1
|
Multicenter Population Pharmacokinetic Study of Unbound Ceftriaxone in Critically Ill Patients. Antimicrob Agents Chemother 2022; 66:e0218921. [PMID: 35575578 DOI: 10.1128/aac.02189-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to describe the total and unbound population pharmacokinetics of ceftriaxone in critically ill adult patients and to define optimized dosing regimens. Total and unbound ceftriaxone concentrations were obtained from two pharmacokinetic studies and from a therapeutic drug monitoring (TDM) program at a tertiary hospital intensive care unit. Population pharmacokinetic analysis and Monte Carlo simulations were used to assess the probability of achieving a free trough concentration/MIC ratio of ≥1 using Pmetrics for R. A total of 474 samples (267 total and 207 unbound) were available from 36 patients. A two-compartment model describing ceftriaxone-albumin binding with both nonrenal and renal elimination incorporating creatinine clearance to explain the between-patient variability best described the data. An albumin concentration of ≤20 g/L decreased the probability of target attainment (PTA) by up to 20% across different dosing regimens and simulated creatinine clearances. A ceftriaxone dose of 1 g twice daily is likely therapeutic in patients with creatinine clearance of <100 mL/min infected with susceptible isolates (PTA, ~90%). Higher doses administered as a continuous infusion (4 g/day) are needed in patients with augmented renal clearance (creatinine clearance, >130 mL/min) who are infected by pathogens with a MIC of ≥0.5 mg/L. The ceftriaxone dose should be based on the patient's renal function and albumin concentration, as well as the isolate MIC. Hypoalbuminemia decreases the PTA in patients receiving intermittent dosing by up to 20%.
Collapse
|
2
|
Razzazzadeh S, Darazam IA, Hajiesmaeili M, Salamzadeh J, Mahboubi A, Sadeghnezhad E, Sahraei Z. Investigation of pharmacokinetic and clinical outcomes of various meropenem regimens in patients with ventilator-associated pneumonia and augmented renal clearance. Eur J Clin Pharmacol 2022; 78:823-829. [PMID: 35171317 DOI: 10.1007/s00228-022-03291-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/04/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Augmented renal clearance (ARC) defined as creatinine clearance (Clcr) above 130 mL/min/1.73m2 may lead to suboptimal antibacterial treatment. The aim of this study was to determine a strategy for meropenem administration to achieve both pharmacodynamic-pharmacokinetic (PK-PD) target (50%fT > MIC) and better clinical outcomes in patients with VAP and ARC. MATERIALS AND METHODS In this randomized clinical trial, patients with VAP and high risk for ARC were recruited. An 8-h urine collection was performed on the 1st, 3rd, and 5th days of study to measure Clcr. Included patients were divided into three groups: (1) 1 g meropenem, 3-h infusion, (2) 2 g meropenem, 3-h infusion, (3) 1 g meropenem, 6-h infusion. On the 2nd, 3rd, and 5th days of treatment, peak and trough blood samples were collected to undergo HPLC assay. MICs were assessed using microdilution method. Patients were also clinically monitored for 14 days. RESULTS Forty-five patients were included. Group 3 showed significanty higher rate of patients achieving fT > MIC > 50% (100% for group 3 versus 40% for group 2 and 13% for group 1; p = 0.0001). Mean fT > MIC% was significantly higher in group 3 (78.77 ± 5.87 for group 3 versus 49.6 ± 7.38 for group 2 and 43.2 ± 7.98 for group 1; p = 0.0001). Statistical analysis showed no significant differences among groups regarding clinical improvement. CONCLUSION According to the findings of this trial, prolonged meropenem infusion is an appropriate strategy compared to dose elevation among ARC patients.
Collapse
Affiliation(s)
- Sareh Razzazzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box, 14155-6153, Tehran, Iran
| | - Ilad Alavi Darazam
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreaza Hajiesmaeili
- Anesthesiology Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamshid Salamzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box, 14155-6153, Tehran, Iran
| | - Arash Mahboubi
- Departmant of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Sadeghnezhad
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Sahraei
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box, 14155-6153, Tehran, Iran. .,Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Lazzaro A, De Girolamo G, Filippi V, Innocenti GP, Santinelli L, Ceccarelli G, Trecarichi EM, Torti C, Mastroianni CM, d’Ettorre G, Russo A. The Interplay between Host Defense, Infection, and Clinical Status in Septic Patients: A Narrative Review. Int J Mol Sci 2022; 23:ijms23020803. [PMID: 35054993 PMCID: PMC8776148 DOI: 10.3390/ijms23020803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 01/08/2023] Open
Abstract
Sepsis is a life-threatening condition that arises when the body's response to an infection injures its own tissues and organs. Despite significant morbidity and mortality throughout the world, its pathogenesis and mechanisms are not clearly understood. In this narrative review, we aimed to summarize the recent developments in our understanding of the hallmarks of sepsis pathogenesis (immune and adaptive immune response, the complement system, the endothelial disfunction, and autophagy) and highlight novel laboratory diagnostic approaches. Clinical management is also discussed with pivotal consideration for antimicrobic therapy management in particular settings, such as intensive care unit, altered renal function, obesity, and burn patients.
Collapse
Affiliation(s)
- Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Gabriella De Girolamo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Valeria Filippi
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Giuseppe Pietro Innocenti
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (E.M.T.); (C.T.)
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (E.M.T.); (C.T.)
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (E.M.T.); (C.T.)
- Correspondence:
| |
Collapse
|
4
|
Hurkacz M, Dobrek L, Wiela-Hojeńska A. Antibiotics and the Nervous System-Which Face of Antibiotic Therapy Is Real, Dr. Jekyll (Neurotoxicity) or Mr. Hyde (Neuroprotection)? Molecules 2021; 26:7456. [PMID: 34946536 PMCID: PMC8708917 DOI: 10.3390/molecules26247456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotics as antibacterial drugs have saved many lives, but have also become a victim of their own success. Their widespread abuse reduces their anti-infective effectiveness and causes the development of bacterial resistance. Moreover, irrational antibiotic therapy contributes to gastrointestinal dysbiosis, that increases the risk of the development of many diseases, including neurological and psychiatric. One of the potential options for restoring homeostasis is the use of oral antibiotics that are poorly absorbed from the gastrointestinal tract (e.g., rifaximin alfa). Thus, antibiotic therapy may exert neurological or psychiatric adverse drug reactions which are often considered to be overlooked and undervalued issues. Drug-induced neurotoxicity is mostly observed after beta-lactams and quinolones. Penicillin may produce a wide range of neurological dysfunctions, including encephalopathy, behavioral changes, myoclonus or seizures. Their pathomechanism results from the disturbances of gamma-aminobutyric acid-GABA transmission (due to the molecular similarities between the structure of the β-lactam ring and GABA molecule) and impairment of the functioning of benzodiazepine receptors (BZD). However, on the other hand, antibiotics have also been studied for their neuroprotective properties in the treatment of neurodegenerative and neuroinflammatory processes (e.g., Alzheimer's or Parkinson's diseases). Antibiotics may, therefore, become promising elements of multi-targeted therapy for these entities.
Collapse
Affiliation(s)
- Magdalena Hurkacz
- Department of Clinical Pharmacology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.H.); (L.D.)
- Clinical Pharmacy Service, Jan Mikulicz-Radecki University Clinical Hospital, 50-556 Wroclaw, Poland
| | - Lukasz Dobrek
- Department of Clinical Pharmacology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.H.); (L.D.)
| | - Anna Wiela-Hojeńska
- Department of Clinical Pharmacology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.H.); (L.D.)
| |
Collapse
|
5
|
Alarcia-Lacalle A, Barrasa H, Maynar J, Canut-Blasco A, Gómez-González C, Solinís MÁ, Isla A, Rodríguez-Gascón A. Quantification of Ceftaroline in Human Plasma Using High-Performance Liquid Chromatography with Ultraviolet Detection: Application to Pharmacokinetic Studies. Pharmaceutics 2021; 13:959. [PMID: 34202113 PMCID: PMC8309110 DOI: 10.3390/pharmaceutics13070959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to develop a rapid, simple and reproducible method for the quantification of ceftaroline in plasma samples by high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Sample processing consisted of methanol precipitation and then, after centrifugation, the supernatant was injected into the HPLC system, working in isocratic mode. Ceftaroline was detected at 238 nm at a short acquisition time (less than 5 min). The calibration curve was linear over the concentration range from 0.25 to 40 µg/mL, and the method appeared to be selective, precise and accurate. Ceftaroline in plasma samples was stable at -80 °C for at least 3 months. The method was successfully applied to characterize the pharmacokinetic profile of ceftaroline in two critically ill patients and to evaluate whether the pharmacokinetic/pharmacodynamic (PK/PD) target was reached or not with the dose regimen administered.
Collapse
Affiliation(s)
- Ana Alarcia-Lacalle
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Centro de Investigación Lascaray Ikergunea, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.A.-L.); (M.Á.S.); (A.I.)
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
| | - Helena Barrasa
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
- Intensive Care Unit, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - Javier Maynar
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
- Intensive Care Unit, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - Andrés Canut-Blasco
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
- Microbiology Service, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - Carmen Gómez-González
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
- Microbiology Service, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Centro de Investigación Lascaray Ikergunea, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.A.-L.); (M.Á.S.); (A.I.)
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
| | - Arantxazu Isla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Centro de Investigación Lascaray Ikergunea, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.A.-L.); (M.Á.S.); (A.I.)
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Centro de Investigación Lascaray Ikergunea, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (A.A.-L.); (M.Á.S.); (A.I.)
- Instituto de Investigación Sanitaria Bioaraba, 01009 Vitoria-Gasteiz, Spain; (H.B.); (J.M.); (A.C.-B.); (C.G.-G.)
| |
Collapse
|
6
|
Giannella M, Malosso P, Scudeller L, Bussini L, Rebuffi C, Gatti M, Bartoletti M, Ianniruberto S, Pancaldi L, Pascale R, Tedeschi S, Viale P, Paul M. Quality of care indicators in the MAnageMent of BlOOdstream infections caused by Enterobacteriaceae (MAMBOO-E study): state of the art and research agenda. Int J Antimicrob Agents 2021; 57:106320. [PMID: 33716177 DOI: 10.1016/j.ijantimicag.2021.106320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/27/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The impact on outcome of five interventions was reviewed in order to investigate the state of the art for management of Enterobacteriaceae bloodstream infection (E-BSI). METHODS We searched for randomised controlled trials (RCTs) and observational studies published from January 2008 to March 2019 in PubMed, EMBASE and Cochrane Library. Populations consisted of patients with E-BSI. Interventions were as follows: (i) performance of imaging to assess BSI source and/or complications; (ii) follow-up blood cultures (FU-BCs); (iii) use of loading dose followed by extended/continuous infusion (E/CI) of β-lactams; (iv) duration of treatment (short- versus long-term); and (v) infectious diseases (ID) consultation. Patients without intervention were considered as controls. The main outcome was 30-day mortality. RoB 2.0 and ROBINS-I tools were used for bias assessment. RESULTS No study was eligible for interventions i, iii and v. For FU-BCs, one observational study including 901 patients with E-BSI was considered. Intervention consisted of repeating BCs within 2-7 days after index BCs. All-cause 30-day mortality was 14.2% (35/247) in the intervention group versus 14.7% (96/654) in the control group. For short treatment duration, two RCTs and six observational studies were included comprising 4473 patients with E-BSI. All-cause mortality was similar in the short and long treatment groups (OR = 1.10, 95% CI 0.83-1.44). CONCLUSION Of the assessed interventions, only short treatment duration in non-immunocompromised patients with E-BSI is supported by current data. Studies investigating the use of systematic imaging, FU-BCs, E/CI β-lactams and ID consultation in patients with E-BSI are needed.
Collapse
Affiliation(s)
- Maddalena Giannella
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Pietro Malosso
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Luigia Scudeller
- Clinical Trials Team, Scientific Direction, IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Linda Bussini
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Chiara Rebuffi
- Scientific documentation center - Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Milo Gatti
- Pharmacology Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Michele Bartoletti
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Stefano Ianniruberto
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Livia Pancaldi
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Renato Pascale
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy.
| | - Sara Tedeschi
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Mical Paul
- Infectious Diseases Unit, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Chua HC, Tse A, Smith NM, Mergenhagen KA, Cha R, Tsuji BT. Combatting the Rising Tide of Antimicrobial Resistance: Pharmacokinetic/Pharmacodynamic Dosing Strategies for Maximal Precision. Int J Antimicrob Agents 2021; 57:106269. [PMID: 33358761 DOI: 10.1016/j.ijantimicag.2020.106269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Antimicrobial pharmacokinetics/pharmacodynamics (PK/PD) principles and PK/PD models have been essential in characterizing the mechanism of antibiotic bacterial killing and determining the most optimal dosing regimen that maximizes clinical outcomes. This review summarized the fundamentals of antimicrobial PK/PD and the various types of PK/PD experiments that shaped the utilization and dosing strategies of antibiotics today. METHODS Multiple databases - including PubMed, Scopus, and EMBASE - were searched for published articles that involved PK/PD modelling and precision dosing. Data from in vitro, in vivo and mechanistic PK/PD models were reviewed as a basis for compiling studies that guide dosing regimens used in clinical trials. RESULTS Literature regarding the utilization of exposure-response analyses, mathematical modelling and simulations that were summarized are able to provide a better understanding of antibiotic pharmacodynamics that influence translational drug development. Optimal pharmacokinetic sampling of antibiotics from patients can lead to personalized dosing regimens that attain target concentrations while minimizing toxicity. Thus the development of a fully integrated mechanistic model based on systems pharmacology can continually adapt to data generated from clinical responses, which can provide the framework for individualized dosing regimens. CONCLUSIONS The promise of what PK/PD can provide through precision dosing for antibiotics has not been fully realized in the clinical setting. Antimicrobial resistance, which has emerged as a significant public health threat, has forced clinicians to empirically utilize therapies. Future research focused on implementation and translation of PK/PD-based approaches integrating novel approaches that combine knowledge of combination therapies, systems pharmacology and resistance mechanisms are necessary. To fully realize maximally precise therapeutics, optimal PK/PD strategies are critical to maximize antimicrobial efficacy against extremely-drug-resistant organisms, while minimizing toxicity.
Collapse
Affiliation(s)
- Hubert C Chua
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA; VA Western New York Healthcare System, Buffalo, NY, USA
| | - Andy Tse
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Nicholas M Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | | | - Raymond Cha
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA.
| |
Collapse
|
8
|
Huang Y, Yang J, Xie J, Liu L, Liu S, Guo F, Qiu H, Yang Y. Association Between Pathophysiology and Volume of Distribution Among Patients With Sepsis or Septic Shock Treated With Imipenem: A Prospective Cohort Study. J Infect Dis 2021; 221:S272-S278. [PMID: 32176787 DOI: 10.1093/infdis/jiz651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND This study was performed to explore the apparent volume of distribution (Vd) of imipenem in patients with sepsis or septic shock. METHODS A prospective, observational, single-center study was conducted in patients with sepsis or septic shock. The patients were treated with 1 g of imipenem mixed with 200 mL of normal saline infused intravenously over a 3-hour period at 8-hour intervals. The concentration of imipenem was 5 mg/mL, and the rate of infusion was 5.5 mg/min. Blood samples for measuring imipenem serum concentrations with high-performance liquid chromatography were obtained before and at 0, 1, 2, 3, and 5 hours after drug infusion on study days 1 and 3. Pharmacokinetic parameters were calculated according to a noncompartment model. RESULTS A total of 25 adult patients were enrolled in this study, of whom 15 were diagnosed with sepsis and 10 with septic shock. The initial Vd (Vc) of imipenem was significantly lower in the sepsis than that in the septic shock group (mean [standard deviation], 26.5 [7.1] vs 40.7 [11.0] L; P = .001). The Vc of imipenem was significantly related to serum albumin levels (r = -0.517; P = .008) as well as Acute Physiology and Chronic Health Evaluation II (APACHE II) scores (r = 0.606; P = .001). Multivariate linear regression identified serum albumin levels and APACHE II scores on day 1 as independent factors influencing the Vc of imipenem (P < .05). The difference in Vd between the imipenem steady state and the initial state was significantly higher in nonsurvivors than in survivors (mean [standard deviation], 1.7 [21.5] vs -13.1 [11.4] L; P = .046). CONCLUSIONS APACHE II scores and serum albumin levels were found in this study to be independent factors that may affect the Vc of imipenem in patients with sepsis or septic shock. CLINICAL TRIALS REGISTRATION clinicaltrials.gov, NCT03308214.
Collapse
Affiliation(s)
- Yingzi Huang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Songqiao Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, Satta G, Cooke G, Holmes A. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin Infect Dis 2020; 71:2459-2468. [PMID: 32358954 PMCID: PMC7197596 DOI: 10.1093/cid/ciaa530] [Citation(s) in RCA: 694] [Impact Index Per Article: 173.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To explore and describe the current literature surrounding bacterial/fungal coinfection in patients with coronavirus infection. METHODS MEDLINE, EMBASE, and Web of Science were searched using broad-based search criteria relating to coronavirus and bacterial coinfection. Articles presenting clinical data for patients with coronavirus infection (defined as SARS-1, MERS, SARS-CoV-2, and other coronavirus) and bacterial/fungal coinfection reported in English, Mandarin, or Italian were included. Data describing bacterial/fungal coinfections, treatments, and outcomes were extracted. Secondary analysis of studies reporting antimicrobial prescribing in SARS-CoV-2 even in absence of coinfection was performed. RESULTS 1007 abstracts were identified. Eighteen full texts reporting bacterial/fungal coinfection were included. Most studies did not identify or report bacterial/fungal coinfection (85/140; 61%). Nine of 18 (50%) studies reported on COVID-19, 5/18 (28%) on SARS-1, 1/18 (6%) on MERS, and 3/18 (17%) on other coronaviruses. For COVID-19, 62/806 (8%) patients were reported as experiencing bacterial/fungal coinfection during hospital admission. Secondary analysis demonstrated wide use of broad-spectrum antibacterials, despite a paucity of evidence for bacterial coinfection. On secondary analysis, 1450/2010 (72%) of patients reported received antimicrobial therapy. No antimicrobial stewardship interventions were described. For non-COVID-19 cases, bacterial/fungal coinfection was reported in 89/815 (11%) of patients. Broad-spectrum antibiotic use was reported. CONCLUSIONS Despite frequent prescription of broad-spectrum empirical antimicrobials in patients with coronavirus-associated respiratory infections, there is a paucity of data to support the association with respiratory bacterial/fungal coinfection. Generation of prospective evidence to support development of antimicrobial policy and appropriate stewardship interventions specific for the COVID-19 pandemic is urgently required.
Collapse
Affiliation(s)
- Timothy M Rawson
- National Institute for Health Research, Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom.,Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom.,Department of Infectious Diseases, Imperial College London, South Kensington, United Kingdom
| | - Luke S P Moore
- National Institute for Health Research, Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom.,Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom.,Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
| | - Nina Zhu
- National Institute for Health Research, Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Nishanthy Ranganathan
- Department of Infectious Diseases, Imperial College London, South Kensington, United Kingdom.,Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Keira Skolimowska
- Department of Infectious Diseases, Imperial College London, South Kensington, United Kingdom.,Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Mark Gilchrist
- Department of Infectious Diseases, Imperial College London, South Kensington, United Kingdom.,Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Giovanni Satta
- Department of Infectious Diseases, Imperial College London, South Kensington, United Kingdom.,Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Graham Cooke
- Department of Infectious Diseases, Imperial College London, South Kensington, United Kingdom.,Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Alison Holmes
- National Institute for Health Research, Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom.,Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom.,Department of Infectious Diseases, Imperial College London, South Kensington, United Kingdom.,Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
10
|
Adembri C, Novelli A, Nobili S. Some Suggestions from PK/PD Principles to Contain Resistance in the Clinical Setting-Focus on ICU Patients and Gram-Negative Strains. Antibiotics (Basel) 2020; 9:E676. [PMID: 33036190 PMCID: PMC7601871 DOI: 10.3390/antibiotics9100676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The containment of the phenomenon of resistance towards antimicrobials is a priority, especially in preserving molecules acting against Gram-negative pathogens, which represent the isolates more frequently found in the fragile population of patients admitted to Intensive Care Units. Antimicrobial therapy aims to prevent resistance through several actions, which are collectively known as "antimicrobial stewardship", to be taken together, including the application of pharmacokinetic/pharmacodynamic (PK/PD) principles. PK/PD application has been shown to prevent the emergence of resistance in numerous experimental studies, although a straight translation to the clinical setting is not possible. Individualized antibiotic dosing and duration should be pursued in all patients, and even more especially when treating intensive care unit (ICU) septic patients in whom optimal exposure is both difficult to achieve and necessary. In this review, we report on the available data that support the application of PK/PD parameters to contain the development of resistance and we give some practical suggestions that can help to translate the benefit of PK/PD application to the bedside.
Collapse
Affiliation(s)
- Chiara Adembri
- Department of Health Sciences, Section of Anesthesiology and IC, University of Florence, 50134 Firenze, Italy;
| | - Andrea Novelli
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Firenze, Italy;
| | - Stefania Nobili
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Firenze, Italy;
| |
Collapse
|
11
|
Parker SL, Abdul-Aziz MH, Roberts JA. The role of antibiotic pharmacokinetic studies performed post-licensing. Int J Antimicrob Agents 2020; 56:106165. [PMID: 32941948 DOI: 10.1016/j.ijantimicag.2020.106165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Post-licensing pharmacometric studies can provide a better understanding of the pharmacokinetic (PK) alterations in special patient populations and may lead to better clinical outcomes. Some patient populations exhibit markedly different pathophysiology to general ward patients or healthy individuals. This may be developmental (paediatric patients), a manifestation of an underlying disease pathology (patients with obesity or haematological malignancies) or due to medical interventions (critically ill patients receiving extracorporeal therapies). This paper outlines the factors that affect the PK of special patient populations and describes some novel methods of antimicrobial administration that may increase antimicrobial concentrations at the site of infection and improve treatment of severe infection.
Collapse
Affiliation(s)
- Suzanne L Parker
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia.
| | | | - Jason A Roberts
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia; Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France; Department of Pharmacy, Royal Brisbane & Women's Hospital, Brisbane, Australia
| |
Collapse
|
12
|
Ceftriaxone pharmacokinetics by a sensitive and simple LC-MS/MS method: Development and application. J Pharm Biomed Anal 2020; 189:113484. [PMID: 32736331 DOI: 10.1016/j.jpba.2020.113484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Ceftriaxone is a third-generation cephalosporin, worldwide use as a first-line treatment for several infections, including life-threatening infections as meningitis or endocarditis. Nowadays, ceftriaxone use is changing, embracing high-dose schemes, new populations treated and requirement of dose individualization and optimization. These reasons warranted the development of new sensitive assays. This study aimed to develop and validate a fast and handy bioanalytical method for the quantification of ceftriaxone in human plasma covering a broad range of concentrations. The analysis was performed using high-performance liquid chromatography coupled to tandem mass spectrometry. Sample preparation was based on protein precipitation with acetonitrile followed by centrifugation. Chromatography separation was performed on Phenomenex Luna C18 column (5 μm, 150 × 2.0 mm) and a mobile phase consisting of 70 % of mobile phase A (10 mM of ammonium acetate and 1% formic acid in purified water) and 30 % mobile phase B (0.1 % formic acid in acetonitrile) at a flow rate of 500 μl/min on an isocratic program. Both the analyte and the internal standard were quantified using the positive electrospray ionization (ESI) mode within a single runtime of 5.00 min. The method was validated following the U.S. Food and Drug Administration guidelines over the concentration range of 3-1000 μg/mL. The within-run and between-run precision and accuracy were <15 %, and therefore met the standard regulatory acceptance criterion. In conclusion, a sensitive and robust LC-MS/MS method was developed for a fast quantitation of ceftriaxone concentrations in plasma samples with multiples applications in research and clinical therapeutic drug monitoring.
Collapse
|
13
|
Marsot A, Hraiech S, Cassir N, Daviet F, Parzy G, Blin O, Papazian L, Guilhaumou R. Aminoglycosides in critically ill patients: which dosing regimens for which pathogens? Int J Antimicrob Agents 2020; 56:106124. [PMID: 32739478 DOI: 10.1016/j.ijantimicag.2020.106124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Modifications of antibiotic pharmacokinetic parameters have been reported in critically ill patients, resulting in a risk of treatment failure. We aimed to determine optimised amikacin (AMK), gentamicin (GEN) and tobramycin (TOB) intravenous dosing regimens in this patient population. Patients admitted to the medical ICU and treated with AMK, GEN or TOB were included. Analyses were performed using a parametric population approach. Monte Carlo simulations were performed and the probability of target attainment (PTA) was calculated using Cmax/MIC ≥ 8 and trough concentrations as targets. A total of 117 critically ill hospitalised patients were studied. Median values (interindividual variability, ɷ2) of clearance were 3.51 (0.539), 3.53 (0.297), 2.70 (0.339) and 5.07 (0.339) L/h for AMK, GEN, TOB, and TOB in cystic fibrosis (CF), respectively. Median values (ɷ2) of central volume of distribution were 30.2 (0.215), 20.0 (0.109) and 25.6 (0.177) L for AMK, GEN and TOB, respectively. Simulations showed that doses should be adjusted to actual body weight and creatinine clearance (CLCR) for AMK and GEN, and according to CLCR and presence of CF for TOB. In conclusion, our recommendations for treating Pseudomonas aeruginosa infections in this population include using initial doses of 35 mg/kg for AMK or 10 mg/kg for TOB (CF and non-CF patients). GEN demonstrated the best rates of target attainment against Staphylococcus aureus infections with a dose of 5 mg/kg. As high aminoglycoside doses are required in this population, efficacy and safety targets are conflicting and therapeutic drug monitoring remains an important tool to manage this issue.
Collapse
Affiliation(s)
- A Marsot
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada.
| | - S Hraiech
- Service de Médecine Intensive-Réanimation, APHM, Hôpital Nord, Marseille, France; CEReSS-Center for Studies and Research on Health Services and Quality of Life EA3279, Aix-Marseille University, Marseille, France
| | - N Cassir
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - F Daviet
- Service de Médecine Intensive-Réanimation, APHM, Hôpital Nord, Marseille, France; CEReSS-Center for Studies and Research on Health Services and Quality of Life EA3279, Aix-Marseille University, Marseille, France
| | - G Parzy
- Service de Médecine Intensive-Réanimation, APHM, Hôpital Nord, Marseille, France; CEReSS-Center for Studies and Research on Health Services and Quality of Life EA3279, Aix-Marseille University, Marseille, France
| | - O Blin
- IHU Méditerranée Infection, Marseille, France
| | - L Papazian
- Service de Médecine Intensive-Réanimation, APHM, Hôpital Nord, Marseille, France; CEReSS-Center for Studies and Research on Health Services and Quality of Life EA3279, Aix-Marseille University, Marseille, France
| | - R Guilhaumou
- Aix-Marseille Univ., APHM, INSERM, CIC CPCET Service de Pharmacologie Clinique et Pharmacovigilance, INS Inst Neurosci Syst, Marseille, France
| |
Collapse
|
14
|
Management of infections caused by WHO critical priority Gram-negative pathogens in Arab countries of the Middle East: a consensus paper. Int J Antimicrob Agents 2020; 56:106104. [PMID: 32721603 DOI: 10.1016/j.ijantimicag.2020.106104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Antimicrobial resistance is an important global issue that impacts the efficacy of established antimicrobial therapy. This is true globally and within the Arab countries of the Middle East, where a range of key Gram-negative pathogens pose challenges to effective therapy. There is a need to establish effective treatment recommendations for this region given specific challenges to antimicrobial therapy, including variations in the availability of antimicrobials, infrastructure and specialist expertise. This consensus provides regional recommendations for the first-line treatment of hospitalized patients with serious infections caused by World Health Organization critical priority Gram-negative pathogens Acinetobacter baumannii and Pseudomonas aeruginosa resistant to carbapenems, and Enterobacteriaceae resistant to carbapenems and third-generation cephalosporins. A working group comprising experts in infectious disease across the region was assembled to review contemporary literature and provide additional consensus on the treatment of key pathogens. Detailed therapeutic recommendations are formulated for these pathogens with a focus on bacteraemia, nosocomial pneumonia, urinary tract infections, skin and soft tissue infections, and intra-abdominal infections. First-line treatment options are provided, along with alternative agents that may be used where variations in antimicrobial availability exist or where local preferences and resistance patterns should be considered. These recommendations take into consideration the diverse social and healthcare structures of the Arab countries of the Middle East, meeting a need that is not filled by international guidelines. There is a need for these recommendations to be updated continually to reflect changes in antimicrobial resistance in the region, as well as drug availability and emerging data from clinical trials.
Collapse
|
15
|
Plata-Menchaca EP, Ferrer R, Ruiz Rodríguez JC, Morais R, Póvoa P. Antibiotic treatment in patients with sepsis: a narrative review. Hosp Pract (1995) 2020; 50:203-213. [PMID: 32627615 DOI: 10.1080/21548331.2020.1791541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sepsis is a medical emergency and life-threatening condition due to a dysregulated host response to infection, with unacceptably high morbidity and mortality. Similar to acute myocardial infarction or cerebral vascular accident, sepsis is a severe and continuous time-dependent condition. Thus, in the case of sepsis, early and adequate administration of antimicrobials must be a priority, ideally within the first hour of diagnosis, simultaneously with organ support.As a consequence of the emergence of multidrug-resistant pathogens, the choice of antimicrobials should be performed according to the local pathogen patterns of resistance. Individual antimicrobial optimization is essential to achieve adequate concentrations of antimicrobials, to reduce adverse effects, and to ensure successful outcomes, as well as preventing the emergence of multidrug-resistant pathogens. The loading dose is the administration of an initial higher dose of antimicrobials, regardless of the presence of organ dysfunction. Further doses should be implemented according to pharmacokinetics/pharmacodynamics of antimicrobials and should be adjusted according to the presence of renal or liver dysfunction. Extended or continuous infusion of beta-lactams and therapeutic drug monitoring can help to achieve therapeutic levels of antimicrobials. Duration and adequacy of treatment must be reviewed at regular intervals to allow effective de-escalation and administration of short courses of antimicrobials for most patients. Antimicrobial stewardship frameworks, leadership, focus on the optimal duration of treatments, de-escalation, and novel diagnostic stewardship approaches will help us to improve patients the process of care and overall quality of care.
Collapse
Affiliation(s)
- Erika P Plata-Menchaca
- Shock, Organ Dysfunction, and Resuscitation Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Ricard Ferrer
- Shock, Organ Dysfunction, and Resuscitation Research Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Intensive Care, Vall d'Hebron Hospital, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Juan Carlos Ruiz Rodríguez
- Shock, Organ Dysfunction, and Resuscitation Research Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Intensive Care, Vall d'Hebron Hospital, Barcelona, Spain
| | - Rui Morais
- Centro Hospitalar de Lisboa Ocidental - Polyvalent Intensive Care Unit, Hospital de S.Francisco Xavier, Lisboa, Portugal
| | - Pedro Póvoa
- Centro Hospitalar de Lisboa Ocidental - Polyvalent Intensive Care Unit, Hospital de S.Francisco Xavier, Lisboa, Portugal.,NOVA Medical School, CHRC, New University of Lisbon, Lisbon, Portugal.,Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
| |
Collapse
|
16
|
Milla P, Ferrari F, Muntoni E, Sartori M, Ronco C, Arpicco S. Validation of a simple and economic HPLC-UV method for the simultaneous determination of vancomycin, meropenem, piperacillin and tazobactam in plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1148:122151. [PMID: 32417718 DOI: 10.1016/j.jchromb.2020.122151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Critically ill patients are often affected by several pathophysiological conditions requiring antibiotic administration and, frequently, extracorporeal therapy that significantly alter the normal pharmacokinetics of drugs. Therapeutic drug monitoring (TDM) may assist to establish the correct antibiotic dosage, but a TDM service is usually available only for some aminoglycosides and glycopeptides. The aim of this study is the validation of an HPLC-UV method for the simultaneous quantification of meropenem, vancomycin, piperacillin and tazobactam in human plasma samples. The analytes were extracted from 250 μL of human plasma by the addition of acetonitrile for protein precipitation. After evaporation to dryness of the solvent, samples were reconstituted with 250 μL of mobile phase, and 100 μL were injected in HPLC. Chromatographic analysis was performed using a Kinetex C18 column and an UV/Vis detector set at 220 and 298 nm. The mobile phase was a mixture of phosphate buffer 0.1 M pH 3.15 and methanol in gradient, delivered at 1 mL/min. The method was validated over clinical concentration ranges. For all the analytes, the lower limit of quantification was 1 μg/mL, and the calibration curves were linear between 1 and 100 μg/mL, with coefficients of determination ≥ 0.999. Intra-day precision was < 4%, while inter-day precision was < 7% for each analyte. The applicability of the method has been evaluated by analysing plasma samples collected from 4 critically ill patients undergoing continuous renal replacement therapy. Moreover, the analysis of vancomycin with VANC Flex® confirmed a good correlation between the results of HPLC-UV and commercially available kits usually used by TDM service. The method we developed only requires a small volume of plasma and uses the same sample preparation protocol, stationary phase and elution conditions for all analytes. This method offers the additional advantages of simple and rather inexpensive sample preparation and instrumentation, features that make this method an easy implementation for a general TDM laboratory.
Collapse
Affiliation(s)
- Paola Milla
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, I-10125 Turin, Italy.
| | - Fiorenza Ferrari
- Intensive Care Unit, I.R.C.C.S. Fondazione Policlinico San Matteo di Pavia, Viale C. Golgi 19, I-27100 Pavia, Italy.
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, I-10125 Turin, Italy.
| | - Marco Sartori
- International Renal Research Institute of Vicenza and Department of Nephrology, Dialysis and Transplant of San Bortolo Hospital, Viale F. Rodolfi 37, I-36100 Vicenza, Italy.
| | - Claudio Ronco
- International Renal Research Institute of Vicenza and Department of Nephrology, Dialysis and Transplant of San Bortolo Hospital, Viale F. Rodolfi 37, I-36100 Vicenza, Italy; Department of Medicine, University of Padova, Via N. Giustiniani 2, I-35128 Padova, Italy.
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, I-10125 Turin, Italy.
| |
Collapse
|
17
|
Cattaneo D, Corona A, De Rosa FG, Gervasoni C, Kocic D, Marriott DJ. The management of anti-infective agents in intensive care units: the potential role of a 'fast' pharmacology. Expert Rev Clin Pharmacol 2020; 13:355-366. [PMID: 32320302 DOI: 10.1080/17512433.2020.1759413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Patients in intensive care units (ICU) are often developing severe infections in which are associated with significant mortality rates. A number of novel technologies for the rapid microbiological diagnosis of these infections have been developed, introducing the era of 'fast microbiology.' Treatment of bacterial and fungal infections in ICU is however complicated by alterations in the pharmacokinetics of antimicrobial agents. AREAS COVERED We review novel pharmacologic tools that can be used to optimize anti-infective therapies and patient management in ICU. A MEDLINE Pubmed search for articles published from January 1995 to 2019 was completed matching the terms pharmacokinetics and pharmacology with antimicrobial agents and ICU or critically ill patients. Moreover, additional studies were identified from the reference list of retrieved articles. EXPERT OPINION Several tools are in development for the full automation of the analytical methods used for the quantification of antimicrobial concentrations within a few hours after sample collection. Ad hoc software with adaptive feedback is also available for appropriate dose adjustments based on both individual patient covariate data and therapeutic drug monitoring (TDM) data when available. The application of these technological improvements in the clinical practice should open the way to a 'fast pharmacology' at the bedside.
Collapse
Affiliation(s)
- Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital , Milan, Italy.,Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital , Milan, Italy
| | - Alberto Corona
- Intensive Care Unit, ASST Fatebenefratelli Sacco, University Hospital , Milan, Italy
| | | | - Cristina Gervasoni
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital , Milan, Italy.,Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital , Milan, Italy
| | - Danijela Kocic
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital Sydney , Sydney, Australia
| | - Deborah Je Marriott
- Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital , Sydney, Australia
| |
Collapse
|
18
|
Abdulla A, Ewoldt TMJ, Hunfeld NGM, Muller AE, Rietdijk WJR, Polinder S, van Gelder T, Endeman H, Koch BCP. The effect of therapeutic drug monitoring of beta-lactam and fluoroquinolones on clinical outcome in critically ill patients: the DOLPHIN trial protocol of a multi-centre randomised controlled trial. BMC Infect Dis 2020; 20:57. [PMID: 31952493 PMCID: PMC6969462 DOI: 10.1186/s12879-020-4781-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Critically ill patients undergo extensive physiological alterations that will have impact on antibiotic pharmacokinetics. Up to 60% of intensive care unit (ICU) patients meet the pharmacodynamic targets of beta-lactam antibiotics, with only 30% in fluoroquinolones. Not reaching these targets might increase the chance of therapeutic failure, resulting in increased mortality and morbidity, and antibiotic resistance. The DOLPHIN trial was designed to demonstrate the added value of therapeutic drug monitoring (TDM) of beta-lactam and fluoroquinolones in critically ill patients in the ICU. METHODS A multi-centre, randomised controlled trial (RCT) was designed to assess the efficacy and cost-effectiveness of model-based TDM of beta-lactam and fluoroquinolones. Four hundred fifty patients will be included within 24 months after start of inclusion. Eligible patients will be randomly allocated to either study group: the intervention group (active TDM) or the control group (non-TDM). In the intervention group dose adjustment of the study antibiotics (cefotaxime, ceftazidime, ceftriaxone, cefuroxime, amoxicillin, amoxicillin with clavulanic acid, flucloxacillin, piperacillin with tazobactam, meropenem, and ciprofloxacin) on day 1, 3, and 5 is performed based upon TDM with a Bayesian model. The primary outcome will be ICU length of stay. Other outcomes amongst all survival, disease severity, safety, quality of life after ICU discharge, and cost effectiveness will be included. DISCUSSION No trial has investigated the effect of early TDM of beta-lactam and fluoroquinolones on clinical outcome in critically ill patients. The findings from the DOLPHIN trial will possibly lead to new insights in clinical management of critically ill patients receiving antibiotics. In short, to TDM or not to TDM? TRIAL REGISTRATION EudraCT number: 2017-004677-14. Sponsor protocol name: DOLPHIN. Registered 6 March 2018 . Protocol Version 6, Protocol date: 27 November 2019.
Collapse
Affiliation(s)
- A Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands.
| | - T M J Ewoldt
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N G M Hunfeld
- Department of Hospital Pharmacy, Erasmus University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A E Muller
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Medical Microbiology, Haaglanden Medical Center, The Hague, The Netherlands
| | - W J R Rietdijk
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S Polinder
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - T van Gelder
- Department of Hospital Pharmacy, Erasmus University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H Endeman
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - B C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| |
Collapse
|
19
|
Moser C, Lerche CJ, Thomsen K, Hartvig T, Schierbeck J, Jensen PØ, Ciofu O, Høiby N. Antibiotic therapy as personalized medicine - general considerations and complicating factors. APMIS 2019; 127:361-371. [PMID: 30983040 DOI: 10.1111/apm.12951] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/07/2019] [Indexed: 12/16/2022]
Abstract
The discovery of antibiotic drugs is considered one of the previous century's most important medical discoveries (Medicine's 10 greatest discoveries. New Haven, CT: Yale University Press, 1998: 263). Appropriate use of antibiotics saves millions of lives each year and prevents infectious complications for numerous people. Still, infections kill unacceptable many people around the world, even in developed countries with easy access to most antibiotic drugs. Optimal use of antibiotics is dependent on the identification of primary and secondary focus, and knowledge on which pathogens to expect in a specific infectious syndrome and information on general patterns of regional antibiotic resistance. Furthermore, sampling for microbiological analysis, knowledge of patient immune status and organ functions, travel history, pharmacokinetics and -dynamics of the different antibiotics and possible biofilm formation are among several factors involved in antibiotic therapy of infectious diseases. The present review aims at describing important considerations when using antibacterial antibiotics and to describe how this is becoming substantially more personalized. The parameters relevant in considering the optimal use of antibiotics to treat infections are shown in Fig. 1 - leading to the most relevant antibiotic therapy for that specific patient. To illustrate this subject, the present review's focus will be on challenges with optimal dosing of antibiotics and risks of underdosing. Especially, in cases highly challenging for achieving the aimed antibiotic effect against bacterial infections - this includes augmented renal clearance (ARC) in sepsis, dosing challenges of antibiotics in pregnancy and against biofilm infections.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tom Hartvig
- Department of Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Schierbeck
- Department of Anaesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Oana Ciofu
- Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
De Waele JJ, Dhaese S. Antibiotic stewardship in sepsis management: toward a balanced use of antibiotics for the severely ill patient. Expert Rev Anti Infect Ther 2019; 17:89-97. [DOI: 10.1080/14787210.2019.1568239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan J. De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Gent, Belgium
| | - Sofie Dhaese
- Department of Critical Care Medicine, Ghent University Hospital, Gent, Belgium
| |
Collapse
|