1
|
Meanwell NA. Sub-stoichiometric Modulation of Viral Targets-Potent Antiviral Agents That Exploit Target Vulnerability. ACS Med Chem Lett 2023; 14:1021-1030. [PMID: 37583823 PMCID: PMC10424314 DOI: 10.1021/acsmedchemlett.3c00279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
The modulation of oligomeric viral targets at sub-stoichiometric ratios of drug to target has been advocated for its efficacy and potency, but there are only a limited number of documented examples. In this Viewpoint, we summarize the invention of the HIV-1 maturation inhibitor fipravirimat and discuss the emerging details around the mode of action of this class of drug that reflects inhibition of a protein composed of 1,300-1,600 monomers that interact in a cooperative fashion. Similarly, the HCV NS5A inhibitor daclatasvir has been shown to act in a highly sub-stoichiometric fashion, inhibiting viral replication at concentrations that are ∼23,500 lower than that of the protein target.
Collapse
|
2
|
Hartz RA, Xu L, Sit SY, Chen J, Venables BL, Lin Z, Zhang S, Li Z, Parker D, Simmons TS, Jenkins S, Hanumegowda UM, Dicker I, Krystal M, Meanwell NA, Regueiro-Ren A. Synthesis, Structure-Activity Relationships, and In Vivo Evaluation of Novel C-17 Amine Derivatives Based on GSK3640254 as HIV-1 Maturation Inhibitors with Broad Spectrum Activity. J Med Chem 2022; 65:15935-15966. [PMID: 36441509 DOI: 10.1021/acs.jmedchem.2c01618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An investigation of the structure-activity relationships of a series of HIV-1 maturation inhibitors (MIs) based on GSK3640254 (4) was conducted by incorporating novel C-17 amine substituents to reduce the overall basicity of the resultant analogues. We found that replacement of the distal amine on the C-17 sidechain present in 4 with a tertiary alcohol in combination with either a heterocyclic ring system or a cyclohexyl ring substituted with polar groups provided potent wild-type HIV-1 MIs that also retained excellent potency against a T332S/V362I/prR41G variant, a laboratory strain that served as a surrogate to assess HIV-1 polymorphic virus coverage. Compound 26 exhibited broad-spectrum HIV-1 activity against an expanded panel of clinically relevant Gag polymorphic viruses and had the most desirable overall profile in this series of compounds. In pharmacokinetic studies, 26 had low clearance and exhibited 24 and 31% oral bioavailability in rats and dogs, respectively.
Collapse
Affiliation(s)
- Richard A Hartz
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Li Xu
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sing-Yuen Sit
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jie Chen
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Brian L Venables
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zeyu Lin
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sharon Zhang
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zhufang Li
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dawn Parker
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Tara S Simmons
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Susan Jenkins
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Umesh M Hanumegowda
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ira Dicker
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Alicia Regueiro-Ren
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| |
Collapse
|
3
|
Regueiro-Ren A, Sit SY, Chen Y, Chen J, Swidorski JJ, Liu Z, Venables BL, Sin N, Hartz RA, Protack T, Lin Z, Zhang S, Li Z, Wu DR, Li P, Kempson J, Hou X, Gupta A, Rampulla R, Mathur A, Park H, Sarjeant A, Benitex Y, Rahematpura S, Parker D, Phillips T, Haskell R, Jenkins S, Santone KS, Cockett M, Hanumegowda U, Dicker I, Meanwell NA, Krystal M. The Discovery of GSK3640254, a Next-Generation Inhibitor of HIV-1 Maturation. J Med Chem 2022; 65:11927-11948. [PMID: 36044257 DOI: 10.1021/acs.jmedchem.2c00879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Yan Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jie Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zheng Liu
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Brian L Venables
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ny Sin
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Richard A Hartz
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zeyu Lin
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sharon Zhang
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zhufang Li
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Peng Li
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - James Kempson
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Xiaoping Hou
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis; Bristol Myers Squibb Research and Early Development, Bangalore 560099, India
| | - Richard Rampulla
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Hyunsoo Park
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Amy Sarjeant
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Yulia Benitex
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sandhya Rahematpura
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dawn Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Thomas Phillips
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Roy Haskell
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Kenneth S Santone
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Mark Cockett
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ira Dicker
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| |
Collapse
|
4
|
Dicker I, Jeffrey JL, Protack T, Lin Z, Cockett M, Chen Y, Sit SY, Gartland M, Meanwell NA, Regueiro-Ren A, Drexler D, Cantone J, McAuliffe B, Krystal M. GSK3640254 Is a Novel HIV-1 Maturation Inhibitor with an Optimized Virology Profile. Antimicrob Agents Chemother 2022; 66:e0187621. [PMID: 34780263 PMCID: PMC8765437 DOI: 10.1128/aac.01876-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
HIV-1 maturation inhibitors (MIs) offer a novel mechanism of action and potential for use in HIV-1 treatment. Prior MIs displayed clinical efficacy but were associated with the emergence of resistance and some gastrointestinal tolerability events. Treatment with the potentially safer next-generation MI GSK3640254 (GSK'254) resulted in up to a 2-log10 viral load reduction in a phase IIa proof-of-concept study. In vitro experiments have defined the antiviral and resistance profiles for GSK'254. The compound displayed strong antiviral activity against a library of subtype B and C chimeric viruses containing Gag polymorphisms and site-directed mutants previously shown to affect potency of earlier-generation MIs, with a mean protein-binding adjusted 90% effective concentration (EC90) of 33 nM. Furthermore, GSK'254 exhibited robust antiviral activity against a panel of HIV-1 clinical isolates, with a mean EC50 of 9 nM. Mechanistic studies established that bound GSK'254 dissociated on average 7.1-fold more slowly from wild-type Gag virus-like particles (VLPs) than a previous-generation MI. In resistance studies, the previously identified A364V Gag region mutation was selected under MI pressure in cell culture and during the phase IIa clinical study. As expected, GSK'254 inhibited cleavage of p25 in a range of polymorphic HIV-1 Gag VLPs. Virus-like particles containing the A364V mutation exhibited a p25 cleavage rate 9.3 times higher than wild-type particles, providing a possible mechanism for MI resistance. The findings demonstrate that GSK'254 potently inhibits a broad range of HIV-1 strains expressing Gag polymorphisms.
Collapse
Affiliation(s)
- Ira Dicker
- ViiV Healthcare, Branford, Connecticut, USA
| | | | | | - Zeyu Lin
- Bristol Myers Squibb, Wallingford, Connecticut, USA
| | | | - Yan Chen
- Bristol Myers Squibb, Wallingford, Connecticut, USA
| | | | - Martin Gartland
- ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Aquaro S, Borrajo A, Pellegrino M, Svicher V. Mechanisms underlying of antiretroviral drugs in different cellular reservoirs with a focus on macrophages. Virulence 2021; 11:400-413. [PMID: 32375558 PMCID: PMC7219522 DOI: 10.1080/21505594.2020.1760443] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ongoing with current combinations of antiretroviral drugs for the treatment of Human Immunodeficiency Virus (HIV) infection can successfully maintain long-term suppression of HIV-1 replication in plasma. Still, none of these therapies is capable of extinguishing the virus from the long-lived cellular reservoir, including monocyte-derived macrophages (MDM), that means the principal obstacle to HIV cure. MDM are widely distributed in all tissues and organs, including central system nervous (CNS) where they represent the most frequent HIV-infected cells that means the principal obstacle to HIV cure. Current FDA-approved antiretroviral drugs target viral reverse transcriptase, protease, integrase, and entry processes (coreceptor or fusion blockade). It is desirable to continue to develop new antiretrovirals directed against alternative targets in the virus lifecycle in order to further optimize therapeutic options, overcome resistance to existing medications, and potentially contribute to the elimination of viral reservoirs.This review provides a comprehensive overview of the activity of antiretroviral drugs (classical and upcoming) in monocytes-derived macrophages (MDM). Defining the antiviral activity of these drugs in this important cellular HIV-1 reservoir provides crucial hints about their efficacy in HIV-1 infected patients.
Collapse
Affiliation(s)
- Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ana Borrajo
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy.,Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
6
|
Kleinpeter AB, Freed EO. HIV-1 Maturation: Lessons Learned from Inhibitors. Viruses 2020; 12:E940. [PMID: 32858867 PMCID: PMC7552077 DOI: 10.3390/v12090940] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Since the emergence of HIV and AIDS in the early 1980s, the development of safe and effective therapies has accompanied a massive increase in our understanding of the fundamental processes that drive HIV biology. As basic HIV research has informed the development of novel therapies, HIV inhibitors have been used as probes for investigating basic mechanisms of HIV-1 replication, transmission, and pathogenesis. This positive feedback cycle has led to the development of highly effective combination antiretroviral therapy (cART), which has helped stall the progression to AIDS, prolong lives, and reduce transmission of the virus. However, to combat the growing rates of virologic failure and toxicity associated with long-term therapy, it is important to diversify our repertoire of HIV-1 treatments by identifying compounds that block additional steps not targeted by current drugs. Most of the available therapeutics disrupt early events in the replication cycle, with the exception of the protease (PR) inhibitors, which act at the virus maturation step. HIV-1 maturation consists of a series of biochemical changes that facilitate the conversion of an immature, noninfectious particle to a mature infectious virion. These changes include proteolytic processing of the Gag polyprotein by the viral protease (PR), structural rearrangement of the capsid (CA) protein, and assembly of individual CA monomers into hexamers and pentamers that ultimately form the capsid. Here, we review the development and therapeutic potential of maturation inhibitors (MIs), an experimental class of anti-HIV-1 compounds with mechanisms of action distinct from those of the PR inhibitors. We emphasize the key insights into HIV-1 biology and structure that the study of MIs has provided. We will focus on three distinct groups of inhibitors that block HIV-1 maturation: (1) compounds that block the processing of the CA-spacer peptide 1 (SP1) cleavage intermediate, the original class of compounds to which the term MI was applied; (2) CA-binding inhibitors that disrupt capsid condensation; and (3) allosteric integrase inhibitors (ALLINIs) that block the packaging of the viral RNA genome into the condensing capsid during maturation. Although these three classes of compounds have distinct structures and mechanisms of action, they share the ability to block the formation of the condensed conical capsid, thereby blocking particle infectivity.
Collapse
Affiliation(s)
| | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
7
|
Dicker I, Zhang S, Ray N, Beno BR, Regueiro-Ren A, Joshi S, Cockett M, Krystal M, Lataillade M. Resistance profile of the HIV-1 maturation inhibitor GSK3532795 in vitro and in a clinical study. PLoS One 2019; 14:e0224076. [PMID: 31622432 PMCID: PMC6797179 DOI: 10.1371/journal.pone.0224076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022] Open
Abstract
GSK3532795 (formerly BMS955176) is a second-generation maturation inhibitor (MI) that progressed through a Phase 2b study for treatment of HIV-1 infection. Resistance development to GSK3532795 was evaluated through in vitro methods and was correlated with information obtained in a Phase 2a proof-of-concept study in HIV-1 infected participants. Both low and high concentrations of GSK3532795 were used for selections in vitro, and reduced susceptibility to GSK3532795 mapped specifically to amino acids near the capsid/ spacer peptide 1 (SP1) junction, the cleavage of which is blocked by MIs. Two key substitutions, A364V or V362I, were selected, the latter requiring secondary substitutions to reduce susceptibility to GSK3532795. Three main types of secondary substitutions were observed, none of which reduced GSK3532795 susceptibility in isolation. The first type was in the capsid C-terminal domain and downstream SP1 region (including (Gag numbering) R286K, A326T, T332S/N, I333V and V370A/M). The second, was an R41G substitution in viral protease that occurred with V362I. The third was seen in the capsid N-terminal domain, within the cyclophilin A binding domain (V218A/M, H219Q and G221E). H219Q increased viral replication capacity and reduced susceptibility of poorly growing viruses. In the Phase 2a study, a subset of these substitutions was also observed at baseline and some were selected following GSK35323795 treatment in HIV-1-infected participants.
Collapse
Affiliation(s)
- Ira Dicker
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Sharon Zhang
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Neelanjana Ray
- Department of Early Development, Bristol-Myers Squibb Research and Development, Princeton, New Jersey, United States of America
| | - Brett R. Beno
- Department of Molecular Discovery Technologies, Bristol-Myers Squibb Research and Development, Wallingford, Connecticut, United States of America
| | - Alicia Regueiro-Ren
- Department of Chemistry Bristol-Myers Squibb Research and Development, Wallingford Connecticut, United States of America
| | - Samit Joshi
- Department of Early Development, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Mark Cockett
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Mark Krystal
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Max Lataillade
- Department of Early Development, ViiV Healthcare, Branford, Connecticut, United States of America
| |
Collapse
|
8
|
Su CTT, Koh DWS, Gan SKE. Reviewing HIV-1 Gag Mutations in Protease Inhibitors Resistance: Insights for Possible Novel Gag Inhibitor Designs. Molecules 2019; 24:molecules24183243. [PMID: 31489889 PMCID: PMC6767625 DOI: 10.3390/molecules24183243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
HIV protease inhibitors against the viral protease are often hampered by drug resistance mutations in protease and in the viral substrate Gag. To overcome this drug resistance and inhibit viral maturation, targeting Gag alongside protease rather than targeting protease alone may be more efficient. In order to successfully inhibit Gag, understanding of its drug resistance mutations and the elicited structural changes on protease binding needs to be investigated. While mutations on Gag have already been mapped to protease inhibitor resistance, there remain many mutations, particularly the non-cleavage mutations, that are not characterized. Through structural studies to unravel how Gag mutations contributes to protease drug resistance synergistically, it is thus possible to glean insights to design novel Gag inhibitors. In this review, we discuss the structural role of both novel and previously reported Gag mutations in PI resistance, and how new Gag inhibitors can be designed.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Darius Wen-Shuo Koh
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore.
- p53 Laboratory, A*STAR, Singapore 138648, Singapore.
| |
Collapse
|
9
|
Abstract
Approximately 20% of people with HIV in the United States prescribed antiretroviral therapy are not virally suppressed. Thus, optimal management of virologic failure has a critical role in the ability to improve viral suppression rates to improve long-term health outcomes for those infected and to achieve epidemic control. This article discusses the causes of virologic failure, the use of resistance testing to guide management after failure, interpretation and relevance of HIV drug resistance patterns, considerations for selection of second-line and salvage therapies, and management of virologic failure in special populations.
Collapse
Affiliation(s)
- Suzanne M McCluskey
- Division of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, GRJ5, Boston, MA 02114, USA.
| | - Mark J Siedner
- Division of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, GRJ5, Boston, MA 02114, USA
| | - Vincent C Marconi
- Division of Infectious Diseases, Department of Global Health, Emory University School of Medicine, Rollins School of Public Health, Health Sciences Research Building, 1760 Haygood Dr NE, Room W325, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Regueiro-Ren A, Dicker IB, Hanumegowda U, Meanwell NA. Second Generation Inhibitors of HIV-1 Maturation. ACS Med Chem Lett 2019; 10:287-294. [PMID: 30891128 DOI: 10.1021/acsmedchemlett.8b00656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
The strategy and tactics subtending the discovery and development of the second generation HIV-1 maturation inhibitor GSK-3532795/BMS-955176, a compound that exhibits a broader spectrum of antiviral effect in vitro and in clinical studies than the prototypical maturation inhibitor bevirimat, are described.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Department of Discovery Chemistry and Molecular Technologies Bristol-Myers Squibb Research and Development, 350 Carter Road, Room 126, Hopewell, New Jersey 08540, United States
| | - Ira B. Dicker
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Umesh Hanumegowda
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Nicholas A. Meanwell
- Department of Discovery Chemistry and Molecular Technologies Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|