1
|
Frem JA, Russell A, Fitzpatrick C, Williams D, Richardson D. Gastrointestinal Escherichia coli in men who have sex with men: A systematic review. Int J STD AIDS 2024:9564624241306847. [PMID: 39648861 DOI: 10.1177/09564624241306847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
OBJECTIVE This systematic review aimed to explore any demographic, biological and behavioural characteristics of men who have sex with men (MSM) with diarrhoeagenic E.coli. DESIGN/METHODS We searched MEDLINE, EMBASE, and CINAHL for manuscripts published to March 2024. One author screened manuscript abstracts; two authors independently conducted a full text review. We only included primary data on gastrointestinal E.coli in MSM. Risk of bias was assessed independently by two authors using the Joanna Briggs Institute tools. This review was registered on PROSPERO(CRD42023455321). RESULTS Eleven manuscripts (cross-sectional studies (n = 8), case-series (n = 1), case-control study (n = 1), longitudinal study (n = 1)) from Europe (n = 7) Australia (n = 2), USA (n = 2) including 983 MSM with gastrointestinal E.coli published between 2014-2023 were included in this review. Demographic factors (living with HIV, using HIV-PrEP, using dating apps and working as airline crew, group sex, non-regular (casual) sexual partners); behavioural factors (non-regular sexual partners, non-condom use, oro-anal sex, penile-anal sex, use of sex toys, insertive and receptive fisting, scat play); and infection factors (co-infection with Chlamydia trachomatis including LGV, Neisseria gonorrhoeae, Treponema pallidum, hepatitis C, other enteric pathogens [Shigella spp. Giardia duodenalis, Entamoeba histolytica, hepatitis A and intestinal spirochaetosis]) were observed in MSM with E. coli. Antimicrobial resistance (extended spectrum beta-lactamase and quinolone resistance) was described in MSM with E.coli. CONCLUSION We have highlighted demographic, behavioral and infection factors observed in MSM with E.coli suggesting sexual transmissibility. These data provide insight for future clinical guidelines, public health control strategies and research.
Collapse
Affiliation(s)
- Jim Abi Frem
- Sexual health & HIV, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Annie Russell
- Sexual health & HIV, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Colin Fitzpatrick
- Sexual health & HIV, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Deborah Williams
- Sexual health & HIV, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Daniel Richardson
- Sexual health & HIV, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
- Brighton & Sussex Medical School, Brighton UK
| |
Collapse
|
2
|
Cabrera-González M, Quilcate-Pairazamán C, Alvarez-García W, Cabrera H, Tayca-Saldaña A, Aliaga-Tambo F, Rojas-Valdez D, Cueva-Rodríguez M. Molecular identification of the most frequent pathotypes of Escherichia coli in calves with diarrhoea in the Cajamarca region of Peru. Open Vet J 2024; 14:2170-2180. [PMID: 39553768 PMCID: PMC11563608 DOI: 10.5455/ovj.2024.v14.i9.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/23/2024] [Indexed: 11/19/2024] Open
Abstract
Background Colibacillosis caused by Escherichia coli causes significant economic losses in the livestock sector worldwide and is one of the calves' leading causes of diarrhea. Aim This study aimed to identify the most frequent E. coli molecularly pathotypes in calves with diarrhea in six provinces of the Cajamarca region in the northern highlands of Peru. Methods Twenty-eight herds of dairy cattle under a semi-intensive rearing system were evaluated; 95 samples were isolated from calves with diarrhea up to the first month of life, 62 males and 33 females, during the rainy season. Results The presence of virulence genes of E. coli strains was more prevalent in males; the astA (89.47%), st (83.15%), and f5 (57.89%) genes were more expressed, and the lt (17.89%) and stx2 (1.05%) genes were less expressed. The eae gene (21.05%) was more present in females. Conclusion When E. coli strains express virulence genes astA, st, and f5 and their atypical double, triple, and quadruple combination between different observed pathotypes, they give rise to the formation of several pathotypes by the horizontal transfer of virulence genes, which can cause colibacillosis processes in more virulent calves, which is one of the most important causes of diarrhea in calves in the region of Cajamarca, compromising the sanitary viability in the herds.
Collapse
Affiliation(s)
- Marco Cabrera-González
- Laboratorio de Biotecnología en Sanidad Animal, Estación Experimental Baños del Inca, Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Baños del Inca, Cajamarca, Perú
| | - Carlos Quilcate-Pairazamán
- Instituto Nacional de Innovación Agraria (INIA), Dirección de Desarrollo Tecnológico Agrario. La Molina, Lima, Perú
| | - Wuesley Alvarez-García
- Instituto Nacional de Innovación Agraria (INIA), Dirección de Desarrollo Tecnológico Agrario. La Molina, Lima, Perú
| | - Héctor Cabrera
- Laboratorio de Biotecnología en Sanidad Animal, Estación Experimental Baños del Inca, Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Baños del Inca, Cajamarca, Perú
| | - Antony Tayca-Saldaña
- Laboratorio de Biotecnología en Sanidad Animal, Estación Experimental Baños del Inca, Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Baños del Inca, Cajamarca, Perú
| | - Fernando Aliaga-Tambo
- Laboratorio de Biotecnología en Sanidad Animal, Estación Experimental Baños del Inca, Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Baños del Inca, Cajamarca, Perú
| | - Deisy Rojas-Valdez
- Laboratorio de Biotecnología en Sanidad Animal, Estación Experimental Baños del Inca, Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Baños del Inca, Cajamarca, Perú
| | - Medali Cueva-Rodríguez
- Laboratorio de Biotecnología en Sanidad Animal, Estación Experimental Baños del Inca, Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Baños del Inca, Cajamarca, Perú
| |
Collapse
|
3
|
Thattil SJ, Ajith TA. Prevalence and Antibiogram of Escherichia coli Isolated from Children Under Five
Years of Age Presented with Acute Diarrhoea: Cross Sectional Study from a Tertiary
Care Centre in South India. ANTI-INFECTIVE AGENTS 2024; 22. [DOI: 10.2174/0122113525274118231203153143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 07/31/2024]
Abstract
Aim:
The study aimed to analyze the prevalence and antibiogram of E. coli isolated from stool sample cultures collected from children below five years of age who were presented with acute diarrhoea in a tertiary care centre.
Background:
Multidrug-resistant strains of diarrheagenic E. coliremain a major public health concern for greater morbidity and mortality. Antibiotic resistance and susceptibility patterns of E. coli were found to vary with geographical location.
Objective:
To determine the prevalence and antibiogram of E. coli isolated from cultures of diarrhoea stool samples collected from children below five years of age from laboratory records.
Methods:
A cross-sectional study was designed to analyze the report on stool culture of children (aged below five years) presented with acute diarrhea during the period between 2017 and 2020. The prevalence of E. coli and its antibiogram were analyzed. The data were subjected to statis-tical analysis.
Results:
A total of 245 diarrhoea stool samples results were analyzed. E. coli was confirmed in 176 samples (72%). More number of isolates (51/176, 28.9%) were found in children below one year of age with male dominance. Amoxicillin resistance was found in all the E. coli strains isolated with no significant difference (p=0.2233) between genders and age groups below and above one year. A significant difference (p=0.0001) was found between male and female chil-dren of age below and above one year for cefotaxime and ciprofloxacin resistance. Polymyxin B (72%) followed by imipenem (69%) sensitivity was exhibited by the isolated E. coli strains.
Conclusion:
E. coli isolates were more sensitive to polymyxin B and imipenem while they were most resistant to amoxicillin. Effective antibiotic treatment strategies should be developed to control E. coli infections in children.
Collapse
Affiliation(s)
- Santhosh J. Thattil
- Department of Microbiology, Nyle Womens’ and Children’s Super speciality Hospital, Kaiparambu, Thrissur, 680546,
Kerala, India
| | - Thekkuttuparambil A. Ajith
- Department of Biochemistry, Amala Institute of Medical Sciences, Amala Nagar, Thrissur, 680555, Kerala,
India
| |
Collapse
|
4
|
Lee W, Ha J, Choi J, Jung Y, Kim E, An ES, Kim SH, Shin H, Ryu S, Kim SH, Kim HY. Genetic and virulence characteristics of hybrid Shiga toxin-producing and atypical enteropathogenic Escherichia coli strains isolated in South Korea. Front Microbiol 2024; 15:1398262. [PMID: 38812694 PMCID: PMC11133561 DOI: 10.3389/fmicb.2024.1398262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction The predominant hybrid pathogenic E. coli, enterohemorrhagic E. coli (EHEC), combines characteristics of Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC), contributing to global outbreaks with severe symptoms including fatal consequences. Since EHEC infection was designated as a notifiable disease in 2000 in South Korea, around 2000 cases have been reported, averaging approximately 90 cases annually. Aim In this work, genome-based characteristic analysis and cell-based assay of hybrid STEC/aEPEC strains isolated from livestock feces, animal source foods, and water in South Korea was performed. Methods To identify the virulence and antimicrobial resistance genes, determining the phylogenetic position of hybrid STEC/aEPEC strains isolated in South Korea, a combination of real-time PCR and whole-genome sequencing (WGS) was used. Additionally, to assess the virulence of the hybrid strains and compare them with genomic characterization, we performed a cell cytotoxicity and invasion assays. Results The hybrid STEC/aEPEC strains harbored stx and eae genes, encoding Shiga toxins and E. coli attachment/effacement related protein of STEC and EPEC, respectively. Furthermore, all hybrid strains harbored plasmid-carried enterohemolysin(ehxCABD), a key virulence factor in prevalent pathogenic E. coli infections, such as diarrheal disease and hemolytic-uremic syndrome (HUS). Genome-wide phylogenetic analysis revealed a close association between all hybrid strains and specific EPEC strains, suggesting the potential acquisition of Stx phages during STEC/aEPEC hybrid formation. Some hybrid strains showed cytotoxic activity against HeLa cells and invasive properties against epithelial cells. Notably, all STEC/aEPEC hybrids with sequence type (ST) 1,034 (n = 11) exhibited higher invasiveness than those with E2348/69. This highlights the importance of investigating potential correlations between STs and virulence characteristics of E. coli hybrid strains. Conclusion Through genome-based characterization, we confirmed that the hybrid STEC/aEPEC strains are likely EPEC strains that have acquired STEC virulence genes via phage. Furthermore, our results emphasize the potential increased danger to humans posed by hybrid STEC/aEPEC strains isolated in South Korea, containing both stx and eaeA, compared to STEC or EPEC alone.
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Jina Ha
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Jaehyun Choi
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Yewon Jung
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Eun Sook An
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Hakdong Shin
- Department of Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
5
|
Kanje LE, Kumburu H, Kuchaka D, Shayo M, Juma MA, Kimu P, Beti M, van Zwetselaar M, Wadugu B, Mmbaga BT, Mkumbaye SI, Sonda T. Short reads-based characterization of pathotype diversity and drug resistance among Escherichia coli isolated from patients attending regional referral hospitals in Tanzania. BMC Med Genomics 2024; 17:110. [PMID: 38671498 PMCID: PMC11055328 DOI: 10.1186/s12920-024-01882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Escherichia coli is known to cause about 2 million deaths annually of which diarrhea infection is leading and typically occurs in children under 5 years old. Although Africa is the most affected region there is little information on their pathotypes diversity and their antimicrobial resistance. OBJECTIVE To determine the pathotype diversity and antimicrobial resistance among E. coli from patients attending regional referral hospitals in Tanzania. MATERIALS AND METHODS A retrospective cross-section laboratory-based study where a total of 138 archived E. coli isolates collected from 2020 to 2021 from selected regional referral hospitals in Tanzania were sequenced using the Illumina Nextseq550 sequencer platform. Analysis of the sequences was done in the CGE tool for the identification of resistance genes and virulence genes. SPSS version 20 was used to summarize data using frequency and proportion. RESULTS Among all 138 sequenced E. coli isolates, the most prevalent observed pathotype virulence genes were of extraintestinal E. coli UPEC fyuA gene 82.6% (114/138) and NMEC irp gene 81.9% (113/138). Most of the E. coli pathotypes observed exist as a hybrid due to gene overlapping, the most prevalent pathotypes observed were NMEC/UPEC hybrid 29.7% (41/138), NMEC/UPEC/EAEC hybrid 26.1% (36/138), NMEC/UPEC/DAEC hybrid 18.1% (25/138) and EAEC 15.2% (21/138). Overall most E. coli carried resistance gene to ampicillin 90.6% (125/138), trimethoprim 85.5% (118/138), tetracycline 79.9% (110/138), ciprofloxacin 76.1% (105/138) and 72.5% (100/138) Nalidixic acid. Hybrid pathotypes were more resistant than non-hybrid pathotypes. CONCLUSION Whole genome sequencing reveals the presence of hybrid pathotypes with increased drug resistance among E. coli isolated from regional referral hospitals in Tanzania.
Collapse
Affiliation(s)
- Livin E Kanje
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania.
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania.
| | - Happiness Kumburu
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| | - Davis Kuchaka
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Mariana Shayo
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Masoud A Juma
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- State University of Zanzibar, Zanzibar, Tanzania
| | - Patrick Kimu
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Melkiory Beti
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | | | - Boaz Wadugu
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Blandina T Mmbaga
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| | - Sixbert Isdory Mkumbaye
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| | - Tolbert Sonda
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| |
Collapse
|
6
|
Royer C, Patin NV, Jesser KJ, Peña-Gonzalez A, Hatt JK, Trueba G, Levy K, Konstantinidis KT. Comparison of metagenomic and traditional methods for diagnosis of E. coli enteric infections. mBio 2024; 15:e0342223. [PMID: 38488359 PMCID: PMC11005377 DOI: 10.1128/mbio.03422-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 04/11/2024] Open
Abstract
Diarrheagenic Escherichia coli, collectively known as DEC, is a leading cause of diarrhea, particularly in children in low- and middle-income countries. Diagnosing infections caused by different DEC pathotypes traditionally relies on the cultivation and identification of virulence genes, a resource-intensive and error-prone process. Here, we compared culture-based DEC identification with shotgun metagenomic sequencing of whole stool using 35 randomly drawn samples from a cohort of diarrhea-afflicted patients. Metagenomic sequencing detected the cultured isolates in 97% of samples, revealing, overall, reliable detection by this approach. Genome binning yielded high-quality E. coli metagenome-assembled genomes (MAGs) for 13 samples, and we observed that the MAG did not carry the diagnostic DEC virulence genes of the corresponding isolate in 60% of these samples. Specifically, two distinct scenarios were observed: diffusely adherent E. coli (DAEC) isolates without corresponding DAEC MAGs appeared to be relatively rare members of the microbiome, which was further corroborated by quantitative PCR (qPCR), and thus unlikely to represent the etiological agent in 3 of the 13 samples (~23%). In contrast, ETEC virulence genes were located on plasmids and largely escaped binning in associated MAGs despite being prevalent in the sample (5/13 samples or ~38%), revealing limitations of the metagenomic approach. These results provide important insights for diagnosing DEC infections and demonstrate how metagenomic methods can complement isolation efforts and PCR for pathogen identification and population abundance. IMPORTANCE Diagnosing enteric infections based on traditional methods involving isolation and PCR can be erroneous due to isolation and other biases, e.g., the most abundant pathogen may not be recovered on isolation media. By employing shotgun metagenomics together with traditional methods on the same stool samples, we show that mixed infections caused by multiple pathogens are much more frequent than traditional methods indicate in the case of acute diarrhea. Further, in at least 8.5% of the total samples examined, the metagenomic approach reliably identified a different pathogen than the traditional approach. Therefore, our results provide a methodology to complement existing methods for enteric infection diagnostics with cutting-edge, culture-independent metagenomic techniques, and highlight the strengths and limitations of each approach.
Collapse
Affiliation(s)
- C. Royer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - N. V. Patin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - K. J. Jesser
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington, USA
| | - A. Peña-Gonzalez
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotà, Colombia
| | - J. K. Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G. Trueba
- Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | - K. Levy
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington, USA
| | - K. T. Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Wang C, Wang F, Chang J, Jiang Z, Han Y, Wang M, Jing B, Zhao A, Yin X. Development and application of one-step multiplex Real-Time PCR for detection of three main pathogens associated with bovine neonatal diarrhea. Front Cell Infect Microbiol 2024; 14:1367385. [PMID: 38628550 PMCID: PMC11018945 DOI: 10.3389/fcimb.2024.1367385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Neonatal calf diarrhea (NCD) is one of the most common diseases in calves, causing huge economic and productivity losses to the bovine industry worldwide. The main pathogens include bovine rotavirus (BRV), bovine coronavirus (BCoV), and Enterotoxigenic Escherichia coli (ETEC) K99. Since multiple infectious agents can be involved in calf diarrhea, detecting each causative agent by traditional methods is laborious and expensive. Methods In this study, we developed a one-step multiplex Real-Time PCR assay to simultaneously detect BRV, BCoV, and E. coli K99+. The assay performance on field samples was evaluated on 1100 rectal swabs of diseased cattle with diarrhea symptoms and compared with the conventional gel-based RT-PCR assay detect BRV, BCoV, and E. coli K99+. Results The established assay could specifically detect the target pathogens without cross-reactivity with other pathogens. A single real-time PCR can detect ~1 copy/µL for each pathogen, and multiplex real-time PCR has a detection limit of 10 copies/µL. Reproducibility as measured by standard deviation and coefficient of variation were desirable. The triple real-time PCR method established in this study was compared with gel-based PT-PCR. Both methods are reasonably consistent, while the real-time PCR assay was more sensitive and could rapidly distinguish these three pathogens in one tube. Analysis of surveillance data showed that BRV and BCoV are major enteric viral pathogens accounting for calves' diarrhea in China. Discussion The established assay has excellent specificity and sensitivity and was suitable for clinical application. The robustness and high-throughput performance of the developed assay make it a powerful tool in diagnostic applications and calf diarrhea research. .
Collapse
Affiliation(s)
- Chaonan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jitao Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji, China
| | - Zhigang Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuxin Han
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Meixi Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bo Jing
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Aiyun Zhao
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
8
|
Jesser KJ, Trueba G, Konstantinidis KT, Levy K. Why are so many enteric pathogen infections asymptomatic? Pathogen and gut microbiome characteristics associated with diarrhea symptoms and carriage of diarrheagenic E. coli in northern Ecuador. Gut Microbes 2023; 15:2281010. [PMID: 37992406 PMCID: PMC10730187 DOI: 10.1080/19490976.2023.2281010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023] Open
Abstract
A high proportion of enteric infections, including those caused by diarrheagenic Escherichia coli (DEC), are asymptomatic for diarrhea. The factors responsible for the development of diarrhea symptoms, or lack thereof, remain unclear. Here, we used DEC isolate genome and whole stool microbiome data from a case-control study of diarrhea in Ecuador to examine factors associated with diarrhea symptoms accompanying DEC carriage. We investigated i) pathogen abundance, ii) gut microbiome characteristics, and iii) strain-level pathogen characteristics from DEC infections with diarrhea symptoms (symptomatic infections) and without diarrhea symptoms (asymptomatic infections). We also included data from individuals with and without diarrhea who were not infected with DEC (uninfected cases and controls). i) E. coli relative abundance in the gut microbiome was highly variable, but higher on-average in individuals with symptomatic compared to asymptomatic DEC infections. Similarly, the number and relative abundances of virulence genes in the gut were higher in symptomatic than asymptomatic DEC infections. ii) Measures of microbiome diversity were similar regardless of diarrhea symptoms or DEC carriage. Proteobacterial families that have been described as pathobionts were enriched in symptomatic infections and uninfected cases, whereas potentially beneficial taxa, including the Bacteroidaceae and Bifidobacteriaceae, were more abundant in individuals without diarrhea. An analysis of high-level gene functions recovered in metagenomes revealed that genes that were differentially abundant by diarrhea and DEC infection status were more abundant in symptomatic than asymptomatic DEC infections. iii) DEC isolates from symptomatic versus asymptomatic individuals showed no significant differences in virulence or accessory gene content, and there was no phylogenetic signal associated with diarrhea symptoms. Together, these data suggest signals that distinguish symptomatic from asymptomatic DEC infections. In particular, the abundance of E. coli, the virulence gene content of the gut microbiome, and the taxa present in the gut microbiome have an apparent role.
Collapse
Affiliation(s)
- Kelsey J Jesser
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Zhuo W, Zhao Y, Zhao X, Yao Z, Qiu X, Huang Y, Li H, Shen J, Zhu Z, Li T, Li S, Huang Q, Zhou R. Enteropathogenic Escherichia coli is a predominant pathotype in healthy pigs in Hubei Province of China. J Appl Microbiol 2023; 134:lxad260. [PMID: 37962953 DOI: 10.1093/jambio/lxad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
AIM This study aims to investigate the prevalence of intestinal pathogenic Escherichia coli (InPEC) in healthy pig-related samples and evaluate the potential virulence of the InPEC strains. METHODS AND RESULTS A multiplex PCR method was established to identify different pathotypes of InPEC. A total of 800 rectal swab samples and 296 pork samples were collected from pig farms and slaughterhouses in Hubei province, China. From these samples, a total of 21 InPEC strains were isolated, including 19 enteropathogenic E. coli (EPEC) and 2 shiga toxin-producing E. coli (STEC) strains. By whole-genome sequencing and in silico typing, it was shown that the sequence types and serotypes were diverse among the strains. Antimicrobial susceptibility assays showed that 90.48% of the strains were multi-drug resistant. The virulence of the strains was first evaluated using the Galleria mellonella larvae model, which showed that most of the strains possessed medium to high pathogenicity. A moderately virulent EPEC isolate was further selected to characterize its pathogenicity using a mouse model, which suggested that it could cause significant diarrhea. Bioluminescence imaging (BLI) was then used to investigate the colonization dynamics of this EPEC isolate, which showed that the EPEC strain could colonize the mouse cecum for up to 5 days.
Collapse
Affiliation(s)
- Wenxiao Zhuo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianglin Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiming Yao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxiu Qiu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaxue Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huaixia Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Shen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihao Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Li
- Hubei Animal Disease Prevention and Control Center, Wuhan 430070, China
| | - Shaowen Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, College of Veterinary Medicine, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), College of Veterinary Medicine, Wuhan 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, College of Veterinary Medicine, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), College of Veterinary Medicine, Wuhan 430070, China
- The HZAU-HVSEN Research Institute, Wuhan 430042, China
| |
Collapse
|
10
|
Cardoso MD, Gonçalves VD, Grael AS, Pedroso VM, Pires JR, Travassos CEPF, Domit C, Vieira-Da-Motta O, Dos Prazeres Rodrigues D, Siciliano S. Detection of Escherichia coli and other Enterobacteriales members in seabirds sampled along the Brazilian coast. Prev Vet Med 2023; 218:105978. [PMID: 37544079 DOI: 10.1016/j.prevetmed.2023.105978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Escherichia coli, an Enterobacterales member, is a normal representative of the microbiota of homeothermic animals. Most strains are commensal, but several pathotypes can cause disease, and numerous antimicrobial resistance factors have been identified. These bacteria have spread rapidly in recent years, highlighting the importance of screening the environment and non-human reservoirs for virulent strains and/or those presenting resistance factors, in addition to other microorganisms of public health importance. In this context, this study aimed to survey Enterobacteriales present in seabirds sampled along the Brazilian coast, comparing findings between migratory and resident birds, as well as between wrecked and non-wrecked animals. Escherichia coli pathotypes were also characterized through rapid seroagglutination and polymerase chain reaction techniques and antimicrobial resistance profiles were investigated through the disc agar diffusion method. Cloacal, ocular, oral, tracheal, and skin lesion swabs, as well as fresh feces, were collected from 122 seabirds. The findings indicate these animals as important hosts for opportunistic human pathogens. Escherichia coli strains were identified in 70 % of the analyzed seabirds, 62 % of which displaying resistant or intermediate profiles to at least one antimicrobial, while 7% were multiresistant. Resistance to tetracycline (22 %), nalidixic acid (15 %), trimethoprim-sulfamethozaxol (14 %) and ampicillin (12 %) were the most prevalent. Resistance to cefoxitin, a critically important antimicrobial for human medicine, was also detected. Virulence genes for one of the EAEC, ETEC or EPEC pathotypes were detected in 30 % of the identified strains, the first two described in seabirds for the first time. The EAEC gene was detected in 25 % of the sampled seabirds, all resident, 8 % of which exhibited a multidrug-resistant profile. Thus, seabirds comprise important reservoirs for this pathotype. Escherichia coli was proven an ubiquitous and well-distributed bacterium, present in all evaluated bird species and sampling sites (except Marajó Island). According to the chi-square test, no significant differences between E. coli prevalences or antimicrobial resistance profiles between migratory and resident and between wrecked and non-wrecked seabirds were observed. Thus, migratory birds do not seem to contribute significantly to E. coli frequencies, pathotypes or antimicrobial resistance rates on the Brazilian coast.
Collapse
Affiliation(s)
- Maíra Duarte Cardoso
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sérgio Arouca, Fundação Oswaldo Cruz, Rua Leopoldo Bulhões, 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil.
| | - Verônica Dias Gonçalves
- Laboratório de Referência Nacional de Enteroinfecções Bacterianas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Pavilhão Rocha Lima, sala 316, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil.
| | - Andrea Soffiatti Grael
- Setor de Animais Selvagens, Hospital Universitário de Medicina Veterinária Firmino Mársico Filho, Faculdade de Veterinária, Universidade Federal Fluminense, Avenida Almirante Ary Parreiras, 503, Vital Brazil, Niterói 24220-000, RJ, Brazil.
| | - Vanessa Marques Pedroso
- Centro de Recuperação de Animais Marinhos, Universidade Federal do Rio Grande, Rua Tenente Capitão Heitor Perdigão, 10, Centro, Rio Grande 96200-580, RS, Brazil.
| | - Jeferson Rocha Pires
- Centro de Recuperação de Fauna Silvestre, Universidade Estácio de Sá - Estrada da Boca do Mato, 850, Vargem Pequena, Rio de Janeiro 22783-320, RJ, Brazil.
| | - Carlos Eurico Pires Ferreira Travassos
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Horto, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil.
| | - Camila Domit
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, Paraná CEP 83255-000, Brazil.
| | - Olney Vieira-Da-Motta
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Horto, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil.
| | - Dália Dos Prazeres Rodrigues
- Laboratório de Referência Nacional de Enteroinfecções Bacterianas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Pavilhão Rocha Lima, sala 316, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil.
| | - Salvatore Siciliano
- Departamento de Ciências Biológicas, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rua Leopoldo Bulhões, 1.480, Manguinhos, Rio de Janeiro 21041-910, RJ, Brazil.
| |
Collapse
|
11
|
Lee W, Sung S, Ha J, Kim E, An ES, Kim SH, Kim SH, Kim HY. Molecular and Genomic Analysis of the Virulence Factors and Potential Transmission of Hybrid Enteropathogenic and Enterotoxigenic Escherichia coli (EPEC/ETEC) Strains Isolated in South Korea. Int J Mol Sci 2023; 24:12729. [PMID: 37628911 PMCID: PMC10454139 DOI: 10.3390/ijms241612729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Hybrid strains Escherichia coli acquires genetic characteristics from multiple pathotypes and is speculated to be more virulent; however, understanding their pathogenicity is elusive. Here, we performed genome-based characterization of the hybrid of enteropathogenic (EPEC) and enterotoxigenic E. coli (ETEC), the strains that cause diarrhea and mortality in children. The virulence genes in the strains isolated from different sources in the South Korea were identified, and their phylogenetic positions were analyzed. The EPEC/ETEC hybrid strains harbored eae and est encoding E. coli attaching and effacing lesions and heat-stable enterotoxins of EPEC and ETEC, respectively. Genome-wide phylogeny revealed that all hybrids (n = 6) were closely related to EPEC strains, implying the potential acquisition of ETEC virulence genes during ETEC/EPEC hybrid emergence. The hybrids represented diverse serotypes (O153:H19 (n = 3), O49:H10 (n = 2), and O71:H19 (n = 1)) and sequence types (ST546, n = 4; ST785, n = 2). Furthermore, heat-stable toxin-encoding plasmids possessing estA and various other virulence genes and transporters, including nleH2, hlyA, hlyB, hlyC, hlyD, espC, espP, phage endopeptidase Rz, and phage holin, were identified. These findings provide insights into understanding the pathogenicity of EPEC/ETEC hybrid strains and may aid in comparative studies, virulence characterization, and understanding evolutionary biology.
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Soohyun Sung
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Jina Ha
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Eiseul Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Eun Sook An
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
12
|
Akinlabi OC, Dada RA, Nwoko ESQA, Okeke IN. PCR diagnostics are insufficient for the detection of Diarrhoeagenic Escherichia coli in Ibadan, Nigeria. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001539. [PMID: 37549136 PMCID: PMC10406320 DOI: 10.1371/journal.pgph.0001539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Understanding the contribution of different diarrhoeagenic Escherichia coli pathotypes to disease burden is critical to mapping risk and informing vaccine development. Targeting select virulence genes by PCR is the diagnostic approach of choice in high-burden, least-resourced African settings. We compared the performance of a commonly-used multiplex protocol to whole genome sequencing (WGS). PCR was applied to 3,815 E. coli isolates from 120 children with diarrhoea and 357 healthy controls. Three or more isolates per specimen were also Illumina-sequenced. Following quality assurance, ARIBA and Virulencefinder database were used to identify virulence targets. Root cause analysis of deviant PCR results was performed by examining target sensitivity using BLAST, Sanger sequencing false-positive amplicons, and identifying lineages prone to false-positivity using in-silico multilocus sequence typing and a Single Nucleotide Polymorphism phylogeny constructed using IQTree. The sensitivity and positive predictive value of PCR compared to WGS ranged from 0-77.8% while specificity ranged from 74.5-94.7% for different pathotypes. WGS identified more enteroaggregative E. coli (EAEC), fewer enterotoxigenic E. coli (ETEC) and none of the Shiga toxin-producing E. coli detected by PCR, painting a considerably different epidemiological picture. Use of the CVD432 target resulted in EAEC under-detection, and enteropathogenic E. coli eae primers mismatched more recently described intimin alleles common in our setting. False positive ETEC were over-represented among West Africa-predominant ST8746 complex strains. PCR precision varies with pathogen genome so primers optimized for use in one part of the world may have noticeably lower sensitivity and specificity in settings where different pathogen lineages predominate.
Collapse
Affiliation(s)
- Olabisi C. Akinlabi
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, University of Ibadan, Oyo, Nigeria
| | - Rotimi A. Dada
- Faculty of Pharmacy, Bowen University Iwo and Department of Pharmaceutical Microbiology, College of Health Sciences, Medical Laboratory Science Programme, Ahmadu Bello University, Zaria, Nigeria
| | - El-shama Q. A. Nwoko
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, University of Ibadan, Oyo, Nigeria
| | - Iruka N. Okeke
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, University of Ibadan, Oyo, Nigeria
| |
Collapse
|
13
|
Kulecka M, Zeber-Lubecka N, Bałabas A, Czarnowski P, Bagińska K, Głowienka M, Kluska A, Piątkowska M, Dąbrowska M, Waker E, Mikula M, Ostrowski J. Diarrheal-associated gut dysbiosis in cancer and inflammatory bowel disease patients is exacerbated by Clostridioides difficile infection. Front Cell Infect Microbiol 2023; 13:1190910. [PMID: 37577378 PMCID: PMC10413277 DOI: 10.3389/fcimb.2023.1190910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Low diversity gut dysbiosis can take different forms depending on the disease context. In this study, we used shotgun metagenomic sequencing and gas chromatography-mass spectrometry (GC-MS) to compared the metagenomic and metabolomic profiles of Clostridioides (Clostridium) difficile diarrheal cancer and inflammatory bowel disease (IBD) patients and defined the additive effect of C. difficile infection (CDI) on intestinal dysbiosis. Results The study cohort consisted of 138 case-mix cancer patients, 43 IBD patients, and 45 healthy control individuals. Thirty-three patients were also infected with C. difficile. In the control group, three well-known enterotypes were identified, while the other groups presented with an additional Escherichia-driven enterotype. Bacterial diversity was significantly lower in all groups than in healthy controls, while the highest level of bacterial species richness was observed in cancer patients. Fifty-six bacterial species had abundance levels that differentiated diarrheal patient groups from the control group. Of these species, 52 and 4 (Bacteroides fragilis, Escherichia coli, Klebsiella pneumoniae, and Ruminococcus gnavus) were under-represented and over-represented, respectively, in all diarrheal patient groups. The relative abundances of propionate and butyrate were significantly lower in fecal samples from IBD and CDI patients than in control samples. Isobutyrate, propanate, and butyrate concentrations were lower in cancer, IBD, and CDI samples, respectively. Glycine and valine amino acids were over- represented in diarrheal patients. Conclusion Our data indicate that different external and internal factors drive comparable profiles of low diversity dysbiosis. While diarrheal-related low diversity dysbiosis may be a consequence of systemic cancer therapy, a similar phenotype is observed in cases of moderate to severe IBD, and in both cases, dysbiosis is exacerbated by incidence of CDI.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Katarzyna Bagińska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Głowienka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Edyta Waker
- Department of Clinical Microbiology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
14
|
Lee W, Kim MH, Sung S, Kim E, An ES, Kim SH, Kim SH, Kim HY. Genome-Based Characterization of Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains Isolated in South Korea, 2016-2020. Microorganisms 2023; 11:1285. [PMID: 37317259 DOI: 10.3390/microorganisms11051285] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
The global emergence of hybrid diarrheagenic E. coli strains incorporating genetic markers from different pathotypes is a public health concern. Hybrids of Shiga toxin-producing and enterotoxigenic E. coli (STEC/ETEC) are associated with diarrhea and hemolytic uremic syndrome (HUS) in humans. In this study, we identified and characterized STEC/ETEC hybrid strains isolated from livestock feces (cattle and pigs) and animal food sources (beef, pork, and meat patties) in South Korea between 2016 and 2020. The strains were positive for genes from STEC and ETEC, such as stx (encodes Shiga toxins, Stxs) and est (encodes heat-stable enterotoxins, ST), respectively. The strains belong to diverse serogroups (O100, O168, O8, O155, O2, O141, O148, and O174) and sequence types (ST446, ST1021, ST21, ST74, ST785, ST670, ST1780, ST1782, ST10, and ST726). Genome-wide phylogenetic analysis revealed that these hybrids were closely related to certain ETEC and STEC strains, implying the potential acquisition of Stx-phage and/or ETEC virulence genes during the emergence of STEC/ETEC hybrids. Particularly, STEC/ETEC strains isolated from livestock feces and animal source foods mostly exhibited close relatedness with ETEC strains. These findings allow further exploration of the pathogenicity and virulence of STEC/ETEC hybrid strains and may serve as a data source for future comparative studies in evolutionary biology.
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min-Hee Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Soohyun Sung
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Sook An
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
15
|
Occurrence of diarrheagenic Escherichia coli pathotypes from raw milk and unpasteurized buttermilk by culture and multiplex polymerase chain reaction in southwest Iran. Mol Biol Rep 2023; 50:3661-3667. [PMID: 36808583 DOI: 10.1007/s11033-023-08261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND In developing countries including Iran, there are limited data on diarrheagenic Escherichia coli (DEC) contamination in milk and unpasteurized buttermilks. This study aimed to determine the occurrence of DEC pathotypes by culture and multiplex polymerase chain reaction (M-PCR) in some dairy products from southwest Iran. METHODS AND RESULTS In this cross-sectional study (September to October 2021), 197 samples (87 unpasteurized buttermilk and 110 raw cow milk) were collected from dairy stores of Ahvaz, southwest Iran. The presumptive E. coli isolates were primarily identified using biochemical tests and then confirmed by PCR of uidA gene. The occurrence of 5 DEC pathotypes: enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), and enteroinvasive E. coli (EIEC) were investigated using M-PCR. Overall, 76 (76/197, 38.6%) presumptive E. coli isolates were identified by biochemical tests. Using uidA gene, only 50 isolates (50/76, 65.8%) were confirmed as E. coli. DEC pathotypes were detected in 27 of 50 (54.0%) E. coli isolates (74.1%, 20/27 from raw cow milk and 25.9%, 7/27 from unpasteurized buttermilk). The frequency of DEC pathotypes was as follows: 1 (3.7%) EAEC, 2 (7.4%) EHEC, 4 (14.8%) EPEC, 6 (22.2%) ETEC, and 14 (51.9%) EIEC. However, 23 (46.0%) E. coli isolates had only the uidA gene and were not considered DEC pathotypes. CONCLUSION Possible health risks for Iranian consumers can be attributed to the presence of DEC pathotypes in dairy products. Hence, serious control and prevention efforts are needed to stop the spread of these pathogens.
Collapse
|
16
|
Lima MDC, Magnani M, Lima MDS, Macarisin D, de Sousa CP, Dubreuil JD, de Souza EL. Exploring the antimicrobial effects of a phenolic-rich extract from jabuticaba depulping waste against enterotoxigenic Escherichia coli. Lett Appl Microbiol 2023; 76:6991430. [PMID: 36715328 DOI: 10.1093/lambio/ovad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
This study evaluated the effects of a phenolic-rich extract from jabuticaba [Myrciaria jaboticaba (Vell.) Berg] depulping waste (PEJ) on the survival, antibiotic susceptibility, virulence, and cellular functions of various enterotoxigenic Escherichia coli (ETEC) strains. The minimum inhibitory concentration of PEJ against the five tested ETEC strains was 125 mg mL-1. PEJ at 125 and 250 mg mL-1 caused reductions in viable cell counts of ≥ 3 and ≥ 5 log CFU mL-1 in ETEC over 24 h, respectively. PEJ at subinhibitory concentrations (31.25 and 62.5 mg mL-1) reduced the viable cell counts of ETEC when exposed to in vitro gastrointestinal conditions, besides decreasing the biofilm formation, cell surface hydrophobicity, mucin adhesion, and swimming and swarming motility. PEJ (31.25 and 62.5 mg mL-1) increased the susceptibility of the tested ETEC strains to various clinically relevant antibiotics. The exposure to PEJ (62.5 and 125 mg mL-1) impaired the membrane permeability and enzymatic and efflux pump activities in ETEC cells. PEJ effectively reduces survival, increases antibiotic susceptibility, and attenuates virulence in ETEC. These effects could be linked to a PEJ multi-target action disturbing various cellular functions in ETEC cells. PEJ could be a candidate for developing innovative solutions to prevent and treat ETEC infections.
Collapse
Affiliation(s)
- Maiara da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, PB 58051-900,Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology,Federal Institute of Sertão de Pernambuco,Petrolina, PE 56316-686,Brazil
| | - Dumitru Macarisin
- Center for Food Safety and Applied Nutrition, Division of Microbiology, Food and Drug Administration, College Park, MD HFS-009, USA
| | - Cristina Paiva de Sousa
- Department of Morphology and Pathology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.,Biotechnology Graduation Program, Center of Exact Sciences and Technologies, Federal University of São Carlos,São Carlos, SP 13565-905,Brazil
| | - J Daniel Dubreuil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, PB 58051-900,Brazil
| |
Collapse
|
17
|
Zuo S, Jiang G, Zheng Y, Zhang X, Qin Z, Chen L, Ren T, Zhang XB, Yuan L. Family of hNQO1 Activatable Near-Infrared Fluoro-Photoacoustic Probes for Diagnosis of Wound Infection and Ulcerative Colitis. Anal Chem 2023; 95:898-906. [PMID: 36604944 DOI: 10.1021/acs.analchem.2c03436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial infections can easily occur when patients mishandle wounds or eat moldy food. The prompt diagnosis of a bacterial infection could effectively reduce the risk of possible anatomical damage. However, non-invasive early detection of bacterial infections is difficult to achieve due to the lack of favorable tools. Here, we designed two hNQO1 fluorescent probes (RX2 and RX3) to visualize bacterial infection after deep learning on the pathogenesis of bacterial infection. RX2 and RX3 enable early detection of bacterial infection and are verified to be, respectively, suitable for fluorescence imaging (FLI) and photoacoustic imaging (PAI) by comparing the signal-to-background ratio of both probes in a mouse model of myositis caused by Escherichia coli infection. In view of the difference in penetration depth between the two imaging modalities, we further applied RX2 for FLI of E. coli-infected wounds and RX3 for PAI of E. coli-infected inflammatory bowel disease, suggesting the great potential of both probes for early diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Shan Zuo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yingxin Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zuojia Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Tianbing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
18
|
Holcomb DA, Quist AJL, Engel LS. Exposure to industrial hog and poultry operations and urinary tract infections in North Carolina, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158749. [PMID: 36108846 PMCID: PMC9613609 DOI: 10.1016/j.scitotenv.2022.158749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
An increasing share of urinary tract infections (UTIs) are caused by extraintestinal pathogenic Escherichia coli (ExPEC) lineages that have also been identified in poultry and hogs with high genetic similarity to human clinical isolates. We investigated industrial food animal production as a source of uropathogen transmission by examining relationships of hog and poultry density with emergency department (ED) visits for UTIs in North Carolina (NC). ED visits for UTI in 2016-2019 were identified by ICD-10 code from NC's ZIP code-level syndromic surveillance system and livestock counts were obtained from permit data and aerial imagery. We calculated separate hog and poultry spatial densities (animals/km2) by Census block with a 5 km buffer on the block perimeter and weighted by block population to estimate mean ZIP code densities. Associations between livestock density and UTI incidence were estimated using a reparameterized Besag-York-Mollié (BYM2) model with ZIP code population offsets to account for spatial autocorrelation. We excluded metropolitan and offshore ZIP codes and assessed effect measure modification by calendar year, ZIP code rurality, and patient sex, age, race/ethnicity, and health insurance status. In single-animal models, hog exposure was associated with increased UTI incidence (rate ratio [RR]: 1.21, 95 % CI: 1.07-1.37 in the highest hog-density tertile), but poultry exposure was associated with reduced UTI rates (RR: 0.86, 95 % CI: 0.81-0.91). However, the reference group for single-animal poultry models included ZIP codes with only hogs, which had some of the highest UTI rates; when compared with ZIP codes without any hogs or poultry, there was no association between poultry exposure and UTI incidence. Hog exposure was associated with increased UTI incidence in areas that also had medium to high poultry density, but not in areas with low poultry density, suggesting that intense hog production may contribute to increased UTI incidence in neighboring communities.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arbor J L Quist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
20
|
Kislichkina AA, Kartsev NN, Skryabin YP, Sizova AA, Kanashenko ME, Teymurazov MG, Kuzina ES, Bogun AG, Fursova NK, Svetoch EA, Dyatlov IA. Genomic Analysis of a Hybrid Enteroaggregative Hemorrhagic Escherichia coli O181:H4 Strain Causing Colitis with Hemolytic-Uremic Syndrome. Antibiotics (Basel) 2022; 11:antibiotics11101416. [PMID: 36290074 PMCID: PMC9598891 DOI: 10.3390/antibiotics11101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Hybrid diarrheagenic E. coli strains combining genetic markers belonging to different pathotypes have emerged worldwide and have been reported as a public health concern. The most well-known hybrid strain of enteroaggregative hemorrhagic E. coli is E. coli O104:H4 strain, which was an agent of a serious outbreak of acute gastroenteritis and hemolytic uremic syndrome (HUS) in Germany in 2011. A case of intestinal infection with HUS in St. Petersburg (Russian Federation) occurred in July 2018. E. coli strain SCPM-O-B-9427 was obtained from the rectal swab of the patient with HUS. It was determined as O181:H4-, stx2-, and aggR-positive and belonged to the phylogenetic group B2. The complete genome assembly of the strain SCPM-O-B-9427 contained one chromosome and five plasmids, including the plasmid coding an aggregative adherence fimbriae I. MLST analysis showed that the strain SCPM-O-B-9427 belonged to ST678, and like E. coli O104:H4 strains, 2011C-3493 caused the German outbreak in 2011, and 2009EL-2050 was isolated in the Republic of Georgia in 2009. Comparison of three strains showed almost the same structure of their chromosomes: the plasmids pAA and the stx2a phages are very similar, but they have distinct sets of the plasmids and some unique regions in the chromosomes.
Collapse
Affiliation(s)
- Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Correspondence:
| | - Nikolay N. Kartsev
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Yury P. Skryabin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Angelika A. Sizova
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Maria E. Kanashenko
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Marat G. Teymurazov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Ekaterina S. Kuzina
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Alexander G. Bogun
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Edward A. Svetoch
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Ivan A. Dyatlov
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| |
Collapse
|
21
|
Cannon JL, Seabolt MH, Xu R, Montmayeur A, Suh SH, Diez-Valcarce M, Bucardo F, Becker-Dreps S, Vinjé J. Gut Microbiome Changes Occurring with Norovirus Infection and Recovery in Infants Enrolled in a Longitudinal Birth Cohort in Leon, Nicaragua. Viruses 2022; 14:v14071395. [PMID: 35891376 PMCID: PMC9323674 DOI: 10.3390/v14071395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Noroviruses are associated with one fifth of diarrheal illnesses globally and are not yet preventable with vaccines. Little is known about the effects of norovirus infection on infant gut microbiome health, which has a demonstrated role in protecting hosts from pathogens and a possible role in oral vaccine performance. In this study, we characterized infant gut microbiome changes occurring with norovirus-associated acute gastroenteritis (AGE) and the extent of recovery. Metagenomic sequencing was performed on the stools of five infants participating in a longitudinal birth cohort study conducted in León, Nicaragua. Taxonomic and functional diversities of gut microbiomes were profiled at time points before, during, and after norovirus infection. Initially, the gut microbiomes resembled those of breastfeeding infants, rich in probiotic species. When disturbed by AGE, Gammaproteobacteria dominated, particularly Pseudomonas species. Alpha diversity increased but the genes involved in carbohydrate metabolism and glycan biosynthesis decreased. After the symptoms subsided, the gut microbiomes rebounded with their taxonomic and functional communities resembling those of the pre-infection microbiomes. In this study, during disruptive norovirus-associated AGE, the gut microbiome was temporarily altered, returning to a pre-infection composition a median of 58 days later. Our study provides new insights for developing probiotic treatments and furthering our understanding of the role that episodes of AGE have in shaping the infant gut microbiome, their long-term outcomes, and implications for oral vaccine effectiveness.
Collapse
Affiliation(s)
- Jennifer L. Cannon
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
- CDC Foundation, Atlanta, GA 30329, USA
- Correspondence: ; Tel.: +1-404-639-2396
| | - Matthew H. Seabolt
- Office of Advanced Molecular Detection, National Center for Emerging & Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
- Leidos Inc., Reston, VA 20190, USA
| | - Ruijie Xu
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| | - Anna Montmayeur
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| | - Soo Hwan Suh
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
- Ministry of Food and Drug Safety, Cheonju-Si 28159, Korea
| | - Marta Diez-Valcarce
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| | - Filemón Bucardo
- Center for Infectious Diseases Research, National Autonomous University of Nicaragua—León (UNAN-León), León 21000, Nicaragua;
| | - Sylvia Becker-Dreps
- Department of Family Medicine and Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| |
Collapse
|
22
|
Asadi Z, Ghanbarpour R, Kalantar-Neyestanaki D, Alizade H. Determination of extended-spectrum β-lactamase producing and hybrid pathotypes of Escherichia coli isolates from diarrheic samples. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Wang D, He Y, Liu K, Deng S, Fan Y, Liu Y. Sodium Humate Alleviates Enterotoxigenic Escherichia coli-Induced Intestinal Dysfunction via Alteration of Intestinal Microbiota and Metabolites in Mice. Front Microbiol 2022; 13:809086. [PMID: 35401451 PMCID: PMC8992542 DOI: 10.3389/fmicb.2022.809086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) can damage intestinal epithelial barrier function and lead to serious intestinal diarrhea in newborns and young animals. Sodium humate (HNa) is natural organic bioactive compound possessing antibacterial, anti-inflammatory, and anti-diarrheal properties. This study investigated the alleviative potential of HNa on the impaired intestinal barrier and intestinal inflammation, and regulatory effects on gut microbiota and metabolites in ETEC K88 infected mice. A total of 30 female mice were randomly assigned into three groups. The mice in the control and ETEC groups were gavaged with 0.2 mL of sterile saline, while the mice in the ETEC + HNa group were gavaged with 0.2 mL of 5% HNa, daily. On day 8, the mice in ETEC and ETEC + HNa group were challenged with ETEC K88. The trial lasted for 12 days. HNa administration elevated ETEC K88-induced body weight loss and ameliorated jejunum and colon pathological injury. HNa also reduced the levels of pro-inflammatory cytokines in the serum, jejunum, and colon. Additionally, HNa reduced intestinal barrier damage by up-regulating the expression of tight junction proteins (TJPs) and mucosal repair factors. 16s rDNA gene sequencing results showed that HNa increased the abundance of beneficial bacteria Lactobacillus, Prevotella_9, and Odoribacter but decreased the abundance of pathogenic bacteria Escherichia and Gastranaerophilales in the feces of mice. Moreover, metabolomic analysis revealed that the concentrations of 15 metabolites, the pathways of protein digestion and absorption, and propanoic acid metabolism were changed by HNa administration. In conclusion, HNa could alleviate ETEC K88-induced intestinal dysfunction through restoring intestinal barrier integrity, modulating gut microbiota, and metabolites.
Collapse
Affiliation(s)
- Dong Wang
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanjun He
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kexin Liu
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shouxiang Deng
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuying Fan
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yun Liu
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
FIGUEROA-DUCOING BK, CARRILLO-SANCHEZ AK, RIVERA-GUTIERREZ S, RIOS-MUÑIZ D, ESTRADA-GARCIA T, CERNA-CORTES JF. In Mexico City, fresh-squeezed street-vended orange juice is contaminated with fecal coliforms, Escherichia coli, and Shiga toxin-producing E. coli: A potential risk for acquiring foodborne diseases. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.52022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Bioprospecting Antimicrobials from Lactiplantibacillus plantarum: Key Factors Underlying Its Probiotic Action. Int J Mol Sci 2021; 22:ijms222112076. [PMID: 34769500 PMCID: PMC8585029 DOI: 10.3390/ijms222112076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/16/2023] Open
Abstract
Lactiplantibacillus plantarum (L. plantarum) is a well-studied and versatile species of lactobacilli. It is found in several niches, including human mucosal surfaces, and it is largely employed in the food industry and boasts a millenary tradition of safe use, sharing a long-lasting relationship with humans. L. plantarum is generally recognised as safe and exhibits a strong probiotic character, so that several strains are commercialised as health-promoting supplements and functional food products. For these reasons, L. plantarum represents a valuable model to gain insight into the nature and mechanisms of antimicrobials as key factors underlying the probiotic action of health-promoting microbes. Probiotic antimicrobials can inhibit the growth of pathogens in the gut ensuring the intestinal homeostasis and contributing to the host health. Furthermore, they may be attractive alternatives to conventional antibiotics, holding potential in several biomedical applications. The aim of this review is to investigate the most relevant papers published in the last ten years, bioprospecting the antimicrobial activity of characterised probiotic L. plantarum strains. Specifically, it focuses on the different chemical nature, the action spectra and the mechanisms underlying the bioactivity of their antibacterial and antiviral agents. Emerging trends in postbiotics, some in vivo applications of L. plantarum antimicrobials, including strengths and limitations of their therapeutic potential, are addressed and discussed.
Collapse
|
26
|
Characteristics of diarrheagenic Escherichia coli among patients with acute diarrhea in China, 2009‒2018. J Infect 2021; 83:424-432. [PMID: 34358582 DOI: 10.1016/j.jinf.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/22/2022]
Abstract
Objectives To investigate the epidemiological features of diarrheagenic Escherichia coli (DEC) in patients with acute diarrhea in China. Methods An active sentinel surveillance was performed in all-age patients with acute diarrhea in China, 2009‒2018. DEC was isolated and identified by serological assay and PCR from stool samples. Results DEC was determined in 6.68% (6,119/91,651) of the patients, with higher positive rates among females than among males (6.97% vs. 6.46%) and among 18‒59 years patients (7.88%) than among other age groups. Five pathotypes were identified, the most prevalent was enteroaggregative E. coli (EAEC), followed by enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). Pediatric patients <5 years had higher positive rate of EAEC (2.07%), followed by EPEC (1.81%), and enterohemorrhagic E. coli (EHEC) (0.31%), while the 18‒59 years patients had higher infection of ETEC (2.36%). ETEC and EPEC were more frequently identified in urban than rural areas, with age and gender adjusted positive rate of 1.68% vs. 1.14% respectively, and 1.77% vs. 1.55%, while EIEC and EHEC were more frequently identified in rural areas. Conclusions These findings highlight the epidemiology features of DEC and underscores the need for conducting DEC surveillance.
Collapse
|
27
|
Gomes TAT, Dobrindt U, Farfan MJ, Piazza RMF. Editorial: Interaction of Pathogenic Escherichia coli With the Host: Pathogenomics, Virulence and Antibiotic Resistance. Front Cell Infect Microbiol 2021; 11:654283. [PMID: 33869085 PMCID: PMC8044399 DOI: 10.3389/fcimb.2021.654283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Muenster, Muenster, Germany
| | - Mauricio J Farfan
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile.,Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|