1
|
Huo M, Ye J, Zhang Y, Wang M, Zhang J, Feng ST, Cai H, Zhong B, Dong Z. Quantitative assessment of brown adipose tissue whitening in a high-fat-diet murine model using synthetic magnetic resonance imaging. Heliyon 2024; 10:e27314. [PMID: 38509886 PMCID: PMC10950491 DOI: 10.1016/j.heliyon.2024.e27314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose This study aimed to quantitatively evaluate the whitening process of brown adipose tissue (BAT) in mice using synthetic magnetic resonance imaging (SyMRI) and analyzed the correlation between SyMRI quantitative measurements of BAT and serum lipid profiles. Methods Fifteen C57BL/6 mice were divided into three groups and fed different diets as follows: normal chow diet for 12 weeks, NCD group; high-fat diet (HFD) for 12 weeks, HFD-12w group; and HFD for 36 weeks, HFD-36w group. Mice were scanned using 3.0 T SyMRI. T1 and T2 values of BAT and interscapular BAT (iBAT) volume were measured. After sacrifice, the body weight of mice, lipid profiles, BAT morphology, and uncoupling protein 1 (UCP1) levels were determined. Statistical analysis was performed using one-way analysis of variance or Kruskal-Wallis test followed by Bonferroni correction for pairwise comparisons. Bonferroni-adjusted significance level was set at P < 0.017 (alpha: 0.05/3 = 0.017). Results T2 values of BAT in the HFD-12w group were significantly higher than those in the NCD group (P < 0.001), and those in the HFD-36w group were significantly higher than those in the other two groups (both P < 0.001). The iBAT volume in the HFD-36w group was significantly higher than that in the HFD-12w (P = 0.013) and NCD groups (P = 0.005). T2 values of BAT and iBAT volume were significantly correlated with serum lipid profiles and mouse body weight. Conclusions SyMRI can noninvasively evaluate the whitening process of BAT using T2 values and iBAT volume, thereby facilitating the visualization of the whitening process.
Collapse
Affiliation(s)
- Mengjuan Huo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58th, The Second Zhongshan Road, Guangzhou 510080, China
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou 510120, China
| | - Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, 58th, The Second Zhongshan Road, Guangzhou 510080, China
| | - Yinhong Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58th, The Second Zhongshan Road, Guangzhou 510080, China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58th, The Second Zhongshan Road, Guangzhou 510080, China
| | - Jialu Zhang
- MRI Research, GE Healthcare, Beijing 10076, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58th, The Second Zhongshan Road, Guangzhou 510080, China
| | - Huasong Cai
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58th, The Second Zhongshan Road, Guangzhou 510080, China
| | - Bihui Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, 58th, The Second Zhongshan Road, Guangzhou 510080, China
| | - Zhi Dong
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58th, The Second Zhongshan Road, Guangzhou 510080, China
| |
Collapse
|
2
|
Xu Y, Zheng H, Schumacher D, Liehn EA, Slabu I, Rusu M. Recent Advancements of Specific Functionalized Surfaces of Magnetic Nano- and Microparticles as a Theranostics Source in Biomedicine. ACS Biomater Sci Eng 2021; 7:1914-1932. [PMID: 33856199 DOI: 10.1021/acsbiomaterials.0c01393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Magnetic nano- and microparticles (MNMPs) belong to a highly versatile class of colloids with actuator and sensor properties that have been broadly studied for their application in theranostics such as molecular imaging and drug delivery. The use of advanced biocompatible, biodegradable polymers and polyelectrolytes as MNMP coating materials is essential to ensure the stability of MNMPs and enable efficient drug release while at the same time preventing cytotoxic effects. In the past years, huge progress has been made in terms of the design of MNMPs. Especially, the understanding of coating formation with respect to control of drug loading and release kinetics on the molecular level has significantly advanced. In this review, recent advancements in the field of MNMP surface engineering and the applicability of MNMPs in research fields of medical imaging, diagnosis, and nanotherapeutics are presented and discussed. Furthermore, in this review the main emphasis is put on the manipulation of biological specimens and cell trafficking, for which MNMPs represent a favorable tool enabling transport processes of drugs through cell membranes. Finally, challenges and future perspectives for applications of MNMPs as theranostic nanomaterials are discussed.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - Huabo Zheng
- Department of Cardiology, Pulmonology, Angiology, and Intensive Care, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - David Schumacher
- Department of Anesthesiology, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Elisa Anamaria Liehn
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany.,Department of Cardiology, Pulmonology, Angiology, and Intensive Care, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany.,Department of Pathology, Institute of Pathology "Victor Babes", Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen, Pauwelstr. 20, 52074 Aachen, Germany
| | - Mihaela Rusu
- Department of Pathology, Institute of Pathology "Victor Babes", Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| |
Collapse
|
3
|
Hu Q, Cao H, Zhou L, Liu J, Di W, Lv S, Ding G, Tang L. Measurement of BAT activity by targeted molecular magnetic resonance imaging. Magn Reson Imaging 2020; 77:1-6. [PMID: 33309921 DOI: 10.1016/j.mri.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of this study was to measure brown adipose tissue (BAT) activity by targeted peptide (CKGGRAKDC-NH2)-coupled, polyethylene glycol (PEG)-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with magnetic resonance imaging (MRI). METHODS The peptide was conjugated with PEG-coated USPIO to obtain targeted probes. Male C57BL/6 J mice were randomly divided into cold exposing and control group (n = 5 per group). T2*-weighted images were obtained pre- and post-contrast probes. Histological and gene expression analyses were carried out. RESULTS T2* relaxation time of BAT in the cold exposing group decreased more significantly compared to the control group. The calculated R2* increased with the reduction of T2* value. The ΔR2* (26.68 s-1) of BAT in the cold exposing group was significantly higher (P < 0.05) than the control group. Iron particle sediments in BAT of the cold exposing group were revealed more than the control group with Prussian blue staining. The UCP1 expression level was up-regulated after cold activation. CONCLUSIONS BAT activity could be measured in vivo by the targeted peptide-coupled, PEG-coated USPIOs with MRI.
Collapse
Affiliation(s)
- Qingqiao Hu
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Huixiao Cao
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Lu Zhou
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Juan Liu
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Wenjuan Di
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Shan Lv
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Guoxian Ding
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| | - Lijun Tang
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Wu M, Junker D, Branca RT, Karampinos DC. Magnetic Resonance Imaging Techniques for Brown Adipose Tissue Detection. Front Endocrinol (Lausanne) 2020; 11:421. [PMID: 32849257 PMCID: PMC7426399 DOI: 10.3389/fendo.2020.00421] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods can non-invasively assess brown adipose tissue (BAT) structure and function. Recently, MRI and MRS have been proposed as a means to differentiate BAT from white adipose tissue (WAT) and to extract morphological and functional information on BAT inaccessible by other means. Specifically, proton MR (1H) techniques, such as proton density fat fraction mapping, diffusion imaging, and intermolecular multiple quantum coherence imaging, have been employed to access BAT microstructure; MR thermometry, relaxometry, and MRI and MRS with 31P, 2H, 13C, and 129Xe have shown to provide complementary information on BAT function. The purpose of the present review is to provide a comprehensive overview of MR imaging and spectroscopy techniques used to detect BAT in rodents and in humans. The present work discusses common challenges of current methods and provides an outlook on possible future directions of using MRI and MRS in BAT studies.
Collapse
Affiliation(s)
- Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Mingming Wu
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Masthoff M, Buchholz R, Beuker A, Wachsmuth L, Kraupner A, Albers F, Freppon F, Helfen A, Gerwing M, Höltke C, Hansen U, Rehkämper J, Vielhaber T, Heindel W, Eisenblätter M, Karst U, Wildgruber M, Faber C. Introducing Specificity to Iron Oxide Nanoparticle Imaging by Combining 57Fe-Based MRI and Mass Spectrometry. NANO LETTERS 2019; 19:7908-7917. [PMID: 31556617 DOI: 10.1021/acs.nanolett.9b03016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Iron oxide nanoparticles (ION) are highly sensitive probes for magnetic resonance imaging (MRI) that have previously been used for in vivo cell tracking and have enabled implementation of several diagnostic tools to detect and monitor disease. However, the in vivo MRI signal of ION can overlap with the signal from endogenous iron, resulting in a lack of detection specificity. Therefore, the long-term fate of administered ION remains largely unknown, and possible tissue deposition of iron cannot be assessed with established methods. Herein, we combine nonradioactive 57Fe-ION MRI with ex vivo laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging, enabling unambiguous differentiation between endogenous iron (56Fe) and iron originating from applied ION in mice. We establish 57Fe-ION as an in vivo MRI sensor for cell tracking in a mouse model of subcutaneous inflammation and for assessing the long-term fate of 57Fe-ION. Our approach resolves the lack of detection specificity in ION imaging by unambiguously recording a 57Fe signature.
Collapse
Affiliation(s)
- Max Masthoff
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Rebecca Buchholz
- Institute for Inorganic and Analytical Chemistry, University of Muenster , 48149 Muenster , Germany
| | - Andre Beuker
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | | | - Franziska Albers
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Felix Freppon
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Anne Helfen
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Mirjam Gerwing
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Carsten Höltke
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine , University Hospital Muenster , 48149 Muenster , Germany
| | - Jan Rehkämper
- Institute of Pathology , University Hospital Muenster , 48149 Muenster , Germany
| | - Torsten Vielhaber
- Institute for Inorganic and Analytical Chemistry, University of Muenster , 48149 Muenster , Germany
| | - Walter Heindel
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Michel Eisenblätter
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Uwe Karst
- Institute for Inorganic and Analytical Chemistry, University of Muenster , 48149 Muenster , Germany
- DFG Cluster of Excellence EXC 1003 "Cells in Motion" , University of Muenster , 48149 Muenster , Germany
| | - Moritz Wildgruber
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
- DFG Cluster of Excellence EXC 1003 "Cells in Motion" , University of Muenster , 48149 Muenster , Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
- DFG Cluster of Excellence EXC 1003 "Cells in Motion" , University of Muenster , 48149 Muenster , Germany
| |
Collapse
|
6
|
Frey A, Ramaker K, Röckendorf N, Wollenberg B, Lautenschläger I, Gébel G, Giemsa A, Heine M, Bargheer D, Nielsen P. Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Karampinos DC, Weidlich D, Wu M, Hu HH, Franz D. Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function. Handb Exp Pharmacol 2019; 251:299-324. [PMID: 30099625 DOI: 10.1007/164_2018_158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present review reports on the current knowledge and recent findings in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissue (BAT). The work summarizes the features and mechanisms that allow MRI to differentiate BAT from white adipose tissue (WAT) by making use of their distinct morphological appearance and the functional characteristics of BAT. MR is a versatile imaging modality with multiple contrast mechanisms as potential candidates in the study of BAT, targeting properties of 1H, 13C, or 129Xe nuclei. Techniques for assessing BAT morphometry based on fat fraction and markers of BAT microstructure, including intermolecular quantum coherence and diffusion imaging, are first described. Techniques for assessing BAT function based on the measurement of BAT metabolic activity, perfusion, oxygenation, and temperature are then presented. The application of the above methods in studies of BAT in animals and humans is described, and future directions in MR study of BAT are finally discussed.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Targeted Molecular Magnetic Resonance Imaging Detects Brown Adipose Tissue with Ultrasmall Superparamagnetic Iron Oxide. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3619548. [PMID: 30406134 PMCID: PMC6199858 DOI: 10.1155/2018/3619548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 11/18/2022]
Abstract
The peptide (CKGGRAKDC-NH2) specifically targets the brown adipose tissue (BAT). Here we applied this peptide coupled with polyethylene glycol (PEG)-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to detect BAT in vivo by magnetic resonance imaging (MRI). The peptide was conjugated with PEG-coated USPIO nanoparticles to obtain targeted USPIO nanoprobes. Then the nanoprobes for BAT were evaluated in mice. T2⁎-weighted images were performed, precontrast and postcontrast USPIO nanoparticles. Finally, histological analyses proved the specific targeting. The specificity of targeted USPIO nanoprobes was observed in mice. The T2⁎ relaxation time of BAT in the targeted group decreased obviously compared to the controls (P<0.001). Prussian blue staining and transmission electron microscope confirmed the specific presence of iron oxide. This study demonstrated that peptide (CKGGRAKDC-NH2) coupled with PEG-coated USPIO nanoparticles could identify BAT noninvasively in vivo with MRI.
Collapse
|
9
|
Guo Y, Li Y, Yang Y, Tang S, Zhang Y, Xiong L. Multiscale Imaging of Brown Adipose Tissue in Living Mice/Rats with Fluorescent Polymer Dots. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20884-20896. [PMID: 29893119 DOI: 10.1021/acsami.8b06094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brown adipose tissue (BAT) has been identified as a promising target for the treatment of obesity, diabetes, and relevant metabolism disorders because of the adaptive thermogenesis ability of this tissue. Visualizing BAT may provide an essential tool for pathology study, drug screening, and efficacy evaluation. Owing to limitations of current nuclear and magnetic resonance imaging approaches for BAT detection, fluorescence imaging has advantages in large-scale preclinical research on small animals. Here, fast BAT imaging in mice is conducted based on polymer dots as fluorescent probes. As early as 5 min after the intravenous injection of polymer dots, extensive fluorescence is detected in the interscapular BAT and axillar BAT. In addition, axillar and inguinal white adipose tissues (WAT) are recognized. The real-time in vivo behavior of polymer dots in rodents is monitored using the probe-based confocal laser endomicroscopy imaging, and the preferred accumulation in BAT over WAT is confirmed by histological assays. Moreover, the whole study is conducted without a low temperature or pharmaceutical stimulation. The imaging efficacy is verified at the cellular, histological, and whole-body levels, and the present results indicate that fluorescent polymer dots may be a promising tool for the visualization of BAT in living subjects.
Collapse
Affiliation(s)
- Yixiao Guo
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yidian Yang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors , Shanghai Normal University , Shanghai 200234 , P. R. China
| | - Shiyi Tang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| |
Collapse
|
10
|
Chondronikola M, Beeman SC, Wahl RL. Non-invasive methods for the assessment of brown adipose tissue in humans. J Physiol 2018; 596:363-378. [PMID: 29119565 PMCID: PMC5792561 DOI: 10.1113/jp274255] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023] Open
Abstract
Brown adipose tissue (BAT) is a recently rediscovered tissue in people that has shown promise as a potential therapeutic target against obesity and its metabolic abnormalities. Reliable non-invasive assessment of BAT volume and activity is critical to allow its importance in metabolic control to be evaluated. Positron emission tomography/computed tomography (PET/CT) in combination with 2-deoxy-2-[18 F]fluoroglucose administration is currently the most frequently used and most established method for the detection and quantification of activated BAT in humans. However, it involves radiation exposure and can detect activated (e.g. after cold exposure), but not quiescent, BAT. Several alternative methods that overcome some of these limitations have been developed including different PET approaches, single-photon emission imaging, CT, magnetic resonance based approaches, contrast-enhanced ultrasound, near infrared spectroscopy, and temperature assessment of fat depots containing brown adipocytes. The purpose of this review is to summarize and critically evaluate the currently available methods that non-invasively probe various aspects of BAT biology in order to assess BAT volume and/or metabolism. Although several of these methods show promise for the non-invasive assessment of BAT volume and function, further research is needed to optimize them to enable an accurate, reproducible and practical means for the assessment of human BAT content and its metabolic function.
Collapse
Affiliation(s)
- Maria Chondronikola
- Center for Human NutritionWashington University School of MedicineSt LouisMOUSA
- Harokopio University of AthensAthensGreece
| | - Scott C. Beeman
- Department of Radiology, Mallinckrodt Institute of RadiologyWashington University School of MedicineSt LouisMOUSA
| | - Richard L. Wahl
- Department of Radiology, Mallinckrodt Institute of RadiologyWashington University School of MedicineSt LouisMOUSA
- Department of Radiation Oncology, Mallinckrodt Institute of RadiologyWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
11
|
Yin Y, Tan Z, Hu L, Yu S, Liu J, Jiang G. Isotope Tracers To Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications. Chem Rev 2017; 117:4462-4487. [PMID: 28212026 DOI: 10.1021/acs.chemrev.6b00693] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The rapidly growing applicability of metal-containing engineered nanoparticles (MENPs) has made their environmental fate, biouptake, and transformation important research topics. However, considering the relatively low concentration of MENPs and the high concentration of background metals in the environment and in organisms, tracking the fate of MENPs in environment-related scenarios remains a challenge. Intrinsic labeling of MENPs with radioactive or stable isotopes is a useful tool for the highly sensitive and selective detection of MENPs in the environment and organisms, thus enabling tracing of their transformation, uptake, distribution, and clearance. In this review, we focus on radioactive/stable isotope labeling of MENPs for their environmental and biological tracing. We summarize the advantages of intrinsic radioactive/stable isotopes for MENP labeling and discuss the considerations in labeling isotope selection and preparation of labeled MENPs, as well as exposure routes and detection of labeled MENPs. In addition, current practice in the use of radioactive/stable isotope labeling of MENPs to study their environmental fate and bioaccumulation is reviewed. Future perspectives and potential applications are also discussed, including imaging techniques for radioactive- and stable-isotope-labeled MENPs, hyphenated multistable isotope tracers with speciation analysis, and isotope fractionation as a MENP tracer. It is expected that this critical review could provide the necessary background information to further advance the applications of isotope tracers to study the environmental fate and bioaccumulation of MENPs.
Collapse
Affiliation(s)
- Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China.,Institute of Environment and Health, Jianghan University , Wuhan 430056, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| |
Collapse
|