1
|
Huang Z, Li Y, Yin W, Raby RBN, Liang H, Yu B. A magnetic-guided nano-antibacterial platform for alternating magnetic field controlled vancomycin release in staphylococcus aureus biofilm eradication. Drug Deliv Transl Res 2024:10.1007/s13346-024-01667-x. [PMID: 39020245 DOI: 10.1007/s13346-024-01667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
Bacterial resilience within biofilms, rendering them up to 1000 times more resistant to antibiotic drugs, poses a formidable challenge. This study introduces a targeted biofilm eradication strategy, termed "target-penetration-killing-eradication", implemented through magnetic micro-robotic technology. Specifically, we present the development of a magnetic-guided nano-antibacterial platform designed for alternating magnetic field (AMF) controlled vancomycin release in the eradication of Staphylococcus aureus biofilms. To address the issue of premature vancomycin release in physiological conditions, we employed a temperature-sensitive linking agent, 4,4'-azobis(4-cyano valeric acid), facilitating the conjugation of vancomycin onto Fe3O4/CS nanocomposites, resulting in the novel construct Fe3O4@CS-ACVA-VH. The release mechanism adheres to first-order kinetics and Fickian diffusion, with each 10-min AMF treatment releasing approximately 8.4 ± 1.1% of vancomycin. The potency of vancomycin in the release solution was similar to that of the original drug (MIC: 7.4 ± 3.5 vs. 5.6 μg/mL). Fe3O4@CS-ACVA-VH exhibited sustained antibacterial efficacy, inhibiting bacterial growth for four consecutive days and preventing the formation of bacterial biofilms on its surface. Contact-inhibition bacterial activity of Fe3O4@CS-ACVA-VH against S. aureus was 0.046875 mg/mL. Conceptually validating our approach, we emphasize Fe3O4@CS-ACVA-VH's exceptional ability to penetrate S. aureus biofilms under static magnetic field attraction. Furthermore, the nano-platform offers the unique advantage of on-demand vancomycin release through alternating magnetic field stimulation, effectively clearing a larger biofilm area. This multifunctional nano-platform demonstrates magnetic-guided biofilm penetration followed by controlled vancomycin release, presenting a promising strategy for enhanced biofilm eradication.
Collapse
Affiliation(s)
- Zhi Huang
- Institute of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Yuankai Li
- Institute of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Wang Yin
- Institute of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Randy Bachelard Nziengui Raby
- Institute of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Haifeng Liang
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510150, China.
| | - Bo Yu
- Orthopedic and Traumatology Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
2
|
Dolete G, Ilie CI, Chircov C, Purcăreanu B, Motelica L, Moroșan A, Oprea OC, Ficai D, Andronescu E, Dițu LM. Synergistic Antimicrobial Activity of Magnetite and Vancomycin-Loaded Mesoporous Silica Embedded in Alginate Films. Gels 2023; 9:gels9040295. [PMID: 37102906 PMCID: PMC10137406 DOI: 10.3390/gels9040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
The aim of the present study was to obtain a hydrogel-based film as a carrier for the sustained and controlled release of vancomycin, an antibiotic commonly used in various types of infections. Considering the high-water solubility of vancomycin (>50 mg/mL) and the aqueous medium underlying the exudates, a prolonged release of vancomycin from an MCM-41 carrier was sought. The present work focused on the synthesis of malic acid coated magnetite (Fe3O4/malic) by co-precipitation, synthesis of MCM-41 by a sol-gel method and loading of MCM-41 with vancomycin, and their use in alginate films for wound dressing. The nanoparticles obtained were physically mixed and embedded in the alginate gel. Prior to incorporation, the nanoparticles were characterized by XRD, FT-IR and FT-Raman spectroscopy, TGA-DSC and DLS. The films were prepared by a simple casting method and were further cross-linked and examined for possible heterogeneities by means of FT-IR microscopy and SEM. The degree of swelling and the water vapor transmission rate were determined, considering their potential use as wound dressings. The obtained films show morpho-structural homogeneity, sustained release over 48 h and a strong synergistic enhancement of the antimicrobial activity as a consequence of the hybrid nature of these films. The antimicrobial efficacy was tested against S. aureus, two strains of E. faecalis (including vancomycin-resistant Enterococcus, VRE) and C. albicans. The incorporation of magnetite was also considered as an external triggering component in case the films were used as a magneto-responsive smart dressing to stimulate vancomycin diffusion.
Collapse
Affiliation(s)
- Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Bogdan Purcăreanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- BIOTEHNOS SA, Gorunului Street 3-5, 075100 Otopeni, Romania
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Alina Moroșan
- Department of Organic Chemistry “Costin Nenițescu”, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry, and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Lia-Mara Dițu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest, 91-95 Splaiul Independenței, 050095 Bucharest, Romania
| |
Collapse
|
3
|
Ziesmer J, Larsson JV, Sotiriou GA. Hybrid microneedle arrays for antibiotic and near-IR photothermal synergistic antimicrobial effect against Methicillin-Resistant Staphylococcus aureus. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 462:142127. [PMID: 37719675 PMCID: PMC7615096 DOI: 10.1016/j.cej.2023.142127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The rise of antibiotic-resistant skin and soft tissue infections (SSTIs) necessitates the development of novel treatments to improve the efficiency and delivery of antibiotics. The incorporation of photothermal agents such as plasmonic nanoparticles (NPs) improves the antibacterial efficiency of antibiotics through synergism with elevated temperatures. Hybrid microneedle (MN) arrays are promising local delivery platforms that enable co-therapy with therapeutic and photothermal agents. However, to-date, the majority of hybrid MNs have focused on the potential treatment of skin cancers, while suffering from the shortcoming of the intradermal release of photothermal agents. Here, we developed hybrid, two-layered MN arrays consisting of an outer water-soluble layer loaded with vancomycin (VAN) and an inner water-insoluble near-IR photothermal core. The photothermal core consists of flame-made plasmonic Au/SiO2 nanoaggregates and polymethylmethacrylate (PMMA). We analyzed the effect of the outer layer polymer, polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), on MN morphology and performance. Hybrid MNs produced with 30 wt% PVA contain a highly drug-loaded outer shell allowing for the incorporation of VAN concentrations up to 100 mg g-1 and temperature increases up to 60 °C under near-IR irradiation while showing sufficient mechanical strength for skin insertion. Furthermore, we studied the combinatorial effect of VAN and heat on the growth inhibition of methicillin-resistant Staphylococcus aureus (MRSA) showing synergistic inhibition between VAN and heat above 55 °C for 10 min. Finally, we show that treatment with hybrid MN arrays can inhibit the growth of MRSA due to the synergistic interaction of heat with VAN reducing the bacterial survival by up to 80%. This proof-of-concept study demonstrates the potential of hybrid, two-layered MN arrays as a novel treatment option for MRSA-associated skin infections.
Collapse
Affiliation(s)
- Jill Ziesmer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Justina Venckute Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
4
|
Lynch JP, Zhanel GG. Escalation of antimicrobial resistance among MRSA part 2: focus on infections and treatment. Expert Rev Anti Infect Ther 2023; 21:115-126. [PMID: 36469648 DOI: 10.1080/14787210.2023.2154654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION MRSA is associated with causing a variety of infections including skin and skin structure infections, catheter and device-related (e.g. central venous catheter, prosthetic heart valve) infections, infectious endocarditis, blood stream infections, bone, and joint infections (e.g. osteomyelitis, prosthetic joint, surgical site), central nervous system infections (e.g. meningitis, brain/spinal cord abscess, ventriculitis, hydrocephalus), respiratory tract infections (e.g. hospital-acquired pneumonia, ventilator-associated pneumonia), urinary tract infections, and gastrointestinal infections. The emergence and spread of multidrug resistant (MDR) MRSA clones has limited therapeutic options. Older agents such as vancomycin, linezolid and daptomycin and a variety of newer MRSA antimicrobials and combination therapy are available to treat serious MRSA infections. AREAS COVERED The authors discuss infections caused by MRSA as well as common older and newer antimicrobials and combination therapy for MRSA infections. A literature search of MRSA was performed via PubMed (up to September 2022), using the keywords: antimicrobial resistance; β-lactams; multidrug resistance, Staphylococcus aureus, vancomycin; glycolipopeptides. EXPERT OPINION Innovation, discovery, and development of new and novel classes of antimicrobial agents are critical to expand effective therapeutic options. The authors encourage the judicious use of antimicrobials in accordance with antimicrobial stewardship programs along with infection-control measures to minimize the spread of MRSA.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, the David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Professor-Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Makwela AB, Grootboom WM, Abraham V, Witika B, Godman B, Skosana PP. Antimicrobial Management of Skin and Soft Tissue Infections among Surgical Wards in South Africa: Findings and Implications. Antibiotics (Basel) 2023; 12:antibiotics12020275. [PMID: 36830186 PMCID: PMC9951966 DOI: 10.3390/antibiotics12020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Skin and soft tissue infections (SSTIs) are one of the most common infectious diseases requiring antibiotics. However, complications of SSTIs may lead to the overprescribing of antibiotics and to subsequent antibiotic resistance. Consequently, monitoring the prescribing alignment with the current recommendations from the South African Standard Treatment Guidelines (STG) is necessary in order to improve future care. This study involved reviewing pertinent patients with SSTIs who were prescribed antimicrobials in the surgical ward of a leading South African tertiary public hospital from April to June 2021 using an adapted data collection tool. Sixty-seven patient files were reviewed. Among the patients with SSTIs, hypertension and chronic osteomyelitis were the most frequent co-morbidities at 22.4% and 13.4%, respectively. The most diagnosed SSTIs were surgical site infections (35.1%), wound site infections (23%), and major abscesses (16.2%). Blood cultures were performed on 40.3% of patients, with Staphylococcus aureus (32.7%) and Enterococcus spp. (21.2%) being the most cultured pathogens. Cefazolin was prescribed empirically for 46.3% of patients for their SSTIs. In addition, SSTIs were treated with gentamycin, ciprofloxacin, and rifampicin at 17.5%, 11.3%, and 8.8%, respectively, with treatment fully complying with STG recommendations in 55.2% of cases. Overall, the most common cause of SSTIs was Staphylococcus aureus, and empiric treatment is recommended as the initial management. Subsequently, culture sensitivities should be performed to enhance adherence to STGs and to improve future care.
Collapse
Affiliation(s)
- Atlanta B. Makwela
- Department of Clinical Pharmacy, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0208, South Africa
| | - Wandisile M. Grootboom
- Department of Clinical Pharmacy, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0208, South Africa
- Dr George Mukhari Academic Hospital, Molotlegi Street, Ga-Rankuwa, Pretoria 0208, South Africa
| | - Veena Abraham
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0208, South Africa
| | - Bwalya Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0208, South Africa
| | - Brian Godman
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Correspondence: (B.G.); (P.P.S.)
| | - Phumzile P. Skosana
- Department of Clinical Pharmacy, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0208, South Africa
- Correspondence: (B.G.); (P.P.S.)
| |
Collapse
|
6
|
Chompunud Na Ayudhya C, Ali H. Mas-Related G Protein–Coupled Receptor-X2 and Its Role in Non-immunoglobulin E–Mediated Drug Hypersensitivity. Immunol Allergy Clin North Am 2022; 42:269-284. [PMID: 35469618 PMCID: PMC9674431 DOI: 10.1016/j.iac.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A diverse group of Food and Drug Administration-approved cationic drugs including antibiotics, neuromuscular blocking drugs, opioids, antidepressants, and radiocontrast media activate mast cells and cause hypersensitivity reactions by both an immunoglobulin E IgE-dependent and independent manner. The recent discovery that these drugs activate mast cells via the G protein-coupled receptor known as Mas-related GPCR-X2 (MRGPRX2) has represented a paradigm shift of how drug hypersensitivity reactions are viewed. This article provides an overview of the current status of the role of MRGPRX2 on non-IgE-mediated drug hypersensitivity. Potential risk factors and evaluation for suspected MRGPRX2-mediated drug reactions are also discussed.
Collapse
Affiliation(s)
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Zhao X, Huang H, Yuan H, Yuan Z, Zhang Y. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1762-1769. [PMID: 35265985 DOI: 10.1093/jac/dkac073] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China
| | - Haihui Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China
| | - Hong Yuan
- Shanghai MicuRx Pharmaceutical Co., Ltd., Shanghai, China
| | - Zhengyu Yuan
- Shanghai MicuRx Pharmaceutical Co., Ltd., Shanghai, China
| | - Yingyuan Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China
| |
Collapse
|
8
|
Li QQ, Kang OH, Kwon DY. Study on Demethoxycurcumin as a Promising Approach to Reverse Methicillin-Resistance of Staphylococcus aureus. Int J Mol Sci 2021; 22:ijms22073778. [PMID: 33917423 PMCID: PMC8038695 DOI: 10.3390/ijms22073778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/19/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has always been a threatening pathogen. Research on phytochemical components that can replace antibiotics with limited efficacy may be an innovative method to solve intractable MRSA infections. The present study was devoted to investigate the antibacterial activity of the natural compound demethoxycurcumin (DMC) against MRSA and explore its possible mechanism for eliminating MRSA. The minimum inhibitory concentrations (MICs) of DMC against MRSA strains was determined by the broth microdilution method, and the results showed that the MIC of DMC was 62.5 μg/mL. The synergistic effects of DMC and antibiotics were investigated by the checkerboard method and the time–kill assay. The ATP synthase inhibitors were employed to block the metabolic ability of bacteria to explore their synergistic effect on the antibacterial ability of DMC. In addition, western blot analysis and qRT-PCR were performed to detect the proteins and genes related to drug resistance and S. aureus exotoxins. As results, DMC hindered the translation of penicillin-binding protein 2a (PBP2a) and staphylococcal enterotoxin and reduced the transcription of related genes. This study provides experimental evidences that DMC has the potential to be a candidate substance for the treatment of MRSA infections.
Collapse
Affiliation(s)
| | - Ok-Hwa Kang
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K. & D.-Y.K.)
| | - Dong-Yeul Kwon
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K. & D.-Y.K.)
| |
Collapse
|
9
|
New Evidence and Insights on Dalbavancin and Wound Healing in a Mouse Model of Skin Infection. Antimicrob Agents Chemother 2020; 64:AAC.02062-19. [PMID: 31932371 DOI: 10.1128/aac.02062-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Dalbavancin is an effective antibiotic that is widely used to treat skin infection. Our aim was to determine the effect of dalbavancin administration on wound healing compared to that of vancomycin and to elucidate if epidermal growth factor receptor (EGFR), matrix metalloproteinase 1 (MMP-1), MMP-9, and vascular endothelial growth factor (VEGF) could be involved in its therapeutic mechanism. A mouse model of methicillin-resistant Staphylococcus aureus (MRSA) skin infection was established. Mice were treated daily with vancomycin (10 mg/kg) and weekly with dalbavancin at day 1 (20 mg/kg) and day 8 (10 mg/kg). After 14 days, wounds were excised, and bacterial counts were performed. Wound healing was assessed by histological and immunohistochemical staining, followed by protein extraction and immunoblotting. Our microbiological results confirmed that both dalbavancin and vancomycin are effective in reducing the bacterial load in wounds. The dalbavancin group showed a strong effect compared with infected untreated animals and the vancomycin-treated group. The wounds treated with dalbavancin showed robust epidermal coverage with reconstitution of the regular and keratinized epidermal lining and well-organized granulation tissue with numerous blood vessels, although slightly less than that in the uninfected group. While in the vancomycin-treated group the epithelium appeared, in general, still hypertrophic, the granulation tissue appeared even less organized. We observed elevated EGFR and VEGF expression in both treated groups, although it was higher in dalbavancin-treated mice. MMP-1 and MMP-9 were decreased in uninfected tissue and in both treated tissues compared with untreated infected wounds. This study showed faster healing with dalbavancin treatment that might be associated with higher EGFR and VEGF levels.
Collapse
|
10
|
Yeroushalmi S, Shirazi JY, Friedman A. New Developments in Bacterial, Viral, and Fungal Cutaneous Infections. CURRENT DERMATOLOGY REPORTS 2020; 9:152-165. [PMID: 32435525 PMCID: PMC7224073 DOI: 10.1007/s13671-020-00295-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW This review highlights clinically relevant updates to common and significant bacterial, viral, and fungal cutaneous infection within the past 5 years. Recent developments are presented so that the clinician may provide evidence-based, high-quality patient care. RECENT FINDINGS New resistance patterns in cutaneous pathogens have recently emerged as a result of inappropriate antimicrobial use. Several new FDA-approved antimicrobials have been approved to treat such infections, including multi-drug resistant pathogens. Several organizational guidelines for cutaneous infection management have been updated with new recommendations for screening, diagnostic, and treatment strategies. SUMMARY Clinicians should be aware of the most recent evidence and guidelines for the management of cutaneous infections in order to reduce the emergence of antimicrobial resistance and most effectively treat their patients.
Collapse
Affiliation(s)
- Samuel Yeroushalmi
- The George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave NW, Washington, DC 20037 USA
| | | | - Adam Friedman
- The George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave NW, Washington, DC 20037 USA
| |
Collapse
|
11
|
Jorgensen SCJ, Murray KP, Lagnf AM, Melvin S, Bhatia S, Shamim MD, Smith JR, Brade KD, Simon SP, Nagel J, Williams KS, Ortwine JK, Veve MP, Truong J, Huang DB, Davis SL, Rybak MJ. A Multicenter Evaluation of Vancomycin-Associated Acute Kidney Injury in Hospitalized Patients with Acute Bacterial Skin and Skin Structure Infections. Infect Dis Ther 2020; 9:89-106. [PMID: 31983021 PMCID: PMC7054514 DOI: 10.1007/s40121-019-00278-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Indexed: 12/21/2022] Open
Abstract
Background We sought to determine the real-world incidence of and risk factors for vancomycin-associated acute kidney injury (V-AKI) in hospitalized adults with acute bacterial skin and skin structure infections (ABSSSI). Methods Retrospective, observational, cohort study at ten U.S. medical centers between 2015 and 2019. Hospitalized patients treated with vancomycin (≥ 72 h) for ABSSSI and ≥ one baseline AKI risk factor were eligible. Patients with end-stage kidney disease, on renal replacement therapy or AKI at baseline, were excluded. The primary outcome was V-AKI by the vancomycin guidelines criteria. Results In total, 415 patients were included. V-AKI occurred in 39 (9.4%) patients. Independent risk factors for V-AKI were: chronic alcohol abuse (aOR 4.710, 95% CI 1.929–11.499), no medical insurance (aOR 3.451, 95% CI 1.310–9.090), ICU residence (aOR 4.398, 95% CI 1.676–11.541), Gram-negative coverage (aOR 2.926, 95% CI 1.158–7.392) and vancomycin duration (aOR 1.143, 95% CI 1.037–1.260). Based on infection severity and comorbidities, 34.7% of patients were candidates for oral antibiotics at baseline and 39.3% had non-purulent cellulitis which could have been more appropriately treated with a beta-lactam. Patients with V-AKI had significantly longer hospital lengths of stay (9 vs. 6 days, p = 0.001), higher 30-day readmission rates (30.8 vs. 9.0%, p < 0.001) and increased all-cause 30-day mortality (5.1 vs. 0.3%, p = 0.024) Conclusions V-AKI occurred in approximately one in ten ABSSSI patients and may be largely prevented by preferential use of oral antibiotics whenever possible, using beta-lactams for non-purulent cellulitis and limiting durations of vancomycin therapy. Electronic supplementary material The online version of this article (10.1007/s40121-019-00278-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah C J Jorgensen
- Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Abdalhamid M Lagnf
- Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sarah Melvin
- Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sahil Bhatia
- Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, USA
| | - Muhammad-Daniayl Shamim
- Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jordan R Smith
- Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA.,Cone Health, Greensboro, NC, USA
| | | | | | | | | | | | - Michael P Veve
- College of Pharmacy, University of Tennessee Health Sciences Center, Knoxville, TN, USA.,University of Tennessee Medical Center, Knoxville, TN, USA
| | | | - David B Huang
- Motif BioSciences, Princeton, NJ, USA.,Rutgers New Jersey Medical School, Trenton, NJ, USA
| | - Susan L Davis
- Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, USA.,Henry Ford Health-System, Detroit, MI, USA
| | - Michael J Rybak
- Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, USA. .,Detroit Medical Center, Detroit, MI, USA. .,School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
12
|
Trinh TD, Jorgensen SCJ, Zasowski EJ, Claeys KC, Lagnf AM, Estrada SJ, Delaportes DJ, Huang V, Klinker KP, Kaye KS, Davis SL, Rybak MJ. Multicenter Study of the Real-World Use of Ceftaroline versus Vancomycin for Acute Bacterial Skin and Skin Structure Infections. Antimicrob Agents Chemother 2019; 63:e01007-19. [PMID: 31405859 PMCID: PMC6811452 DOI: 10.1128/aac.01007-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/07/2019] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to determine if real-world ceftaroline treatment in adults hospitalized for acute bacterial skin and skin structure infections (ABSSSI) is associated with decreased infection-related length of stay (LOSinf) compared to that with vancomycin. This was a retrospective, multicenter, cohort study from 2012 to 2017. Cox proportional hazard regression, propensity score matching, and inverse probability of treatment weighting (IPTW) were used to determine the independent effect of treatment group on LOSinf The patients were adults hospitalized with ABSSSI and treated with ceftaroline or vancomycin for ≥72 h within 120 h of diagnosis at four academic medical centers and two community hospitals in Arizona, Florida, Michigan, and West Virginia. A total of 724 patients were included (325 ceftaroline treated and 399 vancomycin treated). In general, ceftaroline-treated patients had characteristics consistent with a higher risk of poor outcomes. The unadjusted median LOSinf values were 5 (interquartile range [IQR], 3 to 7) days and 6 (IQR, 4 to 8) days in the vancomycin and ceftaroline groups, respectively (hazard ratio [HR], 0.866; 95% confidence interval [CI], 0.747 to 1.002). The Cox proportional hazard model (adjusted HR [aHR], 0.891; 95% CI, 0.748 to 1.060), propensity score-matched (aHR, 0.955; 95% CI, 0.786 to 1.159), and IPTW (aHR, 0.918; 95% CI, 0.793 to 1.063) analyses demonstrated no significant difference in LOSinf between groups. Patients treated with ceftaroline were significantly more likely to meet criteria for discharge readiness at day 3 in unadjusted and adjusted analyses. Although discharge readiness at day 3 was higher in ceftaroline-treated patients, LOSinf values were similar between treatment groups. Clinical and nonclinical factors were associated with LOSinf.
Collapse
Affiliation(s)
- T D Trinh
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Medication Outcomes Center, Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - S C J Jorgensen
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - E J Zasowski
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Clinical Sciences, College of Pharmacy, Touro University California, Vallejo, California, USA
| | - K C Claeys
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Practice, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - A M Lagnf
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - S J Estrada
- Department of Pharmacy, Lee Health, Fort Myers, Florida, USA
- T2 Biosystems Inc., Lexington, Massachusetts, USA
| | - D J Delaportes
- Infectious Diseases Division, Mon Health, Morgantown, West Virginia, USA
| | - V Huang
- Department of Pharmacy Practice, College of Pharmacy-Glendale, Midwestern University, Glendale, Arizona, USA
| | - K P Klinker
- College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - K S Kaye
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - S L Davis
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy, Henry Ford Hospital, Detroit, Michigan, USA
| | - M J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy, Detroit Medical Center, Detroit, Michigan, USA
| |
Collapse
|
13
|
Liang Y, Tu C, Tan C, El-Sayed Ahmed MAEG, Dai M, Xia Y, Liu Y, Zhong LL, Shen C, Chen G, Tian GB, Liu J, Zheng X. Antimicrobial resistance, virulence genes profiling and molecular relatedness of methicillin-resistant Staphylococcus aureus strains isolated from hospitalized patients in Guangdong Province, China. Infect Drug Resist 2019; 12:447-459. [PMID: 30881052 PMCID: PMC6394240 DOI: 10.2147/idr.s192611] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
PURPOSE The main objective of this study was to decipher the prevalence, antimicrobial resistance, major virulence genes and the molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) isolated from different clinical sources in southern China. MATERIALS AND METHODS The present study was performed on 187 non-duplicate S. aureus clinical isolates collected from three tertiary hospitals in Guangdong Province, China, 2010-2016. Antimicrobial susceptibility testing was performed by the disk diffusion method and by measuring the minimum inhibitory concentration. Screening for resistance and virulence genes was performed. Clonal relatedness was determined using various molecular typing methods such as multilocus sequence typing, spa and staphylococcal chromosomal cassette mec (SCCmec) typing. Whole genome sequencing was performed for three selected isolates. RESULTS Out of 187 isolates, 103 (55%) were identified as MRSA. The highest prevalence rate was found among the skin and soft tissue infection (SSTI) samples (58/103), followed by sputum samples (25/103), blood stream infection samples (15/103) and others (5/103). Antimicrobial susceptibility results revealed high resistance rates for erythromycin (64.1%), clindamycin (48.5%), gentamicin (36.9%) and ciprofloxacin (33.98%). All isolates were susceptible to vancomycin. Resistance genes and mutation detected were as follows: aac(6')-aph(2") (24.3%), dfrG (10.7%), rpoB (21.4%), cfr (0%), fexA (1.94%), gyrA (35.92%), gyrB (0.97%), grlA (20.4%), grlB (10.68%), ermA (21.4%), ermB (18.44%), ermC (21.4%) and lnuA (18.44%). Profiling of virulence genes revealed the following: sea (11.7%), seb (21.4%), sec (0.97%), sed (0.97%), hla (86.41%), hlb (17.48%), hlg (10.68%), hld (53.4%), Tsst-1 (3.9%) and pvl (27.2%). Clonal relatedness showed that ST239-SCCmecA III-t37 clone was the most prevalent clone. CONCLUSION Our study elucidated the prevalence, antibiotic resistance, pathogenicity and molecular characteristics of MRSA isolated from various clinical sources in Guangdong, China. We found that the infectious rate of MRSA was higher among SSTI than other sources. The most predominant genotype was ST239-SCCmecA III-t37 clone, indicating that ST239-t30 clone which was previously predominant had been replaced by a new clone.
Collapse
Affiliation(s)
- Yingjian Liang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, ;
| | - Changli Tu
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, ;
| | - Cuiyan Tan
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, ;
| | - Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Liu
- Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Lan-Lan Zhong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Cong Shen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Guanping Chen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Guo-Bao Tian
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Jing Liu
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, ;
| | - Xiaobin Zheng
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China, ;
| |
Collapse
|
14
|
Majed H, Johnston T, Kelso C, Monachino E, Jergic S, Dixon NE, Mylonakis E, Kelso MJ. Structure-activity relationships of pyrazole-4-carbodithioates as antibacterials against methicillin-resistant Staphylococcus aureus. Bioorg Med Chem Lett 2018; 28:3526-3528. [PMID: 30297281 DOI: 10.1016/j.bmcl.2018.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/23/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious hospital-acquired infections and is responsible for significant morbidity and mortality in residential care facilities. New agents against MRSA are needed to combat rising resistance to current antibiotics. We recently reported 5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carbodithioate (HMPC) as a new bacteriostatic agent against MRSA that appears to act via a novel mechanism. Here, twenty nine analogs of HMPC were synthesized, their anti-MRSA structure-activity relationships evaluated and selectivity versus human HKC-8 cells determined. Minimum inhibitory concentrations (MIC) ranged from 0.5 to 64 μg/mL and up to 16-fold selectivity was achieved. The 4-carbodithioate function was found to be essential for activity but non-specific reactivity was ruled out as a contributor to antibacterial action. The study supports further work aimed at elucidating the molecular targets of this interesting new class of anti-MRSA agents.
Collapse
Affiliation(s)
- Hiwa Majed
- School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Tatiana Johnston
- Department of Infectious Disease, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Celine Kelso
- School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Enrico Monachino
- School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Slobodan Jergic
- School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Nicholas E Dixon
- School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Eleftherios Mylonakis
- Department of Infectious Disease, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Michael J Kelso
- School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|