1
|
Yap SH, Lee CS, Zulkifli ND, Suresh D, Hamase K, Das KT, Rajasuriar R, Leong KH. D-Amino acids differentially trigger an inflammatory environment in vitro. Amino Acids 2024; 56:6. [PMID: 38310167 PMCID: PMC10838247 DOI: 10.1007/s00726-023-03360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/20/2023] [Indexed: 02/05/2024]
Abstract
Studies in vivo have demonstrated that the accumulation of D-amino acids (D-AAs) is associated with age-related diseases and increased immune activation. However, the underlying mechanism(s) of these observations are not well defined. The metabolism of D-AAs by D-amino oxidase (DAO) produces hydrogen peroxide (H2O2), a reactive oxygen species involved in several physiological processes including immune response, cell differentiation, and proliferation. Excessive levels of H2O2 contribute to oxidative stress and eventual cell death, a characteristic of age-related pathology. Here, we explored the molecular mechanisms of D-serine (D-Ser) and D-alanine (D-Ala) in human liver cancer cells, HepG2, with a focus on the production of H2O2 the downstream secretion of pro-inflammatory cytokine and chemokine, and subsequent cell death. In HepG2 cells, we demonstrated that D-Ser decreased H2O2 production and induced concentration-dependent depolarization of mitochondrial membrane potential (MMP). This was associated with the upregulation of activated NF-кB, pro-inflammatory cytokine, TNF-α, and chemokine, IL-8 secretion, and subsequent apoptosis. Conversely, D-Ala-treated cells induced H2O2 production, and were also accompanied by the upregulation of activated NF-кB, TNF-α, and IL-8, but did not cause significant apoptosis. The present study confirms the role of both D-Ser and D-Ala in inducing inflammatory responses, but each via unique activation pathways. This response was associated with apoptotic cell death only with D-Ser. Further research is required to gain a better understanding of the mechanisms underlying D-AA-induced inflammation and its downstream consequences, especially in the context of aging given the wide detection of these entities in systemic circulation.
Collapse
Affiliation(s)
- Siew Hwei Yap
- Centre of Excellence for Research in AIDS (CERiA), Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cheng Siang Lee
- Centre of Excellence for Research in AIDS (CERiA), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nur Diyana Zulkifli
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Darshinie Suresh
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumitaa Theva Das
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Peter Doherty Institute for Infection and Immunity, Melbourne University, Melbourne, VIC, Australia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Liao X, Wu B, Li H, Zhang M, Cai M, Lang B, Wu Z, Wang F, Sun J, Zhou P, Chen H, Di D, Ren C, Zhang H. Fluorescent/Colorimetric Dual-Mode Discriminating Gln and Val Enantiomers Based on Carbon Dots. Anal Chem 2023; 95:14573-14581. [PMID: 37729469 DOI: 10.1021/acs.analchem.3c01854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Discrimination and quantification of amino acid (AA) enantiomers are particularly important for diagnosing and treating diseases. Recently, dual-mode probes have gained a lot of research interest because they can catch more detecting information compared with the single-mode probes. Thus, it is of great significance to develop a dual-mode sensor realizing AA enantiomer discrimination conveniently and efficiently. In this work, carbon dot L-TCDs were prepared by N-methyl-1,2-benzenediamine dihydrochloride (OTD) and l-tryptophan. With the assistance of H2O2, L-TCDs show an excellent discrimination performance for enantiomers of glutamine (Gln) and valine (Val) in both fluorescent and colorimetric modes. The fluorescence enantioselectivity of Gln (FD/FL) and Val (FL/FD) is 5.29 and 4.13, respectively, and the colorimetric enantioselectivity of Gln (ID/IL) and Val (IL/ID) is 13.26 and 3.42, individually. The chiral recognition mechanism of L-TCDs was systematically studied. L-TCDs can be etched by H2O2, and the participation of AA enantiomers results in different amounts of the released OTD, which provides fluorescent and colorimetric signals for identifying and quantifying the enantiomers of Gln and Val. This work provides a more convenient and flexible dual-mode sensing strategy for discriminating AA enantiomers, which is expected to be of great value in facile and high-throughput chiral recognition.
Collapse
Affiliation(s)
- Xuan Liao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bingyan Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haixia Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Mengtao Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Muzi Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bozhi Lang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhizhen Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fangling Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianong Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Wong SP, Er YX, Tan SM, Lee SC, Rajasuriar R, Lim YAL. Oral and Gut Microbiota Dysbiosis is Associated with Mucositis Severity in Autologous Hematopoietic Stem Cell Transplantation: Evidence from an Asian Population. Transplant Cell Ther 2023; 29:633.e1-633.e13. [PMID: 37422196 DOI: 10.1016/j.jtct.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Mucositis is a debilitating complication of hematopoietic stem cell transplantation (HSCT). It is unclear how changes in the composition of microbiota, which are modulated by geographical location and ethnicity, may influence immune regulation leading to the development of mucositis, and the study of both oral and gut microbiota in a single population of autologous HSCT in the Asian region is lacking. The present study aimed to characterize the oral and gut microbiota changes, and the impact on both oral and lower gastrointestinal (GI) mucositis, with associated temporal changes in a population of adult recipients of autologous HSCT. Autologous HSCT recipients age ≥18 years were recruited from Hospital Ampang, Malaysia, between April 2019 and December 2020. Mucositis assessments were conducted daily, and blood, saliva, and fecal samples were collected prior to conditioning, on day 0, and at 7 days and 6 months post-transplantation. Longitudinal differences in alpha diversity and beta diversity were determined using the Wilcoxon signed-rank test and permutational multivariate analysis of variance, respectively. Changes in relative abundances of bacteria across time points were assessed using the microbiome multivariate analysis by linear models function. The combined longitudinal effects of clinical, inflammatory, and microbiota variables on mucositis severity were measured using the generalized estimating equation. Among the 96 patients analyzed, oral mucositis and diarrhea (representing lower GI mucositis) occurred in 58.3% and 95.8%, respectively. Alpha and beta diversities were significantly different between sample types (P < .001) and across time points, with alpha diversity reaching statistical significance at day 0 in fecal samples (P < .001) and at day +7 in saliva samples (P < .001). Diversities normalized to baseline by 6 months post-transplantation. Significant microbiota, clinical, and immunologic factors were associated with increasing mucositis grades. Increasing relative abundances of saliva Paludibacter, Leuconostoc, and Proteus were associated with higher oral mucositis grades, whereas increasing relative abundances of fecal Rothia and Parabacteroides were associated with higher GI mucositis grades. Meanwhile, increasing relative abundances of saliva Lactococcus and Acidaminococcus and fecal Bifidobacterium were associated with protective effects against worsening oral and GI mucositis grades, respectively. This study provides real-world evidence and insights into the dysbiosis of the microbiota in patients exposed to conditioning regimen during HSCT. Independent of clinical and immunologic factors, we demonstrated significant associations between relative bacteria abundances with the increasing severity of oral and lower GI mucositis. Our findings offer a potential rationale to consider the inclusion of preventive and restorative measures targeting oral and lower GI dysbiosis as interventional strategies to ameliorate mucositis outcome in HSCT recipients.
Collapse
Affiliation(s)
- Shu Ping Wong
- Department of Pharmacy, Ampang Hospital, Ministry of Health, Ampang, Selangor Darul Ehsan, Malaysia
| | - Yi Xian Er
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sen Mui Tan
- Department of Haematology, Ampang Hospital, Ministry of Health, Ampang, Selangor Darul Ehsan, Malaysia
| | - Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Wong SP, Tan SM, Lee CS, Law KB, Lim YAL, Rajasuriar R. Prospective longitudinal analysis of clinical and immunological risk factors associated with oral and gastrointestinal mucositis following autologous stem cell transplant in adults. Support Care Cancer 2023; 31:494. [PMID: 37498423 DOI: 10.1007/s00520-023-07947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE The study aimed to characterize the incidence of both oral and gastrointestinal (GI) mucositis, its' associated temporal changes in local and systemic pro-inflammatory cytokines, and to explore predictive clinical and immunological factors associated with their occurrences in hematopoietic stem cell transplant (HSCT). METHODS Autologous HSCT patients aged 18 years old and above were recruited from Hospital Ampang, Malaysia, between April 2019 to December 2020. Mucositis assessments were conducted daily, whilst blood and saliva were collected prior to conditioning regimen, on Day 0, Day+7 and 6-month. Baseline and inflammatory predictors in a repeated time measurement of moderate-severe mucositis were assessed by multiple logistic regression and generalized estimating equations, respectively. RESULTS Of the 142 patients analyzed, oral mucositis and diarrhea (representing GI mucositis) were reported as 68.3% and 95.8%, respectively. Predictive factors for moderate-severe oral mucositis were BEAM or busulphan-based regimens (odds ratio (OR)=9.2, 95% confidence interval (CI)=1.16-72.9, p-value (p) = 0.005) and vomiting (OR=4.6, 95% CI 1.68-12.3, p = 0.004). Predictive factors for moderate-severe GI mucositis were BEAM or busulphan-based regimens (OR=3.9, 95% CI 1.05-14.5, p = 0.023), female sex (OR = 3.3, 95% CI 1.43-7.44, p = 0.004) and body mass index (OR=1.08, 95% CI 1.02-1.15, p = 0.010). Cytokines analyses were performed in 96 patients. Saliva and plasma interleukin-6 (OR=1.003, 95% CI 1.001-1.004, p < 0.001 and OR=1.01, 95% CI 1.001-1.015, p = 0.029), and plasma tumor necrosis factor-alpha (OR=0.91, 95% CI 0.85-0.99, p = 0.019) were predictive of moderate-severe oral mucositis in a time-dependent model. CONCLUSION This study provides real-world evidence and insights into patient- and treatment-related factors affecting oral and GI mucositis in HSCT.
Collapse
Affiliation(s)
- Shu Ping Wong
- Department of Pharmacy, Ampang Hospital, Ministry of Health, Ampang, Selangor Darul Ehsan, Malaysia
| | - Sen Mui Tan
- Department of Haematology, Ampang Hospital, Ministry of Health, Ampang, Selangor Darul Ehsan, Malaysia
| | - Cheng-Siang Lee
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kian Boon Law
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|