1
|
Mesplede T, Gantner P. Insights in Dolutegravir-Resistance Pathways. Clin Infect Dis 2024; 79:1541-1542. [PMID: 38462992 DOI: 10.1093/cid/ciae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Affiliation(s)
- Thibault Mesplede
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pierre Gantner
- Clinical Virology Laboratory, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR_S1109, Strasbourg University, Strasbourg, France
| |
Collapse
|
2
|
Beck IA, Boyce CL, Bishop MD, Vu YL, Fung A, Styrchak S, Panpradist N, Lutz BR, Frenkel LM. Development and Optimization of Oligonucleotide Ligation Assay (OLA) Probes for Detection of HIV-1 Resistance to Dolutegravir. Viruses 2024; 16:1162. [PMID: 39066324 PMCID: PMC11281587 DOI: 10.3390/v16071162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The WHO currently recommends dolutegravir (DTG)-based ART for persons living with HIV infection in resource-limited-settings (RLS). To expand access to testing for HIV drug resistance (DR) to DTG in RLS, we developed probes for use in the oligonucleotide ligation assay (OLA)-Simple, a near-point of care HIV DR kit. Genotypic data from clinical trials and case reports were used to determine the mutations in HIV-1 integrase critical to identifying individuals with DTG-resistance at virologic failure of DTG-based ART. Probes to detect G118R, Q148H/K/R, N155H and R263K in HIV-1 subtypes A, B, C, D and CRF01_AE were designed using sequence alignments from the Los Alamos database and validated using 61 clinical samples of HIV-1 subtypes A, B, C, D, CRF01_AE genotyped by PacBio (n = 15) or Sanger (n = 46). Initial OLA probes failed to ligate for 16/244 (6.5%) codons (9 at G118R and 7 at Q148H/K/R). Probes revised to accommodate polymorphisms interfering with ligation at codons G118R and Q148R reduced indeterminates to 3.7% (5 at G118R and 4 at Q148H/K/R) and detected DTG-mutations with a sensitivity of 96.5% and 100% specificity. These OLA DTG resistance probes appear highly sensitive and specific across HIV-1 subtypes common in RLS with high burden of HIV infection.
Collapse
Affiliation(s)
- Ingrid A. Beck
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA; (I.A.B.); (C.L.B.); (M.D.B.); (S.S.)
| | - Ceejay L. Boyce
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA; (I.A.B.); (C.L.B.); (M.D.B.); (S.S.)
| | - Marley D. Bishop
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA; (I.A.B.); (C.L.B.); (M.D.B.); (S.S.)
| | - Yen L. Vu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; (Y.L.V.); (A.F.); (N.P.); (B.R.L.)
| | - Amanda Fung
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; (Y.L.V.); (A.F.); (N.P.); (B.R.L.)
| | - Sheila Styrchak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA; (I.A.B.); (C.L.B.); (M.D.B.); (S.S.)
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; (Y.L.V.); (A.F.); (N.P.); (B.R.L.)
| | - Barry R. Lutz
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; (Y.L.V.); (A.F.); (N.P.); (B.R.L.)
| | - Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA; (I.A.B.); (C.L.B.); (M.D.B.); (S.S.)
- Departments of Medicine, Pediatrics and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Tao K, Rhee SY, Chu C, Avalos A, Ahluwalia AK, Gupta RK, Jordan MR, Shafer RW. Treatment Emergent Dolutegravir Resistance Mutations in Individuals Naïve to HIV-1 Integrase Inhibitors: A Rapid Scoping Review. Viruses 2023; 15:1932. [PMID: 37766338 PMCID: PMC10536831 DOI: 10.3390/v15091932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Dolutegravir (DTG)-based antiretroviral therapy (ART) rarely leads to virological failure (VF) and drug resistance in integrase strand transfer inhibitor (INSTI)-naïve persons living with HIV (PLWH). As a result, limited data are available on INSTI-associated drug resistance mutations (DRMs) selected by DTG-containing ART regimens. Methods: We reviewed studies published through July 2023 to identify those reporting emergent major INSTI-associated DRMs in INSTI-naïve PLWH receiving DTG and those containing in vitro DTG susceptibility results using a standardized assay. Results: We identified 36 publications reporting 99 PLWH in whom major nonpolymorphic INSTI-associated DRMs developed on a DTG-containing regimen and 21 publications containing 269 in vitro DTG susceptibility results. DTG-selected DRMs clustered into four largely non-overlapping mutational pathways characterized by mutations at four signature positions: R263K, G118R, N155H, and Q148H/R/K. Eighty-two (82.8%) viruses contained just one signature DRM, including R263K (n = 40), G118R (n = 24), N155H (n = 9), and Q148H/R/K (n = 9). Nine (9.1%) contained ≥1 signature DRM, and eight (8.1%) contained just other DRMs. R263K and G118R were negatively associated with one another and with N155H and Q148H/K/R. R263K alone conferred a median 2.0-fold (IQR: 1.8-2.2) reduction in DTG susceptibility. G118R alone conferred a median 18.8-fold (IQR:14.2-23.4) reduction in DTG susceptibility. N155H alone conferred a median 1.4-fold (IQR: 1.2-1.6) reduction in DTG susceptibility. Q148H/R/K alone conferred a median 0.8-fold (IQR: 0.7-1.1) reduction in DTG susceptibility. Considerably higher levels of reduced susceptibility often occurred when signature DRMs occurred with additional INSTI-associated DRMs. Conclusions: Among INSTI-naïve PLWH with VF and treatment emergent INSTI-associated DRMs, most developed one of four signature DRMs, most commonly R263K or G118R. G118R was associated with a much greater reduction in DTG susceptibility than R263K.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (K.T.)
| | - Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (K.T.)
| | - Carolyn Chu
- Department of Family and Community Medicine, University of California San Francisco, San Francisco, CA 94011, USA
| | - Ava Avalos
- Careen Center for Health, Gaborone, Botswana
| | | | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge CB2 0AW, UK
| | - Michael R. Jordan
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (K.T.)
| |
Collapse
|
4
|
Li JZ, Stella N, Choudhary MC, Javed A, Rodriguez K, Ribaudo H, Moosa MY, Brijkumar J, Pillay S, Sunpath H, Noguera-Julian M, Paredes R, Johnson B, Edwards A, Marconi VC, Kuritzkes DR. Impact of pre-existing drug resistance on risk of virological failure in South Africa. J Antimicrob Chemother 2021; 76:1558-1563. [PMID: 33693678 DOI: 10.1093/jac/dkab062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES There is conflicting evidence on the impact of pre-existing HIV drug resistance mutations (DRMs) in patients infected with non-B subtype virus. METHODS We performed a case-cohort substudy of the AIDS Drug Resistance Surveillance Study, which enrolled South African patients initiating first-line efavirenz/emtricitabine/tenofovir. Pre-ART DRMs were detected by Illumina sequencing of HIV pol and DRMs present at <20% of the viral population were labelled as minority variants (MVs). Weighted Cox proportional hazards models estimated the association between pre-ART DRMs and risk of virological failure (VF), defined as confirmed HIV-1 RNA ≥1000 copies/mL after ≥5 months of ART. RESULTS The evaluable population included 178 participants from a randomly selected subcohort (16 with VF, 162 without VF) and 83 additional participants with VF. In the subcohort, 16% of participants harboured ≥1 majority DRM. The presence of any majority DRM was associated with a 3-fold greater risk of VF (P = 0.002), which increased to 9.2-fold (P < 0.001) in those with <2 active drugs. Thirteen percent of participants harboured MV DRMs in the absence of majority DRMs. Presence of MVs alone had no significant impact on the risk of VF. Inclusion of pre-ART MVs with majority DRMs improved the sensitivity but reduced the specificity of predicting VF. CONCLUSIONS In a South African cohort, the presence of majority DRMs increased the risk of VF, especially for participants receiving <2 active drugs. The detection of drug-resistant MVs alone did not predict an increased risk of VF, but their inclusion with majority DRMs affected the sensitivity/specificity of predicting VF.
Collapse
Affiliation(s)
- Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia Stella
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Aneela Javed
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | | | | | | | | | | | | | | | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain
| | | | - Alex Edwards
- Emory University School of Medicine and Rollins School of Public Health, Atlanta, GA, USA
| | - Vincent C Marconi
- Emory University School of Medicine and Rollins School of Public Health, Atlanta, GA, USA
| | | |
Collapse
|
5
|
Casadellà M, Santos JR, Noguera-Julian M, Micán-Rivera R, Domingo P, Antela A, Portilla J, Sanz J, Montero-Alonso M, Navarro J, Masiá M, Valcarce-Pardeiro N, Ocampo A, Pérez-Martínez L, Pasquau J, Vivancos MJ, Imaz A, Carmona-Oyaga P, Muñoz-Medina L, Villar-García J, Barrufet P, Paredes R. Primary resistance to integrase strand transfer inhibitors in Spain using ultrasensitive HIV-1 genotyping. J Antimicrob Chemother 2021; 75:3517-3524. [PMID: 32929472 DOI: 10.1093/jac/dkaa349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/03/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Transmission of resistance mutations to integrase strand transfer inhibitors (INSTIs) in HIV-infected patients may compromise the efficacy of first-line antiretroviral regimens currently recommended worldwide. Continued surveillance of transmitted drug resistance (TDR) is thus warranted. OBJECTIVES We evaluated the rates and effects on virological outcomes of TDR in a 96 week prospective multicentre cohort study of ART-naive HIV-1-infected subjects initiating INSTI-based ART in Spain between April 2015 and December 2016. METHODS Pre-ART plasma samples were genotyped for integrase, protease and reverse transcriptase resistance using Sanger population sequencing or MiSeq™ using a ≥ 20% mutant sensitivity cut-off. Those present at 1%-19% of the virus population were considered to be low-frequency variants. RESULTS From a total of 214 available samples, 173 (80.8%), 210 (98.1%) and 214 (100.0%) were successfully amplified for integrase, reverse transcriptase and protease genes, respectively. Using a Sanger-like cut-off, the overall prevalence of any TDR, INSTI-, NRTI-, NNRTI- and protease inhibitor (PI)-associated mutations was 13.1%, 1.7%, 3.8%, 7.1% and 0.9%, respectively. Only three (1.7%) subjects had INSTI TDR (R263K, E138K and G163R), while minority variants with integrase TDR were detected in 9.6% of subjects. There were no virological failures during 96 weeks of follow-up in subjects harbouring TDR as majority variants. CONCLUSIONS Transmitted INSTI resistance remains rare in Spain and, to date, is not associated with virological failure to first-line INSTI-based regimens.
Collapse
Affiliation(s)
- M Casadellà
- IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain
| | - J R Santos
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | | - P Domingo
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - A Antela
- Infectious Diseases Unit, Santiago de Compostela Clinical University Hospital, Santiago de Compostela, Spain
| | - J Portilla
- Hospital General Universitario de Alicante, Alicante, Spain
| | - J Sanz
- University Hospital de La Princesa, Madrid, Spain
| | - M Montero-Alonso
- Infectious Diseases Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - J Navarro
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - M Masiá
- Infectious Diseases Unit, Elche University General Hospital, Elche, Spain
| | | | - A Ocampo
- HIV Unit, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - L Pérez-Martínez
- Infectious Diseases Area, Hospital San Pedro-CIBIR, Logroño, Spain
| | - J Pasquau
- University Hospital Virgen de las Nieves, Granada, Spain
| | - M J Vivancos
- Infectious Diseases Unit, Ramón y Cajal Hospital, Madrid, Spain
| | - A Imaz
- HIV and STI Unit, Infectious Diseases Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - P Carmona-Oyaga
- Infectious Diseases Unit, Donostia University Hospital, San Sebastián, Spain
| | | | - J Villar-García
- Infectious Diseases Department, Hospital del Mar - IMIM, Barcelona, Spain
| | - P Barrufet
- Infectious Diseases Unit, Mataró Hospital, Mataró, Spain
| | - R Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain.,Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | |
Collapse
|
6
|
Braun DL, Scheier T, Ledermann U, Flepp M, Metzner KJ, Böni J, Günthard HF. Emergence of Resistance to Integrase Strand Transfer Inhibitors during Dolutegravir Containing Triple-Therapy in a Treatment-Experienced Patient with Pre-Existing M184V/I Mutation. Viruses 2020; 12:v12111330. [PMID: 33228206 PMCID: PMC7699495 DOI: 10.3390/v12111330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
With the current widespread use of dolutegravir in low-income countries, the understanding of the impact of nucleoside reverse transcriptase inhibitor (NRTI-) associated mutations on the efficacy of dolutegravir-containing antiretroviral therapy (ART) is of utmost importance. We describe a rare case of a patient with pre-existing M184V/I mutation and virological failure on a dolutegravir/lamivudine/abacavir regimen with the emergence of integrase strand transfer inhibitor resistance mutations. Additional risk factors, which may have triggered the virological failure, included suboptimal adherence and low nadir CD4+ cell count. This case illustrates that dolutegravir-containing triple-therapy should be prescribed with caution to patients with pre-existing M184V/I mutation and poor efficacy of the reverse transcriptase inhibitor backbone. In addition, this case highlights the need for viral load monitoring in patients on dolutegravir-containing regimens in settings with a high prevalence of the M184V/I mutation such as in low-income countries.
Collapse
Affiliation(s)
- Dominique L. Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (T.S.); (K.J.M.); (H.F.G.)
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence:
| | - Thomas Scheier
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (T.S.); (K.J.M.); (H.F.G.)
| | | | - Markus Flepp
- Center for Infectious Diseases, 8038 Zurich, Switzerland;
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (T.S.); (K.J.M.); (H.F.G.)
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland;
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland;
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (T.S.); (K.J.M.); (H.F.G.)
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
7
|
Rhee SY, Grant PM, Tzou PL, Barrow G, Harrigan PR, Ioannidis JPA, Shafer RW. A systematic review of the genetic mechanisms of dolutegravir resistance. J Antimicrob Chemother 2020; 74:3135-3149. [PMID: 31280314 PMCID: PMC6798839 DOI: 10.1093/jac/dkz256] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/06/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Characterizing the mutations selected by the integrase strand transfer inhibitor (INSTI) dolutegravir and their effects on susceptibility is essential for identifying viruses less likely to respond to dolutegravir therapy and for monitoring persons with virological failure (VF) on dolutegravir therapy. Methods We systematically reviewed dolutegravir resistance studies to identify mutations emerging under dolutegravir selection pressure, the effect of INSTI resistance mutations on in vitro dolutegravir susceptibility, and the virological efficacy of dolutegravir in antiretroviral-experienced persons. Results and conclusions We analysed 14 studies describing 84 in vitro passage experiments, 26 studies describing 63 persons developing VF plus INSTI resistance mutations on a dolutegravir-containing regimen, 41 studies describing dolutegravir susceptibility results, and 22 clinical trials and 16 cohort studies of dolutegravir-containing regimens. The most common INSTI resistance mutations in persons with VF on a dolutegravir-containing regimen were R263K, G118R, N155H and Q148H/R, with R263K and G118R predominating in previously INSTI-naive persons. R263K reduced dolutegravir susceptibility ∼2-fold. G118R generally reduced dolutegravir susceptibility >5-fold. The highest levels of reduced susceptibility occurred in viruses containing Q148 mutations in combination with G140 and/or E138 mutations. Dolutegravir two-drug regimens were highly effective for first-line therapy and for virologically suppressed persons provided dolutegravir’s companion drug was fully active. Dolutegravir three-drug regimens were highly effective for salvage therapy in INSTI-naive persons provided one or more of dolutegravir’s companion drugs was fully active. However, dolutegravir monotherapy in virologically suppressed persons and functional dolutegravir monotherapy in persons with active viral replication were associated with a non-trivial risk of VF plus INSTI resistance mutations.
Collapse
Affiliation(s)
- Soo-Yon Rhee
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Philip M Grant
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Philip L Tzou
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Geoffrey Barrow
- Centre for HIV/AIDS Research, Education and Services (CHARES), Department of Medicine, University of the West Indies, Kingston, Jamaica
| | - P Richard Harrigan
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - John P A Ioannidis
- Department of Medicine, Stanford University, Stanford, CA, USA.,Meta-Research Innovation Center at Stanford, Stanford University, Stanford, CA, USA
| | - Robert W Shafer
- Department of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
An Evolutionary Model-Based Approach To Quantify the Genetic Barrier to Drug Resistance in Fast-Evolving Viruses and Its Application to HIV-1 Subtypes and Integrase Inhibitors. Antimicrob Agents Chemother 2019; 63:AAC.00539-19. [PMID: 31109980 DOI: 10.1128/aac.00539-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Viral pathogens causing global disease burdens are often characterized by high rates of evolutionary changes. The extensive viral diversity at baseline can shorten the time to escape from therapeutic or immune selective pressure and alter mutational pathways. The impact of genotypic background on the barrier to resistance can be difficult to capture, particularly for agents in experimental stages or that are recently approved or expanded into new patient populations. We developed an evolutionary model-based counting method to quickly quantify the population genetic potential to resistance and assess population differences. We demonstrate its applicability to HIV-1 integrase inhibitors, as their increasing use globally contrasts with limited availability of non-B subtype resistant sequence data and corresponding knowledge gap. A large sequence data set encompassing most prevailing HIV-1 subtypes and resistance-associated mutations of currently approved integrase inhibitors was investigated. A complex interplay between codon predominance, polymorphisms, and associated evolutionary costs resulted in a subtype-dependent varied genetic potential for 15 resistance mutations against integrase inhibitors. While we confirm the lower genetic barrier of subtype B for G140S, we convincingly discard a similar effect previously suggested for G140C. A supplementary analysis for HIV-1 reverse transcriptase inhibitors identified a lower genetic barrier for K65R in subtype C through differential codon usage not reported before. To aid evolutionary interpretations of genomic differences for antiviral strategies, we advanced existing counting methods with increased sensitivity to identify subtype dependencies of resistance emergence. Future applications include novel HIV-1 drug classes or vaccines, as well as other viral pathogens.
Collapse
|
9
|
Pena MJ, Chueca N, D'Avolio A, Zarzalejos JM, Garcia F. Virological Failure in HIV to Triple Therapy With Dolutegravir-Based Firstline Treatment: Rare but Possible. Open Forum Infect Dis 2018; 6:ofy332. [PMID: 30631792 PMCID: PMC6324549 DOI: 10.1093/ofid/ofy332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/05/2018] [Indexed: 01/26/2023] Open
Abstract
We describe a case of virological failure during initial treatment with tenofovir disoproxil fumarate/emtricitabine/dolutegravir twice daily, with concomitant rifampin treatment of staphylococcal infection, selection of R263K + E157Q, and low plasma dolutegravir levels. Using rifampin together with dolutegravir may require closer follow-up, and, if possible, plasma dolutegravir levels should be monitored.
Collapse
Affiliation(s)
- M J Pena
- Servicio de Microbiología, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de GC, Gran Canaria, Spain
| | - N Chueca
- Unidad de Gestión Clínica de Microbología, Hospital Universitario San Cecilio, Insitituto de Investigación IBS, Granada, Spain
| | - A D'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin - ASL "Città di Torino," Torino, Italy
| | - J M Zarzalejos
- Servicio de Medicina Interna, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - F Garcia
- Unidad de Gestión Clínica de Microbología, Hospital Universitario San Cecilio, Insitituto de Investigación IBS, Granada, Spain
| |
Collapse
|