1
|
Karakoese Z, Ingola M, Sitek B, Dittmer U, Sutter K. IFNα Subtypes in HIV Infection and Immunity. Viruses 2024; 16:364. [PMID: 38543729 PMCID: PMC10975235 DOI: 10.3390/v16030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Type I interferons (IFN), immediately triggered following most viral infections, play a pivotal role in direct antiviral immunity and act as a bridge between innate and adaptive immune responses. However, numerous viruses have evolved evasion strategies against IFN responses, prompting the exploration of therapeutic alternatives for viral infections. Within the type I IFN family, 12 IFNα subtypes exist, all binding to the same receptor but displaying significant variations in their biological activities. Currently, clinical treatments for chronic virus infections predominantly rely on a single IFNα subtype (IFNα2a/b). However, the efficacy of this therapeutic treatment is relatively limited, particularly in the context of Human Immunodeficiency Virus (HIV) infection. Recent investigations have delved into alternative IFNα subtypes, identifying certain subtypes as highly potent, and their antiviral and immunomodulatory properties have been extensively characterized. This review consolidates recent findings on the roles of individual IFNα subtypes during HIV and Simian Immunodeficiency Virus (SIV) infections. It encompasses their induction in the context of HIV/SIV infection, their antiretroviral activity, and the diverse regulation of the immune response against HIV by distinct IFNα subtypes. These insights may pave the way for innovative strategies in HIV cure or functional cure studies.
Collapse
Affiliation(s)
- Zehra Karakoese
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martha Ingola
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; (M.I.); (B.S.)
| | - Barbara Sitek
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; (M.I.); (B.S.)
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
2
|
Wood MP, Jones CI, Lippy A, Oliver BG, Walund B, Fancher KA, Fisher BS, Wright PJ, Fuller JT, Murapa P, Habib J, Mavigner M, Chahroudi A, Sather DN, Fuller DH, Sodora DL. Rapid progression is associated with lymphoid follicle dysfunction in SIV-infected infant rhesus macaques. PLoS Pathog 2021; 17:e1009575. [PMID: 33961680 PMCID: PMC8133453 DOI: 10.1371/journal.ppat.1009575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
HIV-infected infants are at an increased risk of progressing rapidly to AIDS in the first weeks of life. Here, we evaluated immunological and virological parameters in 25 SIV-infected infant rhesus macaques to understand the factors influencing a rapid disease outcome. Infant macaques were infected with SIVmac251 and monitored for 10 to 17 weeks post-infection. SIV-infected infants were divided into either typical (TypP) or rapid (RP) progressor groups based on levels of plasma anti-SIV antibody and viral load, with RP infants having low SIV-specific antibodies and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype. Interestingly, TypP had lower levels of total CD4 T cells, similar reductions in CD4/CD8 ratios and elevated activation of CD8 T cells, as measured by the levels of HLA-DR, compared to RP. Differences between the two groups were identified in other immune cell populations, including a failure to expand activated memory (CD21-CD27+) B cells in peripheral blood in RP infant macaques, as well as reduced levels of germinal center (GC) B cells and T follicular helper (Tfh) cells in spleens (4- and 10-weeks post-SIV). Reduced B cell proliferation in splenic germinal GCs was associated with increased SIV+ cell density and follicular type 1 interferon (IFN)-induced immune activation. Further analyses determined that at 2-weeks post SIV infection TypP infants exhibited elevated levels of the GC-inducing chemokine CXCL13 in plasma, as well as significantly lower levels of viral envelope diversity compared to RP infants. Our findings provide evidence that early viral and immunologic events following SIV infection contributes to impairment of B cells, Tfh cells and germinal center formation, ultimately impeding the development of SIV-specific antibody responses in rapidly progressing infant macaques. Despite significant reductions in vertical HIV transmission, nearly 100,000 children succumb to AIDS-related illnesses each year. Indeed, infants face a disproportionately higher risk of progressing to AIDS, with roughly half of HIV+ infants exhibiting a rapid progression to AIDS-associated morbidity and mortality. Here, we evaluated immunological and virological parameters in 25 simian immunodeficiency virus (SIV)-infected infant rhesus macaques to assess the factors that influence a rapid disease outcome. Infant macaques were infected with simian immunodeficiency virus (SIV) and divided into either typical (TypP) or rapid (RP) progressor groups. RP infants exhibited low levels of plasma anti-SIV antibody and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype with some exhibiting AIDS-related symptoms. This study provides evidence that the low levels of anti-SIV antibodies are associated with impairments to both B and T cells in both blood and lymphoid tissues. These changes are associated with the prolonged expression of type 1 interferons which may be impeding development of a healthy humoral immune response in these rapidly progressing SIV-infected infant macaques. These findings have implications regarding potential therapeutic approaches to prevent rapid progression in HIV infected infants.
Collapse
Affiliation(s)
- Matthew P. Wood
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Chloe I. Jones
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Adriana Lippy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brian G. Oliver
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brynn Walund
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Katherine A. Fancher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Bridget S. Fisher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Piper J. Wright
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - James T. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | - Patience Murapa
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Jakob Habib
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maud Mavigner
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - Ann Chahroudi
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Deborah H. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Donald L. Sodora
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
3
|
Li Y, Sun B, Esser S, Jessen H, Streeck H, Widera M, Yang R, Dittmer U, Sutter K. Expression Pattern of Individual IFNA Subtypes in Chronic HIV Infection. J Interferon Cytokine Res 2018; 37:541-549. [PMID: 29252127 DOI: 10.1089/jir.2017.0076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon-α (IFN-α) plays an important role in HIV pathogenesis. IFN-α consists of 13 individual IFN-α subtypes, which exhibit individual antiviral and immunomodulatory activities in HIV infection. Here, we determined the expression profiles of all IFN-α subtypes in treated and treatment-naive HIV+ patients and their impact on the induction of distinct HIV restriction factors. We collected blood samples of chronic HIV+ patients, which underwent antiretroviral therapy or were treatment-naive, and determined the individual expression levels of different IFN-α subtypes and HIV restriction factors. HIV infection transiently enhanced the expression of IFNA mRNA. The IFN-α response was dominated by the most abundantly expressed subtypes IFNA4, A5, A7, and A14 in all individuals. HIV infection affected the expression pattern of the IFN-α response, in particular for IFNA2 and IFNA16, which were elevated by chronic HIV infection. Elevated expression of HIV restriction factors was observed in chronically HIV-infected patients, which partly decreased during successful antiretroviral treatment. In vitro stimulation of peripheral blood mononuclear cells revealed that IFN-α6, -α14, and -α21 were most effective in inducing the expression of HIV restriction factors. These results indicate that HIV infection induces a specific expression pattern of IFN-α subtypes, which in turn induce the expression of various HIV restriction factors.
Collapse
Affiliation(s)
- Yanpeng Li
- 1 Wuhan Institute of Virology , Chinese Academy of Sciences, Wuhan, PR China
| | - Binlian Sun
- 1 Wuhan Institute of Virology , Chinese Academy of Sciences, Wuhan, PR China
| | - Stefan Esser
- 2 Clinic of Dermatology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | | | - Hendrik Streeck
- 4 Institute for HIV Research, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Marek Widera
- 5 Institute for Virology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Rongge Yang
- 1 Wuhan Institute of Virology , Chinese Academy of Sciences, Wuhan, PR China
| | - Ulf Dittmer
- 5 Institute for Virology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Kathrin Sutter
- 5 Institute for Virology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| |
Collapse
|
4
|
Scagnolari C, Antonelli G. Type I interferon and HIV: Subtle balance between antiviral activity, immunopathogenesis and the microbiome. Cytokine Growth Factor Rev 2018; 40:19-31. [PMID: 29576284 PMCID: PMC7108411 DOI: 10.1016/j.cytogfr.2018.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/23/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
Type I interferon (IFN) response initially limits HIV-1 spread and may delay disease progression by stimulating several immune system components. Nonetheless, persistent exposure to type I IFN in the chronic phase of HIV-1 infection is associated with desensitization and/or detrimental immune activation, thereby hindering immune recovery and fostering viral persistence. This review provides a basis for understanding the complexity and function of IFN pleiotropic activity in HIV-1 infection. In particular, the dichotomous role of the IFN response in HIV-1 immunopathogenesis will be discussed, highlighting recent advances in the dynamic modulation of IFN production in acute versus chronic infection, expression signatures of IFN subtypes, and viral and host factors affecting the magnitude of IFN response during HIV-1 infection. Lastly, the review gives a forward-looking perspective on the interplay between microbiome compositions and IFN response.
Collapse
Affiliation(s)
- Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy.
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Interferon α subtypes in HIV infection. Cytokine Growth Factor Rev 2018; 40:13-18. [PMID: 29475588 DOI: 10.1016/j.cytogfr.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
Type I interferons (IFN), which are immediately induced after most virus infections, are central for direct antiviral immunity and link innate and adaptive immune responses. However, several viruses have evolved strategies to evade the IFN response by preventing IFN induction or blocking IFN signaling pathways. Thus, therapeutic application of exogenous type I IFN or agonists inducing type I IFN responses are a considerable option for future immunotherapies against chronic viral infections. An important part of the type I IFN family are 12 IFNα subtypes, which all bind the same receptor, but significantly differ in their biological activities. Up to date only one IFNα subtype (IFNα2) is being used in clinical treatment against chronic virus infections, however its therapeutic success rate is rather limited, especially during Human Immunodeficiency Virus (HIV) infection. Recent studies addressed the important question if other IFNα subtypes would be more potent against retroviral infections in in vitro and in vivo experiments. Indeed, very potent IFNα subtypes were defined and their antiviral and immunomodulatory properties were characterized. In this review we summarize the recent findings on the role of individual IFNα subtypes during HIV and Simian Immunodeficiency Virus infection. This includes their induction during HIV/SIV infection, their antiretroviral activity and the regulation of immune response against HIV by different IFNα subtypes. The findings might facilitate novel strategies for HIV cure or functional cure studies.
Collapse
|
6
|
Miersch S, Kuruganti S, Walter MR, Sidhu SS. A panel of synthetic antibodies that selectively recognize and antagonize members of the interferon alpha family. Protein Eng Des Sel 2017; 30:697-704. [PMID: 28981904 PMCID: PMC5914384 DOI: 10.1093/protein/gzx048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/25/2017] [Accepted: 08/09/2017] [Indexed: 11/12/2022] Open
Abstract
The 12 distinct subtypes that comprise the interferon alpha (IFNα) family of cytokines possess anti-viral, anti-proliferative and immunomodulatory activities. They are implicated in the etiology and progression of many diseases, and also used as therapeutic agents for viral and oncologic disorders. However, a deeper understanding of their role in disease is limited by a lack of tools to evaluate single subtypes at the protein level. Antibodies that selectively inhibit single IFNα subtypes could enable interrogation of each protein in biological samples and could be used for characterization and treatment of disease. Using phage-displayed synthetic antibody libraries, we have conducted selections against 12 human IFNα subtypes to explore our ability to obtain fine-specificity antibodies that recognize and antagonize the biological signals induced by a single IFNα subtype. For the first time, we have isolated antibodies that specifically recognize individual IFNα subtypes (IFNα2a/b, IFNα6, IFNα8b and IFNα16) with high affinity that antagonize signaling. Our results show that highly specific antibodies capable of distinguishing between closely related cytokines can be isolated from synthetic libraries and can be used to characterize cytokine abundance and function.
Collapse
Affiliation(s)
- S Miersch
- The Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada M5G 1L6
| | - S Kuruganti
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - M R Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - S S Sidhu
- The Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada M5G 1L6
| |
Collapse
|
7
|
Ziegler SM, Beisel C, Sutter K, Griesbeck M, Hildebrandt H, Hagen SH, Dittmer U, Altfeld M. Human pDCs display sex-specific differences in type I interferon subtypes and interferon α/β receptor expression. Eur J Immunol 2017; 47:251-256. [DOI: 10.1002/eji.201646725] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/31/2016] [Accepted: 11/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Susanne M. Ziegler
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| | - Claudia Beisel
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
- Section Infectious Diseases; I. Department of Internal Medicine; University Medical Center Hamburg-Eppendorf, and DZIF partner site (German Center for Infection Research); Hamburg Germany
| | - Kathrin Sutter
- Institute for Virology University Hospital in Essen; University of Duisburg-Essen; Essen Germany
| | - Morgane Griesbeck
- CIMI; Université Pierre et Marie Curie/INSERM U1135; Hospital Pitié Salpêtrière; Paris France
| | - Heike Hildebrandt
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| | - Sven H. Hagen
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| | - Ulf Dittmer
- Institute for Virology University Hospital in Essen; University of Duisburg-Essen; Essen Germany
| | - Marcus Altfeld
- Department of Virus Immunology; Heinrich Pette Institute; Leibniz Institute for Experimental Virology; Hamburg Germany
| |
Collapse
|
8
|
Harper MS, Guo K, Gibbert K, Lee EJ, Dillon SM, Barrett BS, McCarter MD, Hasenkrug KJ, Dittmer U, Wilson CC, Santiago ML. Interferon-α Subtypes in an Ex Vivo Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms. PLoS Pathog 2015; 11:e1005254. [PMID: 26529416 PMCID: PMC4631339 DOI: 10.1371/journal.ppat.1005254] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
HIV-1 is transmitted primarily across mucosal surfaces and rapidly spreads within the intestinal mucosa during acute infection. The type I interferons (IFNs) likely serve as a first line of defense, but the relative expression and antiviral properties of the 12 IFNα subtypes against HIV-1 infection of mucosal tissues remain unknown. Here, we evaluated the expression of all IFNα subtypes in HIV-1-exposed plasmacytoid dendritic cells by next-generation sequencing. We then determined the relative antiviral potency of each IFNα subtype ex vivo using the human intestinal Lamina Propria Aggregate Culture model. IFNα subtype transcripts from the centromeric half of the IFNA gene complex were highly expressed in pDCs following HIV-1 exposure. There was an inverse relationship between IFNA subtype expression and potency. IFNα8, IFNα6 and IFNα14 were the most potent in restricting HIV-1 infection. IFNα2, the clinically-approved subtype, and IFNα1 were both highly expressed but exhibited relatively weak antiviral activity. The relative potencies correlated with binding affinity to the type I IFN receptor and the induction levels of HIV-1 restriction factors Mx2 and Tetherin/BST-2 but not APOBEC3G, F and D. However, despite the lack of APOBEC3 transcriptional induction, the higher relative potency of IFNα8 and IFNα14 correlated with stronger inhibition of virion infectivity, which is linked to deaminase-independent APOBEC3 restriction activity. By contrast, both potent (IFNα8) and weak (IFNα1) subtypes significantly induced HIV-1 GG-to-AG hypermutation. The results unravel non-redundant functions of the IFNα subtypes against HIV-1 infection, with strong implications for HIV-1 mucosal immunity, viral evolution and IFNα-based functional cure strategies.
Collapse
Affiliation(s)
- Michael S. Harper
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Kejun Guo
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Kathrin Gibbert
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Eric J. Lee
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Stephanie M. Dillon
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Bradley S. Barrett
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Martin D. McCarter
- Department of Surgery, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Kim J. Hasenkrug
- Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail: (UD); (CCW); (MLS)
| | - Cara C. Wilson
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail: (UD); (CCW); (MLS)
| | - Mario L. Santiago
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail: (UD); (CCW); (MLS)
| |
Collapse
|
9
|
Markušić M, Šantak M, Košutić-Gulija T, Jergović M, Jug R, Forčić D. Induction of IFN-α subtypes and their antiviral activity in mumps virus infection. Viral Immunol 2015; 27:497-505. [PMID: 25361048 DOI: 10.1089/vim.2014.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human type I interferons (IFNs) comprise one IFN-β, -ω, -κ, and -ɛ and 12 different IFN-α subtypes, which play an important role in early host antiviral response. Despite their high structural homology and signaling through the same receptor, IFN-α subtypes exhibit different antiviral, antiproliferative, and immunomodulatory activities. Differences in the production of IFN-α subtypes therefore determine the quality of an antiviral response. In this study, we investigated the pattern of IFN-α subtypes induced in infection with different mumps virus (MuV) strains and examined the MuV sensitivity to the action of IFN-α subtypes. We found that all IFN-α subtypes are being expressed in response to MuV infection with a highly similar IFN-α subtype pattern between the virus strains. We assessed an antiviral activity of several IFN-α subtypes: IFN-α1, IFN-α2, IFN-α4, IFN-α6, IFN-α8, IFN-α14, IFN-α17, and IFN-α21. Although they were all effective in suppressing MuV replication, the intensity and pattern of their action varied between MuV strains. Our results indicate that the overall IFN antiviral activity as well as the activity of specific IFN-α subtypes against MuV depend on a virus strain.
Collapse
Affiliation(s)
- Maja Markušić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb , Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
10
|
Hoffmann HH, Schneider WM, Rice CM. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol 2015; 36:124-38. [PMID: 25704559 DOI: 10.1016/j.it.2015.01.004] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/24/2022]
Abstract
Over half a century has passed since interferons (IFNs) were discovered and shown to inhibit virus infection in cultured cells. Since then, researchers have steadily brought to light the molecular details of IFN signaling, catalogued their pleiotropic effects on cells, and harnessed their therapeutic potential for a variety of maladies. While advances have been plentiful, several fundamental questions have yet to be answered and much complexity remains to be unraveled. We explore the current knowledge surrounding four main questions: are type I IFN subtypes differentially produced in response to distinct pathogens? How are IFN subtypes distinguished by cells? What are the mechanisms and consequences of viral antagonism? Lastly, how can the IFN response be harnessed to improve vaccine efficacy?
Collapse
Affiliation(s)
- Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
11
|
Carolan LA, Butler J, Rockman S, Guarnaccia T, Hurt AC, Reading P, Kelso A, Barr I, Laurie KL. TaqMan real time RT-PCR assays for detecting ferret innate and adaptive immune responses. J Virol Methods 2014; 205:38-52. [PMID: 24797460 PMCID: PMC7113642 DOI: 10.1016/j.jviromet.2014.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 11/16/2022]
Abstract
The ferret model is used to study human disease and physiology. TaqMan realtime RT-PCR assays for ferret cytokine and chemokine mRNA were developed. Cytokine and chemokine patterns in ferret cells were similar to other mammals. A comprehensive panel of mRNAs can be measured in samples of limited quantity.
The ferret is an excellent model for many human infectious diseases including influenza, SARS-CoV, henipavirus and pneumococcal infections. The ferret is also used to study cystic fibrosis and various cancers, as well as reproductive biology and physiology. However, the range of reagents available to measure the ferret immune response is very limited. To address this deficiency, high-throughput real time RT-PCR TaqMan assays were developed to measure the expression of fifteen immune mediators associated with the innate and adaptive immune responses (IFNα, IFNβ, IFNγ, IL1α, IL1β, IL2, IL4, IL6, IL8, IL10, IL12p40, IL17, Granzyme A, MCP1, TNFα), as well as four endogenous housekeeping genes (ATF4, HPRT, GAPDH, L32). These assays have been optimized to maximize reaction efficiency, reduce the amount of sample required (down to 1 ng RNA per real time RT-PCR reaction) and to select the most appropriate housekeeping genes. Using these assays, the expression of each of the tested genes could be detected in ferret lymph node cells stimulated with mitogens or infected with influenza virus in vitro. These new tools will allow a more comprehensive analysis of the ferret immune responses following infection or in other disease states.
Collapse
Affiliation(s)
- Louise A Carolan
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Jeff Butler
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia; CSIRO Australian Animal Health Laboratory, East Geelong, 3219, Australia
| | - Steve Rockman
- bioCSL Limited, Parkville, 3052, Australia; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3010, Australia
| | - Teagan Guarnaccia
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia; Monash University Gippsland, Churchill, 3842, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Patrick Reading
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Anne Kelso
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Karen L Laurie
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
12
|
Verhoeven D, George MD, Hu W, Dang AT, Smit-McBride Z, Reay E, Macal M, Fenton A, Sankaran-Walters S, Dandekar S. Enhanced innate antiviral gene expression, IFN-α, and cytolytic responses are predictive of mucosal immune recovery during simian immunodeficiency virus infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:3308-18. [PMID: 24610016 DOI: 10.4049/jimmunol.1302415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mucosa that lines the respiratory and gastrointestinal (GI) tracts is an important portal of entry for pathogens and provides the first line of innate immune defense against infections. Although an abundance of memory CD4(+) T cells at mucosal sites render them highly susceptible to HIV infection, the gut and not the lung experiences severe and sustained CD4(+) T cell depletion and tissue disruption. We hypothesized that distinct immune responses in the lung and gut during the primary and chronic stages of viral infection contribute to these differences. Using the SIV model of AIDS, we performed a comparative analysis of the molecular and cellular characteristics of host responses in the gut and lung. Our findings showed that both mucosal compartments harbor similar percentages of memory CD4(+) T cells and displayed comparable cytokine (IL-2, IFN-γ, and TNF-α) responses to mitogenic stimulations prior to infection. However, despite similar viral replication and CD4(+) T cell depletion during primary SIV infection, CD4(+) T cell restoration kinetics in the lung and gut diverged during acute viral infection. The CD4(+) T cells rebounded or were preserved in the lung mucosa during chronic viral infection, which correlated with heightened induction of type I IFN signaling molecules and innate viral restriction factors. In contrast, the lack of CD4(+) T cell restoration in the gut was associated with dampened immune responses and diminished expression of viral restriction factors. Thus, unique immune mechanisms contribute to the differential response and protection of pulmonary versus GI mucosa and can be leveraged to enhance mucosal recovery.
Collapse
Affiliation(s)
- David Verhoeven
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cha L, Berry CM, Nolan D, Castley A, Fernandez S, French MA. Interferon-alpha, immune activation and immune dysfunction in treated HIV infection. Clin Transl Immunology 2014; 3:e10. [PMID: 25505958 PMCID: PMC4232062 DOI: 10.1038/cti.2014.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/31/2013] [Accepted: 01/01/2014] [Indexed: 02/06/2023] Open
Abstract
Type I interferons (IFNs) exert anti-viral effects through the induction of numerous IFN-stimulated genes and an immunomodulatory effect on innate and adaptive immune responses. This is beneficial in controlling virus infections but prolonged IFN-α activity in persistent virus infections, such as HIV infection, may contribute to immune activation and have a detrimental effect on the function of monocytes and T and B lymphocytes. Activation of monocytes, associated with increased IFN-α activity, contributes to atherosclerotic vascular disease, brain disease and other ‘age-related diseases' in HIV patients treated with long-term antiretroviral therapy (ART). In HIV patients receiving ART, the anti-viral effects of IFN-α therapy have the potential to contribute to eradication of HIV infection while IFN-α inhibitor therapy is under investigation for the treatment of immune activation. The management of HIV patients receiving ART will be improved by understanding more about the opposing effects of IFN-α on HIV infection and disease and by developing methods to assess IFN-α activity in clinical practice.
Collapse
Affiliation(s)
- Lilian Cha
- School of Pathology and Laboratory Medicine, University of Western Australia , Crawley, Western Australia, Australia
| | - Cassandra M Berry
- School of Veterinary and Life Sciences, Murdoch University , Murdoch, Western Australia, Australia
| | - David Nolan
- Department of Clinical Immunology and Pathwest Laboratory Medicine, Royal Perth Hospital , Perth, Western Australia, Australia
| | - Allison Castley
- School of Veterinary and Life Sciences, Murdoch University , Murdoch, Western Australia, Australia ; Department of Clinical Immunology and Pathwest Laboratory Medicine, Royal Perth Hospital , Perth, Western Australia, Australia
| | - Sonia Fernandez
- School of Pathology and Laboratory Medicine, University of Western Australia , Crawley, Western Australia, Australia
| | - Martyn A French
- School of Pathology and Laboratory Medicine, University of Western Australia , Crawley, Western Australia, Australia ; Department of Clinical Immunology and Pathwest Laboratory Medicine, Royal Perth Hospital , Perth, Western Australia, Australia
| |
Collapse
|
14
|
Bruel T, Dupuy S, Démoulins T, Rogez-Kreuz C, Dutrieux J, Corneau A, Cosma A, Cheynier R, Dereuddre-Bosquet N, Le Grand R, Vaslin B. Plasmacytoid dendritic cell dynamics tune interferon-alfa production in SIV-infected cynomolgus macaques. PLoS Pathog 2014; 10:e1003915. [PMID: 24497833 PMCID: PMC3907389 DOI: 10.1371/journal.ppat.1003915] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 12/23/2013] [Indexed: 11/18/2022] Open
Abstract
IFN-I production is a characteristic of HIV/SIV primary infections. However, acute IFN-I plasma concentrations rapidly decline thereafter. Plasmacytoid dendritic cells (pDC) are key players in this production but primary infection is associated with decreased responsiveness of pDC to TLR 7 and 9 triggering. IFNα production during primary SIV infection contrasts with increased pDC death, renewal and dysfunction. We investigated the contribution of pDC dynamics to both acute IFNα production and the rapid return of IFNα concentrations to pre-infection levels during acute-to-chronic transition. Nine cynomolgus macaques were infected with SIVmac251 and IFNα-producing cells were quantified and characterized. The plasma IFN-I peak was temporally associated with the presence of IFNα(+) pDC in tissues but IFN-I production was not detectable during the acute-to-chronic transition despite persistent immune activation. No IFNα(+) cells other than pDC were detected by intracellular staining. Blood-pDC and peripheral lymph node-pDC both lost IFNα(-) production ability in parallel. In blood, this phenomenon correlated with an increase in the counts of Ki67(+)-pDC precursors with no IFNα production ability. In tissues, it was associated with increase of both activated pDC and KI67(+)-pDC precursors, none of these being IFNα(+) in vivo. Our findings also indicate that activation/death-driven pDC renewal rapidly blunts acute IFNα production in vivo: pDC sub-populations with no IFNα-production ability rapidly increase and shrinkage of IFNα production thus involves both early pDC exhaustion, and increase of pDC precursors.
Collapse
Affiliation(s)
- Timothée Bruel
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | - Stéphanie Dupuy
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | - Thomas Démoulins
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | | | - Jacques Dutrieux
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Diderot, Paris, France
| | - Aurélien Corneau
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
| | - Antonio Cosma
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | - Rémi Cheynier
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Diderot, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | - Roger Le Grand
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | - Bruno Vaslin
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
- * E-mail:
| |
Collapse
|
15
|
Gibbert K, Schlaak JF, Yang D, Dittmer U. IFN-α subtypes: distinct biological activities in anti-viral therapy. Br J Pharmacol 2013; 168:1048-58. [PMID: 23072338 PMCID: PMC3594665 DOI: 10.1111/bph.12010] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/15/2012] [Accepted: 09/07/2012] [Indexed: 12/12/2022] Open
Abstract
During most viral infections, the immediate host response is characterized by an induction of type I IFN. These cytokines have various biological activities, including anti-viral, anti-proliferative and immunomodulatory effects. After induction, they bind to their IFN-α/β receptor, which leads to downstream signalling resulting in the expression of numerous different IFN-stimulated genes. These genes encode anti-viral proteins that directly inhibit viral replication as well as modulate immune function. Thus, the induction of type I IFN is a very powerful tool for the host to fight virus infections. Many viruses evade this response by various strategies like the direct suppression of IFN induction or inhibition of the IFN signalling pathway. Therefore, the therapeutic application of exogenous type I IFN or molecules that induce strong IFN responses should be of great potential for future immunotherapies against viral infections. Type I IFN is currently used as a treatment in chronic hepatitis B and C virus infection, but as yet is not widely utilized for other viral infections. One reason for this restricted clinical use is that type I IFN belongs to a multigene family that includes 13 different IFN-α subtypes and IFN-β, whose individual anti-viral and immunomodulatory properties have so far not been investigated in detail to improve IFN therapy against viral infections in humans. In this review, we summarize the recent achievements in defining the distinct biological functions of type I IFN subtypes in cell culture and in animal models of viral infection as well as their clinical usage in chronic hepatitis virus infections.
Collapse
Affiliation(s)
- K Gibbert
- Department of Virology, University Hospital Essen, Essen, Germany.
| | | | | | | |
Collapse
|
16
|
Jasny E, Geer S, Frank I, Vagenas P, Aravantinou M, Salazar A, Lifson J, Piatak M, Gettie A, Blanchard J, Robbiani M. Characterization of peripheral and mucosal immune responses in rhesus macaques on long-term tenofovir and emtricitabine combination antiretroviral therapy. J Acquir Immune Defic Syndr 2012; 61:425-35. [PMID: 22820802 PMCID: PMC3494791 DOI: 10.1097/qai.0b013e318266be53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The goal of antiretroviral therapy (ART) is to suppress virus replication to limit immune system damage. Some have proposed combining ART with immune therapies to boost antiviral immunity. For this to be successful, ART must not impair physiological immune function. METHODS We studied the impact of ART (tenofovir and emtricitabine) on systemic and mucosal immunity in uninfected and simian immunodeficiency (SIV)-infected Chinese rhesus macaques. Subcutaneous ART was initiated 2 weeks after tonsillar inoculation with SIVmac239. RESULTS There was no evidence of immune dysregulation as a result of ART in either infected or uninfected animals. Early virus-induced alterations in circulating immune cell populations (decreased central memory T cells and myeloid dendritic cells) were detected, but normalized shortly after ART initiation. ART-treated animals showed marginal SIV-specific T-cell responses during treatment, which increased after ART discontinuation. Elevated expression of CXCL10 in oral, rectal, and blood samples and APOBEC3G mRNA in oral and rectal tissues was observed during acute infection and was down regulated after starting ART. ART did not impact the ability of the animals to respond to tonsillar application of polyICLC with increased CXCL10 expression in oral fluids and CD80 expression on blood myeloid dendritic cells. CONCLUSION Early initiation of ART prevented virus-induced damage and did not impede mucosal or systemic immune functions.
Collapse
Affiliation(s)
- E. Jasny
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - S. Geer
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - I. Frank
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - P. Vagenas
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - M. Aravantinou
- Center for Biomedical Research, Population Council, New York, New York, USA
| | | | - J.D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Frederick, Maryland, USA
| | - M Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Frederick, Maryland, USA
| | - A. Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, USA
| | - J. Blanchard
- Tulane National Primate Research Center (TNPRC), Tulane University, Covington, Louisiana, USA
| | - M. Robbiani
- Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
17
|
Zaritsky LA, Dery A, Leong WY, Gama L, Clements JE. Tissue-specific interferon alpha subtype response to SIV infection in brain, spleen, and lung. J Interferon Cytokine Res 2012; 33:24-33. [PMID: 23050948 DOI: 10.1089/jir.2012.0018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interferon alpha (IFNalpha) is a type I interferon that plays a major role in host defense. There are 13 different IFNalpha genes in humans, but much of the work concerning their role in viral defense has been limited to studying either subtype 2 or pan IFNalpha due to the inability to distinguish between highly similar genetic and amino acid sequences. Because of recent advances in molecular and biochemical techniques, it is possible to study the regulation of individual subtypes. It has been reported that HIV/SIV infection results in impaired IFNalpha responses in certain tissues. Using a pigtailed macaque SIV model, we examined the subtype response during acute infection in 3 tissues that are known to be infected with HIV/SIV, but whose IFNalpha subtype response has not been extensively studied: the brain, spleen, and lung. We found that the expression and regulation of specific subtypes occur in a tissue-specific manner. There was more limited IFNalpha subtype expression in the lung and brain, where predominantly macrophages are infected compared to the spleen, which contains both infected CD4+ lymphocytes and macrophages. Understanding the IFNalpha subtype response in tissues known to be infected with HIV/SIV can help tailor adjunctive treatment regimens to highly active antiretroviral therapy.
Collapse
Affiliation(s)
- Luna Alammar Zaritsky
- Department of Molecular, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
18
|
Schramm LM, Kirschman KD, Heuer M, Chen AA, Verthelyi D, Puig M, Rabin RL. High-throughput quantitative real-time polymerase chain reaction array for absolute and relative quantification of rhesus macaque types I, II, and III interferon and their subtypes. J Interferon Cytokine Res 2012; 32:407-15. [PMID: 22817480 DOI: 10.1089/jir.2012.0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rhesus macaques provide a valuable research and preclinical model for cancer and infectious diseases, as nonhuman primates share immune pathways with humans. Interferons (IFNs) are key cytokines in both innate and adaptive immunity, so a detailed analysis of gene expression in peripheral blood and tissues may shed insight into immune responses. Macaques have 18 IFN genes, of which 14 encode for 13 distinct IFN-α subtypes, and one for IFN-β. Here, we developed a high-throughput array to evaluate each of the IFN-α subtypes, as well as IFN-β, IFN-γ and 2 subtypes of IFN-λ. With this array, expression of each IFN species may be quantified as relative to a reference (housekeeping) gene (ΔCq) or fitted to its own 4-point standard curve for absolute quantification (copy number per mass unit RNA). After validating the assay with IFN complementary DNA, we determined the IFN expression profile of peripheral blood mononuclear cells from 3 rhesus macaques in response to TLR agonists, and demonstrated that the profiles are consistent among animals. Furthermore, because the IFN expression profiles differ depending on the TLR stimuli, they suggest different biological functions for many of the IFN species measured, including individual subtypes of IFN-α.
Collapse
Affiliation(s)
- Lynnsie M Schramm
- Division of Bacterial, Parasite and Allergenic Products, Office of Vaccine Research and Regulation, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bldg 29, Rm 203A, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Puig M, Tosh KW, Schramm LM, Grajkowska LT, Kirschman KD, Tami C, Beren J, Rabin RL, Verthelyi D. TLR9 and TLR7 agonists mediate distinct type I IFN responses in humans and nonhuman primates in vitro and in vivo. J Leukoc Biol 2011; 91:147-58. [DOI: 10.1189/jlb.0711371] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
21
|
Demberg T, Ettinger AC, Aladi S, McKinnon K, Kuddo T, Venzon D, Patterson LJ, Phillips TM, Robert-Guroff M. Strong viremia control in vaccinated macaques does not prevent gradual Th17 cell loss from central memory. Vaccine 2011; 29:6017-28. [PMID: 21708207 PMCID: PMC3148322 DOI: 10.1016/j.vaccine.2011.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 12/22/2022]
Abstract
It has been proposed that microbial translocation might play a role in chronic immune activation during HIV/SIV infection. Key roles in fighting bacterial and fungal infections have been attributed to Th17 and Tc17 cells. Th17 cells can be infected with HIV/SIV, however whether effective vaccination leads to their maintenance following viral challenge has not been addressed. Here we retrospectively investigated if a vaccine regimen that potently reduced viremia post-challenge preserved Th17 and Tc17 cells, thus adding benefit in the absence of sterilizing protection. Rhesus macaques were previously vaccinated with replication-competent Adenovirus recombinants expressing HIVtat and HIVenv followed by Tat and gp140 protein boosting. Upon SHIV(89.6P) challenge, the vaccines exhibited a significant 4 log reduction in chronic viremia compared to sham vaccinated controls which rapidly progressed to AIDS [39]. Plasma and cryopreserved PBMC samples were examined pre-challenge and during acute and chronic infection. Control macaques exhibited a rapid loss of CD4(+) cells, including Th17 cells. Tc17 cells tended to decline over the course of infection although significance was not reached. Immune activation, assessed by Ki-67 expression, was associated with elevated chronic viremia of the controls. Significantly increased plasma IFN-γ levels were also observed. No increase in plasma LPS levels were observed suggesting a lack of microbial translocation. In contrast, vaccinated macaques had no evidence of immune activation within the chronic phase and preserved both CD4(+) T-cells and Tc17 cells in PBMC. Nevertheless, they exhibited a gradual, significant loss of Th17 cells which concomitantly displayed significantly higher CCR6 expression over time. The gradual Th17 cell decline may reflect mucosal homing to inflammatory sites and/or slow depletion due to ongoing low levels of SHIV replication. Our results suggest that potent viremia reduction during chronic SHIV infection will delay but not prevent the loss of Th17 cells.
Collapse
Affiliation(s)
- Thorsten Demberg
- National Cancer Institute, Vaccine Branch, Bethesda, Maryland 20892, USA
| | - Amelia C. Ettinger
- National Cancer Institute, Vaccine Branch, Bethesda, Maryland 20892, USA
| | - Stanley Aladi
- National Cancer Institute, Vaccine Branch, Bethesda, Maryland 20892, USA
| | - Katherine McKinnon
- National Cancer Institute, Vaccine Branch, Bethesda, Maryland 20892, USA
| | - Thea Kuddo
- National Institute of Biomedical Imaging and Bioengineering, Laboratory of Cellular Imaging and Macromolecular Biophysics, Bethesda, Maryland 20892, USA
| | - David Venzon
- Biostatistics and Data Management Section, Bethesda, Maryland 20892, USA
| | - L. Jean Patterson
- National Cancer Institute, Vaccine Branch, Bethesda, Maryland 20892, USA
| | - Terry M. Phillips
- National Institute of Biomedical Imaging and Bioengineering, Laboratory of Cellular Imaging and Macromolecular Biophysics, Bethesda, Maryland 20892, USA
| | | |
Collapse
|