1
|
Ma J, Zhu Z, Yishajiang Y, Alarjani KM, Hong L, Luo L. Role of gut microbiota and inflammatory factors in acute respiratory distress syndrome: a Mendelian randomization analysis. Front Microbiol 2023; 14:1294692. [PMID: 38173678 PMCID: PMC10761488 DOI: 10.3389/fmicb.2023.1294692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a serious lung ailment marked by significant inflammation and damage in the alveoli and capillaries of the lungs. Recent research suggests a strong correlation between the onset and advancement of ARDS and an imbalance in the gut microbiota (GM). Methods In this investigation, Mendelian randomization (MR) analysis was utilized, drawing on data from publicly accessible genome-wide association studies. The primary focus was on examining the interplay between GM, inflammatory factors (IFs) and ARDS. Instrumental variables were established through genetic modifications of GM and IFs. Various statistical analysis methods including the inverse-variance weighted model, MR-Egger method and Wald ratio test were applied for comprehensive data analysis. Results Eight bacterial taxa within the GM demonstrated a potential causal link with development of ARDS. Notably, the phylum Actinobacteria and the genus Intestinibacter exhibited a negative association with the risk of ARDS. However, Erysipelotrichales (id. 2,148), Victivallis (id. 2,256), Ruminococcaceae UCG014 (id. 11,371), Eubacterium ruminantium group (id. 11,340), Erysipelotrichaceae (id. 2,149) and Erysipelotrichia (id. 2,147) demonstrated a positive association with ARDS risk. Additionally, the study identified a potential causal relationship between the inflammatory factors interleukin-16 and C-C motif chemokine 3 with the occurrence of ARDS. Conclusion This study strongly suggests that the interaction between gut microbiota (GM) and inflammatory factors (IFs) significantly contributes to the pathogenesis of acute respiratory distress syndrome (ARDS). This underscores their crucial involvement in both the initiation and advancement of this severe lung disorder.
Collapse
Affiliation(s)
- Jiawei Ma
- Department of Critical Care Medicine, Jiangnan University Medical Center, Wuxi, China
- Department of Critical Care Medicine, Aheqi County People's Hospital, Xinjiang, China
| | - Zigang Zhu
- Department of Critical Care Medicine, Jiangnan University Medical Center, Wuxi, China
| | | | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lei Hong
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Liang Luo
- Department of Critical Care Medicine, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
2
|
Song Y, Kim MS, Chung J, Na HS. Simultaneous Analysis of Bacterial and Fungal Communities in Oral Samples from Intubated Patients in Intensive Care Unit. Diagnostics (Basel) 2023; 13:diagnostics13101784. [PMID: 37238268 DOI: 10.3390/diagnostics13101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Intubated patients in intensive care units (ICUs) too frequently contract ventilator-associated pneumonia or Candida infections. Oropharyngeal microbes are believed to play an important etiologic role. This study was undertaken to determine whether next-generation sequencing (NGS) can be used to simultaneously analyze bacterial and fungal communities. Buccal samples were collected from intubated ICU patients. Primers targeting the V1-V2 region of bacterial 16S rRNA and the internal transcribed spacer 2 (ITS2) region of fungal 18S rRNA were used. V1-V2, ITS2, or mixed V1-V2/ITS2 primers were used to prepare an NGS library. Bacterial and fungal relative abundances were comparable for V1-V2, ITS2, or mixed V1-V2/ITS2 primers, respectively. A standard microbial community was used to adjust the relative abundances to theoretical abundance, and NGS and RT-PCR-adjusted relative abundances showed a high correlation. Using mixed V1-V2/ITS2 primers, bacterial and fungal abundances were simultaneously determined. The constructed microbiome network revealed novel interkingdom and intrakingdom interactions, and the simultaneous detection of bacterial and fungal communities using mixed V1-V2/ITS2 primers enabled analysis across two kingdoms. This study provides a novel approach to simultaneously determining bacterial and fungal communities using mixed V1-V2/ITS2 primers.
Collapse
Affiliation(s)
- Yuri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Myoung Soo Kim
- Department of Nursing, College of Natural Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
3
|
Abstract
Aspiration pneumonia (AP), inflammation of the lung parenchyma initiated by aspirated microorganisms into the lower airways from proximal sites, including the oral cavity, is prevalent in, and problematic for, the elderly, especially those in institutions, and for those with several important risk factors. Many factors influence the pathogenesis of AP, including dysphagia, poor oral hygiene, diminished host defense, and underlying medical conditions. This article reviews the epidemiology, microbiology, pathogenesis, and prevention of AP, focusing on the role of poor oral health as a risk factor for, and on dental care for the prevention and management of, this important infection.
Collapse
Affiliation(s)
- Frank A Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Foster Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
4
|
Alagna L, Mancabelli L, Magni F, Chatenoud L, Bassi G, Del Bianco S, Fumagalli R, Turroni F, Mangioni D, Migliorino GM, Milani C, Muscatello A, Nattino G, Picetti E, Pinciroli R, Rossi S, Tonetti T, Vargiolu A, Bandera A, Ventura M, Citerio G, Gori A. Changes in upper airways microbiota in ventilator-associated pneumonia. Intensive Care Med Exp 2023; 11:17. [PMID: 36862343 PMCID: PMC9981834 DOI: 10.1186/s40635-023-00496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The role of upper airways microbiota and its association with ventilator-associated pneumonia (VAP) development in mechanically ventilated (MV) patients is unclear. Taking advantage of data collected in a prospective study aimed to assess the composition and over-time variation of upper airway microbiota in patients MV for non-pulmonary reasons, we describe upper airway microbiota characteristics among VAP and NO-VAP patients. METHODS Exploratory analysis of data collected in a prospective observational study on patients intubated for non-pulmonary conditions. Microbiota analysis (trough 16S-rRNA gene profiling) was performed on endotracheal aspirates (at intubation, T0, and after 72 h, T3) of patients with VAP (cases cohort) and a subgroup of NO-VAP patients (control cohort, matched according to total intubation time). RESULTS Samples from 13 VAP patients and 22 NO-VAP matched controls were analyzed. At intubation (T0), patients with VAP revealed a significantly lower microbial complexity of the microbiota of the upper airways compared to NO-VAP controls (alpha diversity index of 84 ± 37 and 160 ± 102, in VAP and NO_VAP group, respectively, p-value < 0.012). Furthermore, an overall decrease in microbial diversity was observed in both groups at T3 as compared to T0. At T3, a loss of some genera (Prevotella 7, Fusobacterium, Neisseria, Escherichia-Shigella and Haemophilus) was found in VAP patients. In contrast, eight genera belonging to the Bacteroidetes, Firmicutes and Fusobacteria phyla was predominant in this group. However, it is unclear whether VAP caused dysbiosis or dysbiosis caused VAP. CONCLUSIONS In a small sample size of intubated patients, microbial diversity at intubation was less in patients with VAP compared to patients without VAP.
Collapse
Affiliation(s)
- Laura Alagna
- Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Leonardo Mancabelli
- grid.10383.390000 0004 1758 0937Department of Medicine and Surgery, University of Parma, Parma, Italy ,grid.10383.390000 0004 1758 0937Interdepartmental Research Centre Microbiome Research Hub, University of Parma, Parma, Italy
| | - Federico Magni
- grid.415025.70000 0004 1756 8604Neurointensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Liliane Chatenoud
- grid.4527.40000000106678902Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Silvia Del Bianco
- grid.415025.70000 0004 1756 8604Neurointensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Roberto Fumagalli
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesca Turroni
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy ,grid.10383.390000 0004 1758 0937Interdepartmental Research Centre Microbiome Research Hub, University of Parma, Parma, Italy
| | - Davide Mangioni
- grid.414818.00000 0004 1757 8749Present Address: Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Guglielmo M. Migliorino
- grid.415025.70000 0004 1756 8604Infectious Diseases Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Christian Milani
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy ,grid.10383.390000 0004 1758 0937Interdepartmental Research Centre Microbiome Research Hub, University of Parma, Parma, Italy
| | - Antonio Muscatello
- grid.414818.00000 0004 1757 8749Present Address: Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Nattino
- grid.4527.40000000106678902Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Picetti
- grid.411482.aDepartment of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Riccardo Pinciroli
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Sandra Rossi
- grid.411482.aDepartment of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Tommaso Tonetti
- grid.411482.aDepartment of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Alessia Vargiolu
- grid.415025.70000 0004 1756 8604Neurointensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy ,grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Bandera
- grid.414818.00000 0004 1757 8749Present Address: Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Ventura
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy ,grid.10383.390000 0004 1758 0937Interdepartmental Research Centre Microbiome Research Hub, University of Parma, Parma, Italy
| | - Giuseppe Citerio
- grid.415025.70000 0004 1756 8604Neurointensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy ,grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Andrea Gori
- grid.414818.00000 0004 1757 8749Present Address: Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Multisite Evaluation of Toothbrushes and Microbial Growth in the Hospital Setting. CLIN NURSE SPEC 2023; 37:83-89. [PMID: 36799704 PMCID: PMC9969552 DOI: 10.1097/nur.0000000000000733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
DESIGN This observational, descriptive study was conducted to determine the prevalence of microbial growth on toothbrushes found in hospital patient rooms. METHODS Toothbrush sampling was conducted in 136 acute care hospitals and medical centers from November 2018 through February 2022. Inclusion criteria for the units and patient rooms sampled were as follows: general adult medical-surgical units or critical care units; rooms occupied by adults 18 years or older who were capable of (1) mobilizing to the bathroom; (2) using a standard manual, bristled toothbrush; and (3) room did not have signage indicating isolation procedures. RESULTS A total of 5340 patient rooms were surveyed. Of the rooms included, 46% (2455) of patients did not have a toothbrush available or had not used a toothbrush (still in package and/or toothpaste not opened). Of the used toothbrushes collected (n = 1817): 48% (872/1817) had at least 1 organism; 14% (251/1817) of the toothbrushes were positive for 3 or more organisms. CONCLUSIONS These results identify the lack of availability of toothbrushes for patients and support the need for hospitals to incorporate a rigorous, consistent, and comprehensive oral care program to address the evident risk of microbe exposure in the oral cavity.
Collapse
|
6
|
van Charante F, Wieme A, Rigole P, De Canck E, Ostyn L, Grassi L, Deforce D, Crabbé A, Vandamme P, Joossens M, Van Nieuwerburgh F, Depuydt P, Coenye T. Microbial diversity and antimicrobial susceptibility in endotracheal tube biofilms recovered from mechanically ventilated COVID-19 patients. Biofilm 2022; 4:100079. [PMID: 35720435 PMCID: PMC9192360 DOI: 10.1016/j.bioflm.2022.100079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
In patients with acute respiratory failure, mechanical ventilation through an endotracheal tube (ET) may be required to correct hypoxemia and hypercarbia. However, biofilm formation on these ETs is a risk factor for infections in intubated patients, as the ET can act as a reservoir of microorganisms that can cause infections in the lungs. As severely ill COVID-19 patients often need to be intubated, a better knowledge of the composition of ET biofilms in this population is important. In Spring 2020, during the first wave of the COVID-19 pandemic in Europe, 31 ETs were obtained from COVID-19 patients at Ghent University Hospital (Ghent, Belgium). Biofilms were collected from the ET and the biofilm composition was determined using culture-dependent (MALDI-TOF mass spectrometry and biochemical tests) and culture-independent (16S and ITS1 rRNA amplicon sequencing) approaches. In addition, antimicrobial resistance was assessed for isolates collected via the culture-dependent approach using disc diffusion for 11 antimicrobials commonly used to treat lower respiratory tract infections. The most common microorganisms identified by the culture-dependent approach were those typically found during lung infections and included both presumed commensal and potentially pathogenic microorganisms like Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans. More unusual organisms, such as Paracoccus yeei, were also identified, but each only in a few patients. The culture-independent approach revealed a wide variety of microbes present in the ET biofilms and showed large variation in biofilm composition between patients. Some biofilms contained a diverse set of bacteria of which many are generally considered as non-pathogenic commensals, whereas others were dominated by a single or a few pathogens. Antimicrobial resistance was widespread in the isolates, e.g. 68% and 53% of all isolates tested were resistant against meropenem and gentamicin, respectively. Different isolates from the same species recovered from the same ET biofilm often showed differences in antibiotic susceptibility. Our data suggest that ET biofilms are a potential risk factor for secondary infections in intubated COVID-19 patients, as is the case in mechanically-ventilated non-COVID-19 patients.
Collapse
Affiliation(s)
- Frits van Charante
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Anneleen Wieme
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | | | - Pieter Depuydt
- Department of Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- Corresponding author.
| |
Collapse
|
7
|
Dono A, Esquenazi Y, Choi HA. Gut microbiome and neurocritically ill patients. JOURNAL OF NEUROCRITICAL CARE 2022. [DOI: 10.18700/jnc.220058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Since the times of Rokitansky and Cushing, we have been fascinated by the connections between the gut and the brain. Recent advances in next-generation sequencing techniques have shown that this relationship is even more complex and integral to our sense of self than previously imagined. As these techniques refine our understanding of the abundance and diversity of the gut bacterial microbiome, the relationship between the gut and the brain has been redefined. Now, this is understood as a complex symbiotic network with bidirectional communication, the gut-brain axis. The implication of this communication involves an intense focus of research on a variety of chronic psychiatric, neurological, neurodegenerative, and neuro-oncological diseases. Recently, the gut-brain axis has been studied in neurologically ill patients requiring intensive care. Preliminary studies have shown that acute brain injury changes the bacterial phenotype from one that is symbiotic with the host human to one that is pathologic, termed the “pathobiome.” This can contribute to nosocomial pneumonia and sepsis. The first studies in neurologically ill patients in the neurointensive care unit (NeuroICU) demonstrated changes in the gut microbiome between neuroICU patients and healthy matched subjects. Specifically, a decrease in short-chain fatty acid-producing bacteria and increase in harmful gut microbes have been associated with mortality and decreased function at discharge. Although these preliminary findings are exciting and have opened a new field of research in the complex NeuroICU population, there are several limitations and challenges. Further investigation is needed to confirm these correlations and understand their implications on patients in a complex intensive care environment.
Collapse
|
8
|
Lu D, Wang Z, Chen Z, Fan J, Zhai J, Fang D, Cai H, Liu X, Wu H, Cai K. Olmesartan Attenuates Single-Lung Ventilation Induced Lung Injury via Regulating Pulmonary Microbiota. Front Pharmacol 2022; 13:822615. [PMID: 35401192 PMCID: PMC8984607 DOI: 10.3389/fphar.2022.822615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Single-lung ventilation (SLV) associated acute lung injury is similar to ischemia reperfusion (IR) injury which is usually occurred during lung surgery. Olmesartan (Olm), a novel angiotensin receptor blocker (ARB), has been reported to ameliorate organ IR injury. Several recent studies have shown that lung microbiota may be involved in pulmonary diseases, but the effect of pulmonary microbiota in SLV-induced lung injury has not been reported. This study aims to determine the mechanism of how Olm attenuates SLV induced lung injury. Our data showed that 7 days Olm treatment before modeling markedly alleviated SLV-induced lung injury by suppressing inflammation and reactive oxygen species. Bronchoalveolar lavage fluid samples from the injured side were collected for 16S rRNA gene-based sequencing analysis and 53 different bacteria at the genus and species levels were identified. Furthermore, the injured lung samples were collected for metabolomics analysis using liquid chromatography-mass spectrometry analyses to explore differential metabolites. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was applied to analyze the correlation between differential metabolites and lung microbiota. A total of 38 pathways were identified according to differential metabolites and 275 relevant pathways were enriched via analyzing the microbial community, 24 pathways were both identified by analyzing either metabolites or microbiota, including pyrimidine metabolism, purine metabolism, aminoacyl-tRNA biosynthesis and ATP-binding cassette transporter. Besides classical blockage of the renin-angiotensin II system, Olm could also alleviate SLV-induced lung injury by rewiring the interaction between pulmonary microbiota and metabolites.
Collapse
|
9
|
Incidence of Postoperative Pneumonia and Oral Microbiome for Patients with Cancer Operation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Postoperative pneumonia is a serious problem for patients and medical staff. In Japan, many hospitals introduced perioperative oral care management for the efficient use of medical resources. However, a high percentage of postoperative pneumonia still developed. Therefore, there is a need to identify the specific respiratory pathogens to predict the incidence of pneumonia The purpose of this study was to find out the candidate of bacterial species for the postoperative pneumonia. This study applied case-control study design for the patients who had a cancer operation with or without postoperative pneumonia. A total of 10 patients undergoing a cancer operation under general anesthesia participated in this study. The day before a cancer operation, preoperative oral care management was applied. Using the next generation sequence, oral microbiome of these patients was analyzed at the time of their first visit, the day before and after a cancer operation. Porphyromonas gingivalis and Fusobacterium nucleatum group can be a high risk at first visit. Atopobium parvulum and Enterococcus faecalis before a cancer operation can be a high risk. Poor oral hygiene increased the risk of incidence of postoperative pneumonia. Increased periodontal pathogens can be a high risk of the incidence of postoperative pneumonia. In addition, increased intestinal bacteria after oral care management can also be a high risk for the incidence of postoperative pneumonia.
Collapse
|
10
|
Szychowiak P, Villageois-Tran K, Patrier J, Timsit JF, Ruppé É. The role of the microbiota in the management of intensive care patients. Ann Intensive Care 2022; 12:3. [PMID: 34985651 PMCID: PMC8728486 DOI: 10.1186/s13613-021-00976-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The composition of the gut microbiota is highly dynamic and changes according to various conditions. The gut microbiota mainly includes difficult-to-cultivate anaerobic bacteria, hence knowledge about its composition has significantly arisen from culture-independent methods based on next-generation sequencing (NGS) such as 16S profiling and shotgun metagenomics. The gut microbiota of patients hospitalized in intensive care units (ICU) undergoes many alterations because of critical illness, antibiotics, and other ICU-specific medications. It is then characterized by lower richness and diversity, and dominated by opportunistic pathogens such as Clostridioides difficile and multidrug-resistant bacteria. These alterations are associated with an increased risk of infectious complications or death. Specifically, at the time of writing, it appears possible to identify distinct microbiota patterns associated with severity or infectivity in COVID-19 patients, paving the way for the potential use of dysbiosis markers to predict patient outcomes. Correcting the microbiota disturbances to avoid their consequences is now possible. Fecal microbiota transplantation is recommended in recurrent C. difficile infections and microbiota-protecting treatments such as antibiotic inactivators are currently being developed. The growing interest in the microbiota and microbiota-associated therapies suggests that the control of the dysbiosis could be a key factor in the management of critically ill patients. The present narrative review aims to provide a synthetic overview of microbiota, from healthy individuals to critically ill patients. After an introduction to the different techniques used for studying the microbiota, we review the determinants involved in the alteration of the microbiota in ICU patients and the latter's consequences. Last, we assess the means to prevent or correct microbiota alteration.
Collapse
Affiliation(s)
- Piotr Szychowiak
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Médecine Intensive-Réanimation, Centre Hospitalier Régional Universitaire de Tours, 37000, Tours, France
| | - Khanh Villageois-Tran
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Laboratoire de Bactériologie, AP-HP, Hôpital Beaujon, 92110, Paris, France
| | - Juliette Patrier
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Réanimation Médicale Et Infectieuse, AP-HP, Hôpital Bichat, 75018, Paris, France
| | - Jean-François Timsit
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Réanimation Médicale Et Infectieuse, AP-HP, Hôpital Bichat, 75018, Paris, France
| | - Étienne Ruppé
- Université de Paris, IAME, INSERM, 75018, Paris, France.
- Laboratoire de Bactériologie, AP-HP, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
11
|
Toni T, Alverdy J. Harnessing the Microbiome to Optimize Surgical Outcomes in the COVID-19 Era. ANNALS OF SURGERY OPEN 2021; 2:e056. [PMID: 36590034 PMCID: PMC9794001 DOI: 10.1097/as9.0000000000000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
In this era of testing uncertainties, changing guidelines, and incomplete knowledge, "clearing" patients for surgery in the time of SARS-COVID-19 has been met with various challenges. Efforts to increase patient fitness have long been at the forefront of surgical practicing guidelines, but the current climate requires a renewed sense of focus on these measures. It is essential to understand how dietary history, previous antibiotic exposure, and baseline microbiota can inform and optimize preoperative and postoperative management of the surgical patient in the time of COVID-19. This piece focuses on the clinical, molecular, and physiologic dynamics that occur in preparing patients for surgery during COVID-19, considering the physiologic stress inherent in the procedure itself and the importance of specialized perioperative management approaches. COVID-19 has created a renewed sense of urgency to maintain our discipline in implementing those practices that have long been confirmed to be beneficial to patient outcome. This practice, along with a renewed interest in understanding how the gut microbiome is affected by the confinement, social distancing, etc., due to the COVID pandemic, is ever more important. Therefore, here we discuss the microbiome's role as a defense against viral infection and its potential for reactivation during the process of surgery as the next frontier for surgical advancement.
Collapse
Affiliation(s)
- Tiffany Toni
- From the Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - John Alverdy
- From the Pritzker School of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
12
|
Abstract
Staphylococcus aureus is both a commensal and a pathogenic bacterium for humans. Its ability to induce severe infections is based on a wide range of virulence factors. S. aureus community-acquired pneumonia (SA-CAP) is rare and severe, and the contribution of certain virulence factors in this disease has been recognized over the past 2 decades. First, the factors involved in metabolism adaptation are crucial for S. aureus survival in the lower respiratory tract, and toxins and enzymes are required for it to cross the pulmonary epithelial barrier. S. aureus subsequently faces host defense mechanisms, including the epithelial barrier, but most importantly the immune system. Here, again, S. aureus uses myriad virulence factors to successfully escape from the host's defenses and takes advantage of them. The impact of S. aureus virulence, combined with the collateral damage caused by an overwhelming immune response, leads to severe tissue damage and adverse clinical outcomes. In this review, we summarize step by step all of the S. aureus factors implicated in CAP and described to date, and we provide an outlook for future research.
Collapse
Affiliation(s)
- Mariane Pivard
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
13
|
Mustansir Dawoodbhoy F, Patel BK, Patel K, Bhatia M, Lee CN, Moochhala SM. Gut Microbiota Dysbiosis as a Target for Improved Post-Surgical Outcomes and Improved Patient Care: A Review of Current Literature. Shock 2021; 55:441-454. [PMID: 32881759 DOI: 10.1097/shk.0000000000001654] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Critical illness results in significant changes in the human gut microbiota, leading to the breakdown of the intestinal barrier function, which plays a role in the pathogenesis of multiple organ dysfunction. Patients with sepsis/acute respiratory distress syndrome (ARDS) have a profoundly distorted intestinal microbiota rhythm, which plays a considerable role in the development of gut-derived infections and intestinal dysbiosis. Despite recent medical developments, postsurgical complications are associated with a high morbidity and mortality rate. Bacterial translocation, which is the movement of bacteria and bacterial products across the intestinal barrier, was shown to be a mechanism behind sepsis. Current research is focusing on a solution by addressing significant factors that contribute to intestinal dysbiosis, which subsequently leads to multiple organ failure and, thus, mortality. It may, however, be challenging to manipulate the microbiota in critically ill patients for enhanced therapeutic gain. Probiotic manipulation is advantageous for maintaining the gut-barrier defense and for modulating the immune response. Based on available published research, this review aims to address the application of potential strategies in the intensive care unit, supplemented with current therapeutics by the administration of probiotics, prebiotics, and fecal microbiota transplant, to reduce post-surgical complications of sepsis/ARDS in critically ill patients.
Collapse
Affiliation(s)
| | | | - Kadamb Patel
- School of Applied Sciences, Temasek Polytechnic, Singapore
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Chuen Neng Lee
- Department of Surgery, National University of Singapore, Singapore
| | | |
Collapse
|
14
|
Mourani PM, Sontag MK, Williamson KM, Harris JK, Reeder R, Locandro C, Carpenter TC, Maddux AB, Ziegler K, Simões EAF, Osborne CM, Ambroggio L, Leroue MK, Robertson CE, Langelier C, DeRisi JL, Kamm J, Hall MW, Zuppa AF, Carcillo J, Meert K, Sapru A, Pollack MM, McQuillen P, Notterman DA, Dean JM, Wagner BD. Temporal airway microbiome changes related to ventilator-associated pneumonia in children. Eur Respir J 2021; 57:13993003.01829-2020. [PMID: 33008935 DOI: 10.1183/13993003.01829-2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
We sought to determine whether temporal changes in the lower airway microbiome are associated with ventilator-associated pneumonia (VAP) in children.Using a multicentre prospective study of children aged 31 days to 18 years requiring mechanical ventilation support for >72 h, daily tracheal aspirates were collected and analysed by sequencing of the 16S rRNA gene. VAP was assessed using 2008 Centers for Disease Control and Prevention paediatric criteria. The association between microbial factors and VAP was evaluated using joint longitudinal time-to-event modelling, matched case-control comparisons and unsupervised clustering.Out of 366 eligible subjects, 66 (15%) developed VAP at a median of 5 (interquartile range 3-5) days post intubation. At intubation, there was no difference in total bacterial load (TBL), but Shannon diversity and the relative abundance of Streptococcus, Lactobacillales and Prevotella were lower for VAP subjects versus non-VAP subjects. However, higher TBL on each sequential day was associated with a lower hazard (hazard ratio 0.39, 95% CI 0.23-0.64) for developing VAP, but sequential values of diversity were not associated with VAP. Similar findings were observed from the matched analysis and unsupervised clustering. The most common dominant VAP pathogens included Prevotella species (19%), Pseudomonas aeruginosa (14%) and Streptococcus mitis/pneumoniae (10%). Mycoplasma and Ureaplasma were also identified as dominant organisms in several subjects.In mechanically ventilated children, changes over time in microbial factors were marginally associated with VAP risk, although these changes were not suitable for predicting VAP in individual patients. These findings suggest that focusing exclusively on pathogen burden may not adequately inform VAP diagnosis.
Collapse
Affiliation(s)
- Peter M Mourani
- Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Marci K Sontag
- Epidemiology, University of Colorado, Colorado School of Public Health, Aurora, CO, USA
| | - Kayla M Williamson
- Biostatistics and Informatics, University of Colorado, Colorado School of Public Health, Aurora, CO, USA
| | - J Kirk Harris
- Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Ron Reeder
- Pediatrics, University of Utah, Salt Lake City, UT, USA
| | | | - Todd C Carpenter
- Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Aline B Maddux
- Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Katherine Ziegler
- Epidemiology, University of Colorado, Colorado School of Public Health, Aurora, CO, USA
| | - Eric A F Simões
- Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.,Epidemiology, University of Colorado, Colorado School of Public Health, Aurora, CO, USA
| | - Christina M Osborne
- Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Lilliam Ambroggio
- Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.,Epidemiology, University of Colorado, Colorado School of Public Health, Aurora, CO, USA
| | - Matthew K Leroue
- Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Charles E Robertson
- Medicine, Division of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Charles Langelier
- Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Dept of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jack Kamm
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mark W Hall
- Dept of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Athena F Zuppa
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Kathleen Meert
- Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA
| | - Anil Sapru
- Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Murray M Pollack
- Pediatrics, Children's National Medical Center and George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Patrick McQuillen
- Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Brandie D Wagner
- Biostatistics and Informatics, University of Colorado, Colorado School of Public Health, Aurora, CO, USA
| | | | | |
Collapse
|
15
|
Scannapieco FA. Poor Oral Health in the Etiology and Prevention of Aspiration Pneumonia. Dent Clin North Am 2021; 65:307-321. [PMID: 33641755 DOI: 10.1016/j.cden.2020.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aspiration pneumonia (AP), inflammation of the lung parenchyma initiated by aspirated microorganisms into the lower airways from proximal sites, including the oral cavity, is prevalent in, and problematic for, the elderly, especially those in institutions, and for those with several important risk factors. Many factors influence the pathogenesis of AP, including dysphagia, poor oral hygiene, diminished host defense, and underlying medical conditions. This article reviews the epidemiology, microbiology, pathogenesis, and prevention of AP, focusing on the role of poor oral health as a risk factor for, and on dental care for the prevention and management of, this important infection.
Collapse
Affiliation(s)
- Frank A Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Foster Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
16
|
Sun J, Ding X, Liu S, Duan X, Liang H, Sun T. Adipose-derived mesenchymal stem cells attenuate acute lung injury and improve the gut microbiota in septic rats. Stem Cell Res Ther 2020; 11:384. [PMID: 32894198 PMCID: PMC7487801 DOI: 10.1186/s13287-020-01902-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs) may ameliorate sepsis-induced acute lung injury (ALI) and change microorganism populations in the gut microbiota, such as that of Firmicutes and Bacteroidetes. Methods A total of 60 male adult Sprague-Dawley (SD) rats were separated into three groups: the sham control (SC) group, the sepsis induced by cecal ligation and puncture (CLP) group, and the ADMSC treatment (CLP-ADMSCs) group, in which rats underwent the CLP procedure and then received 1 × 106 ADMSCs. Rats were sacrificed 24 h after the SC or CLP procedures. To study the role of ADMSCs during ALI caused by sepsis and examine the impact of ADMSCs on the gut microbiome composition, rat lungs were histologically evaluated using hematoxylin and eosin (H&E) staining, serum levels of pro-inflammatory factors were detected using enzyme-linked immunosorbent assay (ELISA), and fecal samples were collected and analyzed using 16S rDNA sequencing. Results The serum levels of inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, were significantly increased in rats after the CLP procedure, but were significantly decreased in rats treated with ADMSCs. Histological evaluation of the rat lungs yielded results consistent with the changes in IL-6 levels among all groups. Treatment with ADMSCs significantly increased the diversity of the gut microbiota in rats with sepsis. The principal coordinates analysis (PCoA) results showed that there was a significant difference between the gut microbiota of the CLP-ADMSCs group and that of the CLP group. In rats with sepsis, the proportion of Escherichia–Shigella (P = 0.01) related to lipopolysaccharide production increased, and the proportion of Akkermansia (P = 0.02) related to the regulation of intestinal mucosal thickness and the maintenance of intestinal barrier function decreased. These changes in the gut microbiota break the energy balance, aggravate inflammatory reactions, reduce intestinal barrier functions, and promote the translocation of intestinal bacteria. Intervention with ADMSCs increased the proportion of beneficial bacteria, reduced the proportion of harmful bacteria, and normalized the gut microbiota. Conclusions Therapeutically administered ADMSCs ameliorate CLP-induced ALI and improves gut microbiota, which provides a potential therapeutic mechanism for ADMSCs in the treatment of sepsis.
Collapse
Affiliation(s)
- Junyi Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.,Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052, China
| | - Xianfei Ding
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.,Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052, China
| | - Shaohua Liu
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China
| | - Xiaoguang Duan
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China
| | - Huoyan Liang
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.,Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052, China
| | - Tongwen Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The host-microbiota relationship is integral in human health and can be rapidly disrupted in ways that may contribute to poor recovery from surgery or acute illness. We review key studies by organ system to understand the effect of perioperative and critical illness stress on the microbiota. Throughout the review, our focus is on potential interventions that may be mediated by the microbiome. RECENT FINDINGS Although any perioperative intervention can have a profound impact on the gut microbiota, it is less clear how such changes translate into altered health outcomes. Preoperative stress (anxiety, lack of sleep, fasting), intraoperative stress (surgery itself, volatile anesthetics, perioperative antibiotics, blood transfusions), and postoperative stress (sepsis, surgical site infections, acute respiratory distress syndrome, catecholamines, antibiotics, opioids, proton pump inhibitors) have all been associated with alterations of the commensal microflora. These factors (e.g. administration of antibiotics or opioids) can create a favorable environment for emergence of pathogen virulence and development of serious infections and multiorgan failure. Data to recommend therapies aimed at restoring a disrupted microbiota, such as probiotics/prebiotics and fecal microbiota transplants is currently scarce. SUMMARY The microbiome is likely to play an important role in the perioperative and ICU setting but existing data is largely descriptive. There is an expanding number of mechanistic studies that attempt to disentangle the complicated bi-directional relationship between the host and the resident microbiota. When these results are combined with ongoing clinical studies, we should be able to offer better therapies aimed at restoring the microbiota in the future.
Collapse
|
18
|
Abstract
Pneumonia is a highly prevalent disease with considerable morbidity and mortality. However, diagnosis and therapy still rely on antiquated methods, leading to the vast overuse of antimicrobials, which carries risks for both society and the individual. Furthermore, outcomes in severe pneumonia remain poor. Genomic techniques have the potential to transform the management of pneumonia through deep characterization of pathogens as well as the host response to infection. This characterization will enable the delivery of selective antimicrobials and immunomodulatory therapy that will help to offset the disorder associated with overexuberant immune responses.
Collapse
Affiliation(s)
- Samir Gautam
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA
| | - Lokesh Sharma
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA
| | - Charles S Dela Cruz
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA.
| |
Collapse
|
19
|
Sommerstein R, Merz TM, Berger S, Kraemer JG, Marschall J, Hilty M. Patterns in the longitudinal oropharyngeal microbiome evolution related to ventilator-associated pneumonia. Antimicrob Resist Infect Control 2019; 8:81. [PMID: 31139364 PMCID: PMC6530040 DOI: 10.1186/s13756-019-0530-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/28/2019] [Indexed: 01/15/2023] Open
Abstract
Background The aim of the study was to evaluate the composition and the temporal evolution of the oropharyngeal microbiome in antibiotic-naïve patients requiring mechanical ventilation and to gain new insights into the pathogenesis of ventilator-associated pneumonia (VAP). Methods Prospective, observational single-center nested case-control study. Patients with acute critical illness and anticipated duration of mechanical ventilation > 4 days were eligible. We took oropharyngeal swabs (and if available, tracheal secretions) daily, starting at the day of intubation. The microbiota was characterized by 16S rRNA high-throughput sequencing and compared between patients developing VAP versus controls. Results Five patients developed VAP. In three patient the causative pathogens were Enterobacteriaceae and in two Haemophilus influenzae. Locally weighted polynomial regression suggested that the within diversity (=alpha) was lower in Enterobacteriaceae VAP patients between days two to five of mechanical ventilation when compared to controls. Detection of Enterobacteriaceae in the oropharynx occurred on day two of follow-up and consisted of a single operational taxonomic unit in 2/3 patients with enterobacterial VAP. Conclusions In acutely-ill patients who developed enterobacterial VAP the causative pathogen gained access to the oropharynx early after starting mechanical ventilation and outgrew the commensal members of the microbiome. Whether a specific pattern of the oropharyngeal microbiome between days three to five of mechanical ventilation may predict VAP enterobacterial VAP has to be evaluated in further studies. Electronic supplementary material The online version of this article (10.1186/s13756-019-0530-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse; 4, 3010 Bern, Switzerland
| | - Tobias M Merz
- Department of Intensive Care, Bern University Hospital, University of Bern, Bern, Switzerland.,3Cardiovascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Sabine Berger
- Department of Intensive Care, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Julia G Kraemer
- 4Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse; 4, 3010 Bern, Switzerland
| | - Markus Hilty
- 4Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| |
Collapse
|
20
|
Costa AN, Costa FMD, Campos SV, Salles RK, Athanazio RA. The pulmonary microbiome: challenges of a new paradigm. ACTA ACUST UNITED AC 2018; 44:424-432. [PMID: 30066739 PMCID: PMC6467588 DOI: 10.1590/s1806-37562017000000209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/16/2017] [Indexed: 01/06/2023]
Abstract
The study of the human microbiome-and, more recently, that of the respiratory system-by means of sophisticated molecular biology techniques, has revealed the immense diversity of microbial colonization in humans, in human health, and in various diseases. Apparently, contrary to what has been believed, there can be nonpathogenic colonization of the lungs by microorganisms such as bacteria, fungi, and viruses. Although this physiological lung microbiome presents low colony density, it presents high diversity. However, some pathological conditions lead to a loss of that diversity, with increasing concentrations of some bacterial genera, to the detriment of others. Although we possess qualitative knowledge of the bacteria present in the lungs in different states of health or disease, that knowledge has advanced to an understanding of the interaction of this microbiota with the local and systemic immune systems, through which it modulates the immune response. Given this intrinsic relationship between the microbiota and the lungs, studies have put forth new concepts about the pathophysiological mechanisms of homeostasis in the respiratory system and the potential dysbiosis in some diseases, such as cystic fibrosis, COPD, asthma, and interstitial lung disease. This departure from the paradigm regarding knowledge of the lung microbiota has made it imperative to improve understanding of the role of the microbiome, in order to identify possible therapeutic targets and to develop innovative clinical approaches. Through this new leap of knowledge, the results of preliminary studies could translate to benefits for our patients.
Collapse
Affiliation(s)
- André Nathan Costa
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Felipe Marques da Costa
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Silvia Vidal Campos
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Roberta Karla Salles
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Rodrigo Abensur Athanazio
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| |
Collapse
|
21
|
Vandana Kalwaje E, Rello J. Management of ventilator-associated pneumonia: Need for a personalized approach. Expert Rev Anti Infect Ther 2018; 16:641-653. [DOI: 10.1080/14787210.2018.1500899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eshwara Vandana Kalwaje
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Jordi Rello
- Critical Care Department, Vall d’Hebron Barcelona Hospital Campus & Centro de Investigacion Biomedica en Red (CIBERES), Barcelona, Spain
| |
Collapse
|
22
|
Abstract
Fifty years after the first description of acute respiratory distress syndrome (ARDS), none of the many positive drug studies in animal models have been confirmed in clinical trials and translated into clinical practice. This bleak outcome of so many animal experiments shows how difficult it is to model ARDS. Lungs from patients are characterized by hyperinflammation, permeability edema, and hypoxemia; accordingly, this is what most models aim to reproduce. However, in animal models it is very easy to cause inflammation in the lungs, but difficult to cause hypoxemia. Often - and not unlike in patients - models with hypoxemia are accompanied by cardiovascular failure that necessitates fluid support and ventilation, raising the question as to the role of intensive care measures in models of ARDS. In our opinion, there are two major arguments in favor of modelling intensive care medicine in models of ARDS: (1) preventing death from shock; and (2) modelling ventilation and other ICU measures as a second hit. The preferable predictive endpoints in any model of ARDS remain unclear. At present, the best recommendation is to use endpoints that can be compared across studies (i.e. PaO2/FiO2 ratio, compliance, wet-to-dry weight ratio) rather than percentage data. Another important and often overlooked issue is the fact that the thermoneutral environmental temperatures for mice and rats are 30℃ and 28℃, respectively; thus, at room temperature (20-22℃) they suffer from cold stress with the associated significant metabolic changes. While, by definition, any model is an abstraction, we suggest that clinically relevant models of ARDS will have to closer recapitulate important properties of the disease while taking into account species-specific confounders.
Collapse
Affiliation(s)
- Stefan Uhlig
- 1 Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Wolfgang M Kuebler
- 2 72126 Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Vientós-Plotts AI, Ericsson AC, Rindt H, Reinero CR. Oral Probiotics Alter Healthy Feline Respiratory Microbiota. Front Microbiol 2017; 8:1287. [PMID: 28744273 PMCID: PMC5504723 DOI: 10.3389/fmicb.2017.01287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 12/14/2022] Open
Abstract
Probiotics have been advocated as a novel therapeutic approach to respiratory disease, but knowledge of how oral administration of probiotics influences the respiratory microbiota is needed. Using 16S rRNA amplicon sequencing of bacterial DNA our objective was to determine whether oral probiotics changed the composition of the upper and lower airway, rectal, and blood microbiota. We hypothesized that oral probiotics would modulate the respiratory microbiota in healthy cats, demonstrated by the detection and/or increased relative abundance of the probiotic bacterial species and altered composition of the microbial population in the respiratory tract. Six healthy young research cats had oropharyngeal (OP), bronchoalveolar lavage fluid (BALF), rectal, and blood samples collected at baseline and 4 weeks after receiving oral probiotics. 16S rRNA gene amplicon libraries were sequenced, and coverage, richness, and relative abundance of representative operational taxonomic units (OTUs) were determined. Hierarchical and principal component analyses (PCA) demonstrated relatedness of samples. Mean microbial richness significantly increased only in the upper and lower airways. The number of probiotic OTUs (out of 5 total) that significantly increased in relative abundance vs. baseline was 5 in OP, 3 in BAL and 2 in feces. Using hierarchical clustering, BALF and blood samples grouped together after probiotic administration, and PERMANOVA supported that these two sites underwent significant changes in microbial composition. PERMANOVA revealed that OP and rectal samples had microbial population compositions that did not significantly change. These findings were visualized via PCA, which revealed distinct microbiomes in each site; samples clustered more tightly at baseline and had more variation after probiotic administration. This is the first study describing the effect of oral probiotics on the respiratory microbiota via detection of probiotic species in the airways. Finding bacterial species present in the oral probiotics in the upper and lower airways provides pilot data suggesting that oral probiotics could serve as a tool to target dysbiosis occurring in inflammatory airway diseases such as feline asthma, a disease in which cats serve as an important comparative and translational model for humans.
Collapse
Affiliation(s)
- Aida I Vientós-Plotts
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Comparative Internal Medicine Laboratory, University of MissouriColumbia, MO, United States
| | - Aaron C Ericsson
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,University of Missouri Metagenomics Center, University of MissouriColumbia, MO, United States.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of MissouriColumbia, MO, United States
| | - Hansjorg Rindt
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Comparative Internal Medicine Laboratory, University of MissouriColumbia, MO, United States
| | - Carol R Reinero
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Comparative Internal Medicine Laboratory, University of MissouriColumbia, MO, United States
| |
Collapse
|