC11503136 DOI: 10.1136/sextrans-2024-056198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE HIV-1 management has advanced significantly with antiretroviral therapy (ART), yet challenges persist, including low-level HIV-1 viraemia (LLV). LLV presents a complex scenario, with varied definitions in the literature, reflecting uncertainties in its clinical interpretation. Questions arise regarding the underlying mechanisms of LLV, whether it signifies ongoing viral replication or stems from other factors. This study aimed to systematically review strategies for LLV management, providing insights into optimal clinical approaches. METHODS MEDLINE, EMBASE, Cochrane Library, Web of Science and Canadian Agency for Drugs and Technologies in Health were searched for relevant literature on LLV management. We included studies published between 2004 and 2024, assessing interventions such as ART modification, genotypic resistance testing, adherence assessment, performing therapeutic drug monitoring, testing for chronic coinfections and assessing the viral reservoir via HIV DNA quantification. Meta-analyses were conducted where feasible. RESULTS The systematic review identified 48 eligible records. Findings indicated limited evidence supporting the effectiveness of ART regimen modification in achieving virological suppression among individuals with LLV. However, studies assessing genotypic resistance testing revealed a significant association between resistance-associated mutations and virological suppression during LLV. Adherence to ART emerged as a critical determinant of treatment efficacy, with interventions showing promise in achieving viral suppression. The clinical utility of therapeutic drug monitoring in managing LLV remained inconclusive. Gaps in the literature were identified regarding follow-up scheduling, managing concurrent chronic infections and assessing inflammatory markers in LLV management. CONCLUSIONS While ART modification may not consistently achieve virological suppression, genotypic resistance testing may offer insights into treatment outcomes. Adherence to ART emerged as a crucial factor, necessitating tailored interventions. However, further research is needed to elucidate the clinical utility of therapeutic drug monitoring and other management strategies. The study highlights the importance of ongoing research to refine therapeutic approaches and improve patient outcomes in LLV management. PROSPERO REGISTRATION NUMBER CRD42024511492.
Collapse
Affiliation(s)
- Drieda Zaçe
- Infectious Disease Clinic, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Lorenzo Vittorio Rindi
- Infectious Disease Clinic, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Mirko Compagno
- Infectious Disease Clinic, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Luna Colagrossi
- Microbiology and Diagnostic Immunology, Bambino Gesu Paediatric Hospital, Roma, Italy
| | | | - Massimo Andreoni
- Infectious Disease Clinic, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology, Bambino Gesu Paediatric Hospital, Roma, Italy
- UniCamillus, Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Clinic, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
2
|
Rindi LV, Zaçe D, Compagno M, Colagrossi L, Santoro MM, Andreoni M, Perno CF, Sarmati L. Management of low-level HIV viremia during antiretroviral therapy: Delphi consensus statement and appraisal of the evidence. Sex Transm Infect 2024; 100:442-449. [PMID: 39288982 PMCID: PMC11503133 DOI: 10.1136/sextrans-2024-056199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE While antiretroviral therapy (ART) is highly effective, detection of low levels of HIV-1 RNA in plasma is common in treated individuals. Given the uncertainties on the topic, we convened a panel of experts to consider different clinical scenarios, producing a Delphi consensus to help guide clinical practice. METHODS A panel of 17 experts in infectious diseases, virology and immunology rated 32 statements related to four distinct scenarios: (1) low-level viremia during stable (≥6 months) first-line ART (≥2 consecutive HIV-1 RNA measurements 50-500 copies/mL); (2) a viral blip during otherwise suppressive ART (a HIV-1 RNA measurement 50-1000 copies/mL with adjacent measurements <50 copies/mL); (3) low-level viral rebound during previously suppressive ART (≥2 consecutive HIV-1 RNA measurements 50-500 copies/mL); (4) residual viremia during suppressive ART (persistent HIV-1 RNA quantification below 50 copies/mL). A systematic review, conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis statement, informed the 32 statements. The Delphi procedure was modified to include two voting rounds separated by a moderated group discussion. Grading of Recommendations, Assessment, Development, and Evaluations-based recommendations were developed. RESULTS Overall, 18/32 statements (56.2%) achieved a strong consensus, 3/32 (9.4%) achieved a moderate consensus and 11/32 (34.4%) did not achieve a consensus. Across the four scenarios, the panel unanimously emphasised the importance of implementing specific interventions prior to considering therapy changes, including assessing adherence, testing for genotypic drug resistance and scheduling more frequent follow-up visits. Strategies indicated in selected circumstances included therapeutic drug monitoring, quantifying total HIV-1 DNA and evaluating concomitant chronic infections. CONCLUSIONS While acknowledging the many uncertainties about source, significance and optimal management of low-level viremia during ART, the findings provide insights to help harmonise clinical practice. There is a need for well-designed randomised studies assessing different interventions to manage low-level viremia and future research regarding its definition.
Collapse
Affiliation(s)
- Lorenzo Vittorio Rindi
- Department of Systems Medicine, Infectious Disease Clinic, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Drieda Zaçe
- Department of Systems Medicine, Infectious Disease Clinic, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Mirko Compagno
- Department of Systems Medicine, Infectious Disease Clinic, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Luna Colagrossi
- Microbiology and Diagnostic Immunology, Bambino Gesu Paediatric Hospital, Roma, Italy
| | | | - Massimo Andreoni
- Department of Systems Medicine, Infectious Disease Clinic, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology, Bambino Gesu Paediatric Hospital, Roma, Italy
- UniCamillus, Rome, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, Infectious Disease Clinic, University of Rome Tor Vergata, Roma, Lazio, Italy
| |
Collapse
|
3
|
Sun X, Zhang H, Kong X, Li N, Zhang T, An M, Ding H, Shang H, Han X. Low-level viremia episodes appear to affect the provirus composition of the circulating cellular HIV reservoir during antiretroviral therapy. Front Microbiol 2024; 15:1376144. [PMID: 38841056 PMCID: PMC11150674 DOI: 10.3389/fmicb.2024.1376144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 06/07/2024] Open
Abstract
Low-level viremia (LLV) ranging from 50 to 1,000 copies/ml is common in most HIV-1-infected patients receiving antiretroviral therapy (ART). However, the source of LLV and the impact of LLV on the HIV-1 reservoir during ART remain uncertain. We hypothesized that LLV may arise from the HIV reservoir and its occurrence affect the composition of the reservoir after LLV episodes. Accordingly, we investigated the genetic linkage of sequences obtained from plasma at LLV and pre-ART time points and from peripheral blood mononuclear cells (PBMCs) at pre-ART, pre-LLV, LLV, and post-LLV time points. We found that LLV sequences were populated with a predominant viral quasispecies that accounted for 67.29%∼100% of all sequences. Two episodes of LLV in subject 1, spaced 6 months apart, appeared to have originated from the stochastic reactivation of latently HIV-1-infected cells. Moreover, 3.77% of pre-ART plasma sequences were identical to 67.29% of LLV-3 plasma sequences in subject 1, suggesting that LLV may have arisen from a subset of cells that were infected before ART was initiated. No direct evidence of sequence linkage was found between LLV viruses and circulating cellular reservoirs in all subjects. The reservoir size, diversity, and divergence of the PBMC DNA did not differ significantly between the pre- and post-LLV sampling points (P > 0.05), but the composition of viral reservoir quasispecies shifted markedly before and after LLV episodes. Indeed, subjects with LLV had a higher total PBMC DNA level, greater viral diversity, a lower proportion of variants with identical sequences detected at two or more time points, and a shorter variant duration during ART compared with subjects without LLV. Overall, our findings suggested that LLV viruses may stem from an unidentified source other than circulating cellular reservoirs. LLV episodes may introduce great complexity into the HIV reservoir, which brings challenges to the development of treatment strategies.
Collapse
Affiliation(s)
- Xiao Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hui Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiangchen Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Nan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Tong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Clinical Laboratory, Shenyang Women’s and Children’s Hospital, Shenyang, China
| | - Minghui An
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haibo Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Shang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxu Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
4
|
Mohammadi A, Etemad B, Zhang X, Li Y, Bedwell GJ, Sharaf R, Kittilson A, Melberg M, Crain CR, Traunbauer AK, Wong C, Fajnzylber J, Worrall DP, Rosenthal A, Jordan H, Jilg N, Kaseke C, Giguel F, Lian X, Deo R, Gillespie E, Chishti R, Abrha S, Adams T, Siagian A, Dorazio D, Anderson PL, Deeks SG, Lederman MM, Yawetz S, Kuritzkes DR, Lichterfeld MD, Sieg S, Tsibris A, Carrington M, Brumme ZL, Castillo-Mancilla JR, Engelman AN, Gaiha GD, Li JZ. Viral and host mediators of non-suppressible HIV-1 viremia. Nat Med 2023; 29:3212-3223. [PMID: 37957382 PMCID: PMC10719098 DOI: 10.1038/s41591-023-02611-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level viremia on antiretroviral therapy (ART) without evidence of ART non-adherence or significant drug resistance. Unraveling the mechanisms behind NSV would broaden our understanding of HIV-1 persistence. Here we analyzed plasma virus sequences in eight ART-treated individuals with NSV (88% male) and show that they are composed of large clones without evidence of viral evolution over time in those with longitudinal samples. We defined proviruses that match plasma HIV-1 RNA sequences as 'producer proviruses', and those that did not as 'non-producer proviruses'. Non-suppressible viremia arose from expanded clones of producer proviruses that were significantly larger than the genome-intact proviral reservoir of ART-suppressed individuals. Integration sites of producer proviruses were enriched in proximity to the activating H3K36me3 epigenetic mark. CD4+ T cells from participants with NSV demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, participants with NSV showed significantly lower HIV-specific CD8+ T cell responses compared with untreated viremic controllers with similar viral loads. We identified potential critical host and viral mediators of NSV that may represent targets to disrupt HIV-1 persistence.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Valley Health System, Las Vegas, NV, USA
| | - Behzad Etemad
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China
| | - Yijia Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory J Bedwell
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Radwa Sharaf
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Autumn Kittilson
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meghan Melberg
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles R Crain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Anna K Traunbauer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Colline Wong
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jesse Fajnzylber
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Alex Rosenthal
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah Jordan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaus Jilg
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Francoise Giguel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Rinki Deo
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rida Chishti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Abrha
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor Adams
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail Siagian
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dominic Dorazio
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Peter L Anderson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Michael M Lederman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sigal Yawetz
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mathias D Lichterfeld
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Scott Sieg
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Athe Tsibris
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Jose R Castillo-Mancilla
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan N Engelman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Gaurav D Gaiha
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Mohammadi A, Etemad B, Zhang X, Li Y, Bedwell GJ, Sharaf R, Kittilson A, Melberg M, Wong C, Fajnzylber J, Worrall DP, Rosenthal A, Jordan H, Jilg N, Kaseke C, Giguel F, Lian X, Deo R, Gillespie E, Chishti R, Abrha S, Adams T, Siagian A, Anderson PL, Deeks SG, Lederman MM, Yawetz S, Kuritzkes DR, Lichterfeld MD, Tsibris A, Carrington M, Brumme ZL, Castillo-Mancilla JR, Engelman AN, Gaiha GD, Li JZ. Viral and Host Mediators of Non-Suppressible HIV-1 Viremia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.30.23287124. [PMID: 37034605 PMCID: PMC10081408 DOI: 10.1101/2023.03.30.23287124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Non-suppressible HIV-1 viremia (NSV) can occur in persons with HIV despite adherence to combination antiretroviral therapy (ART) and in the absence of significant drug resistance. Here, we show that plasma NSV sequences are comprised primarily of large clones without evidence of viral evolution over time. We defined proviruses that contribute to plasma viremia as "producer", and those that did not as "non-producer". Compared to ART-suppressed individuals, NSV participants had a significantly larger producer reservoir. Producer proviruses were enriched in chromosome 19 and in proximity to the activating H3K36me3 epigenetic mark. CD4+ cells from NSV participants demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, NSV participants showed no elevation in HIV-specific CD8+ cell responses and producer proviruses were enriched for HLA escape mutations. We identified critical host and viral mediators of NSV that represent potential targets to disrupt HIV persistence and promote viral silencing.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Behzad Etemad
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Zhang
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yijia Li
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Radwa Sharaf
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Autumn Kittilson
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meghan Melberg
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Colline Wong
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jesse Fajnzylber
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Alex Rosenthal
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah Jordan
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaus Jilg
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Francoise Giguel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaodong Lian
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rinki Deo
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rida Chishti
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Abrha
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor Adams
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail Siagian
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter L. Anderson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Michael M. Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sigal Yawetz
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mathias D. Lichterfeld
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Athe Tsibris
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Jose R. Castillo-Mancilla
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alan N. Engelman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Gaurav D. Gaiha
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan Z. Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Nzivo MM, Waruhiu CN, Kang'ethe JM, Budambula NLM. HIV Virologic Failure among Patients with Persistent Low-Level Viremia in Nairobi, Kenya: It Is Time to Review the >1000 Virologic Failure Threshold. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8961372. [PMID: 37152588 PMCID: PMC10159743 DOI: 10.1155/2023/8961372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 05/09/2023]
Abstract
Persistent low-level viremia (PLLV) of 200-999 copies/ml has been reported as a risk factor for HIV virologic failure (VF). This retrospective study was aimed at characterizing patients with PLLV, determining factors associated with VF, and determining the effect of regimen change. Data were extracted from electronic medical records for HIV care and treatment. Patients' characteristics (N = 705) were as follows: a mean age of 42 years, majority female (55%), and 51% married. A majority (78.7%) had a history of opportunistic infections in their ART lifetime. To determine factors associated with VF, 187 records on patients who maintained PLLV and 12 on deceased patients at the time of data review were eliminated from the analysis, leaving 506 patient records. Out of the 506, 89% (451/506) suppressed VL to nondetectable levels while 11% (55/506) had VF, and the difference was significant (P = 0.0001). Virologic failure was significantly associated with ages 10-30 years (P < 0.05). Baseline VL ≥ 1000 (OR 3.929; P = 0.002) and 200-999 copies/ml (OR 4.062; P = 0.004) were associated with VF. During PLLV, factors associated with VF included the following: PLLV of 200-999 copies/ml (P < 0.05), viral blips (OR 4.545; P = 0.0001), mean maximum VL (P < 0.05), and age (P = 0.043). Married marital status was inversely associated with VF (OR 0.318; P = 0.026). Regimen change was not significantly associated with virologic outcomes. However, patients who switched regimens to the second line had a high risk of VF (P = 0.028; OR 3.203). Regimen change was significantly high (P < 0.05) among adolescents and patients with a start regimen of 2NRTI+1NNRTI. Most of the PLLV patients (89%) achieved nondetectable VL after their continued ART monitoring for at least 12 months. Therefore, PLLV was not an indicator of VF. However, a consistent VL of ≥200-999 copies/ml at baseline and more than 12 months of ART care and treatment were significantly associated with VF. Patients with VL 200-999 copies/ml, adolescents, and young adults require intensive ART monitoring and support.
Collapse
Affiliation(s)
- Mirriam M. Nzivo
- School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Cecilia N. Waruhiu
- The Africa Genomics Centre and Consultancy Ltd., P.O. Box 381-00517, Nairobi, Kenya
| | - James M. Kang'ethe
- Comprehensive Care Centre, Kenyatta National Hospital, P.O. Box 20723-00202, Nairobi, Kenya
| | - Nancy L. M. Budambula
- Department of Biological Sciences, University of Embu, P.O. Box 6-60100, Embu, Kenya
| |
Collapse
|
7
|
Elvstam O, Malmborn K, Elén S, Marrone G, García F, Zazzi M, Sönnerborg A, Böhm M, Seguin-Devaux C, Björkman P. Virologic Failure Following Low-level Viremia and Viral Blips During Antiretroviral Therapy: Results From a European Multicenter Cohort. Clin Infect Dis 2022; 76:25-31. [PMID: 36100984 PMCID: PMC9825828 DOI: 10.1093/cid/ciac762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND It is unclear whether low-level viremia (LLV), defined as repeatedly detectable viral load (VL) of <200 copies/mL, and/or transient viremic episodes (blips) during antiretroviral therapy (ART), predict future virologic failure. We investigated the association between LLV, blips, and virologic failure (VF) in a multicenter European cohort. METHODS People with HIV-1 who started ART in 2005 or later were identified from the EuResist Integrated Database. We analyzed the incidence of VF (≥200 copies/mL) depending on viremia exposure, starting 12 months after ART initiation (grouped as suppression [≤50 copies/mL], blips [isolated VL of 51-999 copies/mL], and LLV [repeated VLs of 51-199 copies/mL]) using Cox proportional hazard models adjusted for age, sex, injecting drug use, pre-ART VL, CD4 count, HIV-1 subtype, type of ART, and treatment experience. We queried the database for drug-resistance mutations (DRM) related to episodes of LLV and VF and compared those with baseline resistance data. RESULTS During 81 837 person-years of follow-up, we observed 1424 events of VF in 22 523 participants. Both blips (adjusted subhazard ratio [aHR], 1.7; 95% confidence interval [CI], 1.3-2.2) and LLV (aHR, 2.2; 95% CI, 1.6-3.0) were associated with VF, compared with virologic suppression. These associations remained statistically significant in subanalyses restricted to people with VL <200 copies/mL and those starting ART 2014 or later. Among people with LLV and genotype data available within 90 days following LLV, 49/140 (35%) had at least 1 DRM. CONCLUSIONS Both blips and LLV during ART are associated with increased risk of subsequent VF.
Collapse
Affiliation(s)
- Olof Elvstam
- Correspondence: O. Elvstam, Department of Infectious Diseases, Växjö Central Hospital, 35185 Växjö, Sweden ()
| | - Kasper Malmborn
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Sixten Elén
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Gaetano Marrone
- Department of Infectious Diseases and Clinical Virology, Karolinska University Hospital, Stockholm, Sweden
| | - Federico García
- Servicio de Microbiología, Hospital Clinico Universitario San Cecilio, Instituto de Investigacíon Ibs. Granada, Ciber de Enfermedades Infecciosas, CIBERINFEC, Granada, Spain
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anders Sönnerborg
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden,Department of Infecious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Böhm
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
| | - Per Björkman
- Department of Translational Medicine, Lund University, Malmö, Sweden,Department of Infectious Diseases, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
8
|
Cardiovascular Profile of South African Adults with Low-Level Viremia during Antiretroviral Therapy. J Clin Med 2022; 11:jcm11102812. [PMID: 35628937 PMCID: PMC9144153 DOI: 10.3390/jcm11102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic inflammation is an HIV infection feature, contributing to elevated risk of cardiovascular disease among people with HIV, which can be induced by viral replication. A proportion of antiretroviral therapy (ART) recipients fail to achieve viral suppression, despite not meeting criteria for treatment failure, so-called low-level viremia (LLV). We investigated the relationship between LLV and an array of cardiovascular measures and biomarkers. South Africans with LLV (viral load = 50−999 copies/mL) and virological suppression (viral load <50 copies/mL) were selected from the EndoAfrica study (all receiving efavirenz-based ART) for cross-sectional comparison of vascular structure and function measures, as well as 21 plasma biomarkers related to cardiovascular risk and inflammation. Associations were investigated with univariate, multivariate, and binomial logistic regression analyses (having outcome measures above (cases) or below (controls) the 75th percentile). Among 208 participants, 95 (46%) had LLV, and 113 (54%) had viral suppression. The median age was 44 years, 73% were women, and the median ART duration was 4.5 years. Cardiovascular measures and biomarker levels were similar between these two categories. Cardiovascular function and structure measures were not associated with viremia status and having LLV did not increase the odds of having outcome measures above the 75th percentile. In this study among South African ART recipients, LLV did not associate with cardiovascular risk.
Collapse
|
9
|
Elvstam O, Marrone G, Medstrand P, Treutiger CJ, Sönnerborg A, Gisslén M, Björkman P. All-Cause Mortality and Serious Non-AIDS Events in Adults With Low-level Human Immunodeficiency Virus Viremia During Combination Antiretroviral Therapy: Results From a Swedish Nationwide Observational Study. Clin Infect Dis 2021; 72:2079-2086. [PMID: 32271361 PMCID: PMC8204776 DOI: 10.1093/cid/ciaa413] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023] Open
Abstract
Background The impact of low levels of human immunodeficiency virus (HIV) RNA (low-level viremia [LLV]) during combination antiretroviral therapy (cART) on clinical outcomes is unclear. We explored the associations between LLV and all-cause mortality, AIDS, and serious non-AIDS events (SNAEs). Methods We grouped individuals starting cART 1996–2017 (identified from the Swedish InfCare HIV register) as virologic suppression (VS; <50 copies/mL), LLV (repeated viral load, 50–999 copies/mL), and nonsuppressed viremia (NSV; ≥1000 copies/mL). Separately, LLV was subdivided into 50–199 and 200–999 copies/mL (reflecting different definitions of virologic failure). Proportional-hazard models (including sex, age, pre-ART CD4 count and viral load, country of birth, injection drug use, treatment experience and interruptions, and an interaction term between viremia and time) were fitted for the study outcomes. Results A total of 6956 participants were followed for a median of 5.7 years. At the end of follow-up, 60% were categorized as VS, 9% as LLV, and 31% as NSV. Compared with VS, LLV was associated with increased mortality (adjusted hazard ratio [aHR], 2.2; 95% confidence interval [CI], 1.3–3.6). This association was also observed for LLV 50–199 copies/mL (aHR, 2.2; 95% CI, 1.3–3.8), but was not statistically significant for LLV 200–999 copies/mL (aHR, 2.1; 95% CI, .96–4.7). LLV 50–999 copies/mL was not linked to increased risk of AIDS or SNAEs, but in subanalysis, LLV 200–999 copies/mL was associated with SNAEs (aHR, 2.0; 95% CI, 1.2–3.6). Conclusions In this population-based cohort, LLV during cART was associated with adverse clinical outcomes.
Collapse
Affiliation(s)
- Olof Elvstam
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Gaetano Marrone
- Department of Infectious Diseases and Clinical Virology, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik Medstrand
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Carl Johan Treutiger
- Department of Infectious Diseases/Venhälsan, South General Hospital, Stockholm, Sweden
| | - Anders Sönnerborg
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Björkman
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Department of Infectious Diseases, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
10
|
Bull M, Mitchell C, Soria J, Styrchak S, Williams C, Dragavon J, Ryan KJ, Acosta E, Onchiri F, Coombs RW, La Rosa A, Ticona E, Frenkel LM. Genital Shedding of Human Immunodeficiency Virus Type-1 (HIV) When Antiretroviral Therapy Suppresses HIV Replication in the Plasma. J Infect Dis 2021; 222:777-786. [PMID: 32274499 DOI: 10.1093/infdis/jiaa169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/08/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND During antiretroviral treatment (ART) with plasma HIV RNA below the limit of quantification, HIV RNA can be detected in genital or rectal secretions, termed discordant shedding (DS). We hypothesized that proliferating cells produce virions without HIV replication. METHODS ART-naive Peruvians initiating ART were observed for DS over 2 years. HIV env and pol genomes were amplified from DS. Antiretrovirals and cytokines/chemokines concentrations were compared at DS and control time points. RESULTS Eighty-two participants had ART suppression. DS was detected in 24/82 (29%) participants: 13/253 (5%) cervicovaginal lavages, 20/322 (6%) seminal plasmas, and 6/85 (7%) rectal secretions. HIV RNA in DS specimens was near the limit of quantification and not reproducible. HIV DNA was detected in 6/13 (46%) DS cervicovaginal lavages at low levels. Following DNase treatment, 5/39 DS specimens yielded HIV sequences, all without increased genetic distances. Women with and without DS had similar plasma antiretroviral levels and DS in 1 woman was associated with inflammation. CONCLUSIONS HIV RNA and DNA sequences and therapeutic antiretroviral plasma levels did not support HIV replication as the cause of DS from the genital tract. Rather, our findings infer that HIV RNA is shed due to proliferation of infected cells with virion production.
Collapse
Affiliation(s)
- Marta Bull
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Caroline Mitchell
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Jaime Soria
- Infectious Diseases Department, Hospital Nacional Dos de Mayo, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Sheila Styrchak
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Corey Williams
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Joan Dragavon
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Kevin J Ryan
- School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Edward Acosta
- School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Frankline Onchiri
- Core for Biomedical Statistics, Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Robert W Coombs
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Alberto La Rosa
- Asociaciòn Civil Impacta Salud y Educación, Lima, Peru, and.,Merck Sharp & Dohme, Lima, Peru
| | - Eduardo Ticona
- Infectious Diseases Department, Hospital Nacional Dos de Mayo, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Lisa M Frenkel
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Cells producing residual viremia during antiretroviral treatment appear to contribute to rebound viremia following interruption of treatment. PLoS Pathog 2020; 16:e1008791. [PMID: 32841299 PMCID: PMC7473585 DOI: 10.1371/journal.ppat.1008791] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/04/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
During antiretroviral therapy (ART) that suppresses HIV replication to below the limit-of-quantification, virions produced during ART can be detected at low frequencies in the plasma, termed residual viremia (RV). We hypothesized that a reservoir of HIV-infected cells actively produce and release virions during ART that are potentially infectious, and that following ART-interruption, these virions can complete full-cycles of replication and contribute to rebound viremia. Therefore, we studied the dynamics of RV sequence variants in 3 participants who initiated ART after ~3 years of infection and were ART-suppressed for >6 years prior to self-initiated ART-interruptions. Longitudinal RV C2V5env sequences were compared to sequences from pre-ART plasma, supernatants of quantitative viral outgrowth assays (QVOA) of cells collected during ART, post-ART-interruption plasma, and ART-re-suppression plasma. Identical, “putatively clonal,” RV sequences comprised 8–84% of sequences from each timepoint. The majority of RV sequences were genetically similar to those from plasma collected just prior to ART-initiation, but as the duration of ART-suppression increased, an increasing proportion of RV variants were similar to sequences from earlier in infection. Identical sequences were detected in RV over a median of 3 years (range: 0.3–8.2) of ART-suppression. RV sequences were identical to pre-ART plasma viruses (5%), infectious viruses induced in QVOA (4%) and rebound viruses (5%) (total n = 21/154 (14%) across the 3 participants). RV sequences identical to ART-interruption “rebound” sequences were detected 0.1–7.4 years prior to ART-interruption. RV variant prevalence and persistence were not associated with detection of the variant among rebound sequences. Shortly after ART-re-suppression, variants that had been replicating during ART-interruptions were detected as RV (n = 5). These studies show a dynamic, virion-producing HIV reservoir that contributes to rekindling infection upon ART-interruption. The persistence of identical RV variants over years suggests that a subpopulation of HIV-infected clones frequently or continuously produce virions that may resist immune clearance; this suggests that cure strategies should target this active as well as latent reservoirs. HIV-infected individuals receiving effective antiretroviral treatment (ART) produce virions detected in the blood at very low levels, termed residual viremia (RV). To understand the significance of RV as related to the persistence of HIV infection, we characterized the dynamics of RV sequence variants among plasma viruses over nearly a decade of ART and assessed whether RV contributed to rekindling viremia upon ART-interruption. The HIV reservoir producing RV appeared to be “seeded” at various times before ART-initiation. Identical RV sequences likely produced by a clonal cell population, varied over time, with unique sequence variants persisting over a median of 3 years. A subset of RV variants (14%) were identical to viruses found in pre-ART plasma, infectious viruses induced from cultured CD4+ T blood lymphocytes collected during ART, or in rebound plasma during ART-interruption. The persistence of unique RV variants over years, infers that the clones of HIV-infected cells producing these virions resist immune clearance or a subset of these clones are activated on a rolling basis, and that novel treatment strategies are needed to target this active reservoir that contributes to viral rebound.
Collapse
|
12
|
Zaidan SM, Leyre L, Bunet R, Larouche-Anctil E, Turcotte I, Sylla M, Chamberland A, Chartrand-Lefebvre C, Ancuta P, Routy JP, Baril JG, Trottier B, MacPherson P, Trottier S, Harris M, Walmsley S, Conway B, Wong A, Thomas R, Kaplan RC, Landay AL, Durand M, Chomont N, Tremblay C, El-Far M. Upregulation of IL-32 Isoforms in Virologically Suppressed HIV-Infected Individuals: Potential Role in Persistent Inflammation and Transcription From Stable HIV-1 Reservoirs. J Acquir Immune Defic Syndr 2019; 82:503-513. [PMID: 31714430 PMCID: PMC6857723 DOI: 10.1097/qai.0000000000002185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Human IL-32 is a polyfunctional cytokine that was initially reported to inhibit HIV-1 infection. However, recent data suggest that IL-32 may enhance HIV-1 replication by activating the HIV-1 primary targets, CD4 T-cells. Indeed, IL-32 is expressed in multiple isoforms, some of which are proinflammatory, whereas others are anti-inflammatory. SETTING AND METHODS Here, we aimed to determine the relative expression of IL-32 isoforms and to test their inflammatory nature and potential to induce HIV-1 production in latently infected cells from virologically suppressed HIV-infected individuals. IL-32 and other cytokines were quantified from plasma and supernatant of CD4 T-cells by ELISA. Transcripts of IL-32 isoforms were quantified by qRT-PCR in peripheral blood mononuclear cells. The impact of recombinant human IL-32 isoforms on HIV-1 transcription was assessed in CD4 T-cells from HIV-1cART individuals by qRT-PCR. RESULTS All IL-32 isoforms were significantly upregulated in HIV-1cART compared to HIV individuals with IL-32β representing the dominantly expressed isoform, mainly in T-cells and NK-cells. At the functional level, although IL-32γ induced typical proinflammatory cytokines (IL-6 and IFN-γ) in TCR-activated CD4 T-cells, IL-32α showed an anti-inflammatory profile by inducing IL-10 but not IL-6 or IFN-γ. However, IL-32β showed a dual phenotype by inducing both pro- and anti-inflammatory cytokines. Interestingly, consistent with its highly pro-inflammatory nature, IL-32γ, but not IL-32α or IL-32β, induced HIV-1 production in latently infected CD4 T-cells isolated from combined antiretroviral therapy-treated individuals. CONCLUSIONS Our data report on the differential expression of IL-32 isoforms and highlight the potential role of IL-32, particularly the γ isoform, in fueling persistent inflammation and transcription of viral reservoir in HIV-1 infection.
Collapse
Affiliation(s)
- Sarah M. Zaidan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Louise Leyre
- Départment de microbiologie, infectiologie et immunologie, Faculty of Medicine, Université de Montréal, Montreal,QC, Canada
| | - Rémi Bunet
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | | | - Isabelle Turcotte
- Départment de microbiologie, infectiologie et immunologie, Faculty of Medicine, Université de Montréal, Montreal,QC, Canada
| | - Mohamed Sylla
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Annie Chamberland
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | | | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Départment de microbiologie, infectiologie et immunologie, Faculty of Medicine, Université de Montréal, Montreal,QC, Canada
| | - Jean-Pierre Routy
- McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Jean-Guy Baril
- Centre de médecine urbaine du Quartier latin, Montréal, QC, Canada
| | - Benoit Trottier
- Centre de médecine urbaine du Quartier latin, Montréal, QC, Canada
| | | | - Sylvie Trottier
- Centre Hospitalier de l’Université Laval, Quebec, QC, Canada
| | - Marianne Harris
- AIDS Research Program, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Sharon Walmsley
- Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
| | - Brian Conway
- Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
| | | | | | | | | | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Départment de microbiologie, infectiologie et immunologie, Faculty of Medicine, Université de Montréal, Montreal,QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Départment de microbiologie, infectiologie et immunologie, Faculty of Medicine, Université de Montréal, Montreal,QC, Canada
| | - Mohamed El-Far
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
13
|
Tzou PL, Rhee SY, Shafer RW. Amino Acid Prevalence of HIV-1 pol Mutations by Direct Polymerase Chain Reaction and Single Genome Sequencing. AIDS Res Hum Retroviruses 2019; 35:924-929. [PMID: 31317771 DOI: 10.1089/aid.2018.0289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The presence of many highly unusual HIV-1 mutations at a minority variant threshold by next-generation sequence (NGS) may indicate that a high proportion of variants at or just above the threshold represent PCR errors. The validity of this hypothesis depends on the concept that highly unusual mutations detected by population-based sequencing are also highly unusual within a person's virus population. Highly unusual mutations were defined as mutations with a prevalence <0.01% in group M HIV-1 direct PCR population-based Sanger sequences in the Stanford HIV Drug Resistance Database. Single genome Sanger sequences [single genome sequences (SGSs)] were analyzed because they are not subject to PCR error. Permutation analyses compared the proportion of highly unusual mutations in SGSs with the empirical frequencies of these mutations in repeated random selections of population-based sequences. We created a database of 11,258 pol SGSs in 963 plasma samples from 345 persons with active virus replication and analyzed the subset of samples containing 10 or more SGSs. Highly unusual mutations occurred more commonly in samples undergoing SGS compared with population-based sequencing in protease (3.9% vs. 0.8%; p < .001), reverse transcriptase (6.5% vs. 1.5%; p < .001), and integrase (5.0% vs. 1.8%; p < .001). Highly unusual mutations occur more commonly in SGSs than in population-based sequences. However, they comprise a small proportion of all SGS mutations supporting the concept that the presence of many highly unusual mutations just above an NGS threshold suggests that the threshold is too low.
Collapse
Affiliation(s)
- Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| |
Collapse
|
14
|
Bull ME, McKernan JL, Styrchak S, Kraft K, Hitti J, Cohn SE, Tapia K, Deng W, Holte S, Mullins JI, Coombs RW, Frenkel LM. Phylogenetic Analyses Comparing HIV Sequences from Plasma at Virologic Failure to Cervix Versus Blood Sequences from Antecedent Antiretroviral Therapy Suppression. AIDS Res Hum Retroviruses 2019; 35:557-566. [PMID: 30892052 DOI: 10.1089/aid.2018.0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Identifying tissue sources of HIV that rebound following "failure" of antiretroviral therapy (ART) is critical to evaluating cure strategies. To assess the role of the uterine cervix and peripheral blood mononuclear cells (PBMC) as viral reservoirs, nearest-neighbor phylogenetic analyses compared genetic relatedness of tissue sequences during ART suppression to those detected in plasma at viral rebound. Blood and genital tract specimens from a natural history cohort of HIV-infected women were collected over 5 years. HIV DNA sequences extracted from PBMC and cervical biopsies during ART suppression and plasma RNA from rebound (defined as HIV RNA >3 log10 copies/mL) were derived by single-genome amplification. Phylogenetic and nearest-neighbor analyses of HIV env sequences and drug resistance in pol sequences were compared between tissues. Nine instances of plasma viral rebound (median HIV RNA 3.6 log10 c/mL; IQR: 3.1-3.8) were detected in 7 of 57 women. Nearest-neighbor analyses found rebound plasma sequences were closer to uterine cervical sequences in 4/9 (44%), closer to PBMC in 3/9 (33%), and ambiguous in 2/9 (22%) cases. Rebound plasma clades (n = 27) shared identical sequences in seven instances with the cervix versus two with PBMC. Novel drug resistance mutations were detected in 4/9 (44%) rebounds. The observed tendency for greater sharing of identical HIV variants and greater nearest-neighbor association between rebounding plasma and uterine cervical versus PBMC sequences suggests that the uterine cervix may be a relevant HIV reservoir. The cervix, a readily accessible tissue in women that can be repeatedly sampled, could help assess the HIV reservoir when evaluating cure strategies.
Collapse
Affiliation(s)
- Marta E. Bull
- Department of Pediatrics, University of Washington, Seattle, Washington
- Center Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Jennifer L. McKernan
- Center Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Sheila Styrchak
- Center Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Kelli Kraft
- Center Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Jane Hitti
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - Susan E. Cohn
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Kenneth Tapia
- Department of Global Health and University of Washington, Seattle, Washington
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Sarah Holte
- Department of Global Health and University of Washington, Seattle, Washington
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - James I. Mullins
- Department of Global Health and University of Washington, Seattle, Washington
- Department of Microbiology, University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Seattle, Washington
- Department of Medicine University of Washington, Seattle, Washington
| | - Robert W. Coombs
- Department of Laboratory Medicine and Seattle, Washington
- Department of Medicine University of Washington, Seattle, Washington
| | - Lisa M. Frenkel
- Department of Pediatrics, University of Washington, Seattle, Washington
- Center Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Global Health and University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Seattle, Washington
| |
Collapse
|