Assessment of the Impact of Potential Tetracycline Exposure on the Phenotype of Aedes aegypti OX513A: Implications for Field Use.
PLoS Negl Trop Dis 2015;
9:e0003999. [PMID:
26270533 PMCID:
PMC4535858 DOI:
10.1371/journal.pntd.0003999]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/20/2015] [Indexed: 01/21/2023] Open
Abstract
Background
Aedes aegypti is the primary vector of dengue fever, a viral disease which has an estimated incidence of 390 million infections annually. Conventional vector control methods have been unable to curb the transmission of the disease. We have previously reported a novel method of vector control using a tetracycline repressible self-limiting strain of Ae. aegypti OX513A which has achieved >90% suppression of wild populations.
Methodology/Principal Findings
We investigated the impact of tetracycline and its analogues on the phenotype of OX513A from the perspective of possible routes and levels of environmental exposure. We determined the minimum concentration of tetracycline and its analogues that will allow an increased survivorship and found these to be greater than the maximum concentration of tetracyclines found in known Ae. aegypti breeding sites and their surrounding areas. Furthermore, we determined that OX513A parents fed tetracycline are unable to pre-load their progeny with sufficient antidote to increase their survivorship. Finally, we studied the changes in concentration of tetracycline in the mass production rearing water of OX513A and the developing insect.
Conclusion/Significance
Together, these studies demonstrate that potential routes of exposure of OX513A individuals to tetracycline and its analogues in the environment are not expected to increase the survivorship of OX513A.
Dengue fever is spread by the mosquito Aedes aegypti and the most effective method to limit the spread of dengue is to reduce the mosquito population. We have previously reported a transgenic strain of Ae. aegypti which results in >90% population suppression: males, which do not transmit disease, are released into the field carrying a self-limiting gene to mate with wild females, passing on the self-limiting gene which causes >95% progeny to die before becoming vectors of disease. To be able to breed this mosquito in the laboratory an antidote, tetracycline, is used to suppress the effects of the transgene. Given that tetracyclines are commonly used in human and veterinary medicine, it is essential to consider whether sufficient tetracycline could be in the environment to prevent the effective use of this control method by allowing the female’s progeny (from a mating between a released OX513A male and a wild female) to survive. Here we have shown that the concentrations of tetracycline to which the mosquitoes will be exposed in the environment, both in breeding sites and in a blood-meal host are not high enough to influence the effectiveness of this control method.
Collapse