1
|
Chen J, Huang C, Shanbhogue K, Xia D, Bruno M, Huang Y, Block KT, Chandarana H, Feng L. DCE-MRI of the liver with sub-second temporal resolution using GRASP-Pro with navi-stack-of-stars sampling. NMR IN BIOMEDICINE 2024; 37:e5262. [PMID: 39323100 DOI: 10.1002/nbm.5262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Respiratory motion-induced image blurring and artifacts can compromise image quality in dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Despite remarkable advances in respiratory motion detection and compensation in past years, these techniques have not yet seen widespread clinical adoption. The accuracy of image-based motion detection can be especially compromised in the presence of contrast enhancement and/or in situations involving deep and/or irregular breathing patterns. This work proposes a framework that combines GRASP-Pro (Golden-angle RAdial Sparse Parallel MRI with imProved performance) MRI with a new radial sampling scheme called navi-stack-of-stars for free-breathing DCE-MRI of the liver without the need for explicit respiratory motion compensation. A prototype 3D golden-angle radial sequence with a navi-stack-of-stars sampling scheme that intermittently acquires a 2D navigator was implemented. Free-breathing DCE-MRI of the liver was conducted in 24 subjects at 3T including 17 volunteers and 7 patients. GRASP-Pro reconstruction was performed with a temporal resolution of 0.34-0.45 s per volume, whereas standard GRASP reconstruction was performed with a temporal resolution of 15 s per volume. Motion compensation was not performed in all image reconstruction tasks. Liver images in different contrast phases from both GRASP and GRASP-Pro reconstructions were visually scored by two experienced abdominal radiologists for comparison. The nonparametric paired two-tailed Wilcoxon signed-rank test was used to compare image quality scores, and the Cohen's kappa coefficient was calculated to evaluate the inter-reader agreement. GRASP-Pro MRI with sub-second temporal resolution consistently received significantly higher image quality scores (P < 0.05) than standard GRASP MRI throughout all contrast enhancement phases and across all assessment categories. There was a substantial inter-reader agreement for all assessment categories (ranging from 0.67 to 0.89). The proposed technique using GRASP-Pro reconstruction with navi-stack-of-stars sampling holds great promise for free-breathing DCE-MRI of the liver without respiratory motion compensation.
Collapse
Affiliation(s)
- Jingjia Chen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Chenchan Huang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Krishna Shanbhogue
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ding Xia
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary Bruno
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Yuhui Huang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kai Tobias Block
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Li Feng
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Zhou M, Huang H, Gong T, Chen M. The application of the golden-angle radial sparse parallel technique in T restaging of locally advanced rectal cancer after neoadjuvant chemoradiotherapy. Abdom Radiol (NY) 2024; 49:2960-2970. [PMID: 38822854 DOI: 10.1007/s00261-024-04400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE To evaluate the diagnostic performance of Golden-Angle Radial Sparse Parallel (GRASP) MRI in identifying pathological stage T0-1 (ypT0-1) after neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer, compared to T2-weighted imaging (T2WI) combined with Diffusion Weighted Imaging (DWI). METHODS In this retrospective study, 168 patients were carefully selected based on inclusion criteria that targeted individuals with biopsy-confirmed primary rectal adenocarcinoma, identified via MRI as having locally advanced disease (≥ T3 and/or positive lymph node results) prior to nCRT. Post-nCRT, all MRI images obtained after nCRT were assessed by two observers independently. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for identifying ypT0-1 based on GRASP and T2 + DWI were calculated. Multivariable regression analysis was used to explore the factors independently associated with ypT0-1 tumor. RESULTS 45 patients out of these cases were ypT0-1, and the accuracy, sensitivity, specificity, PPV, and NPV of GRASP were higher than the T2 + DWI (88% vs 74%, 93% vs 71%, 86% vs 75%, 71% vs 52% and 97% vs 88%), the AUC in identifying ypT0-1 tumor based on GRASP was 0.90 (95% CI:0.84, 0.94), which was better than the T2 + DWI (0.73; 95% CI: 0.66, 0.80). Multivariable logistic regression analysis showed that the yT stage on GRASP scans was the only factor independently associated with ypT0-1 tumor (P < 0.001). CONCLUSION The GRASP helped distinguish ypT0-1 tumor after nCRT and can select patients who may be suitable for local excision.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Radiology, Sichuan Provincial Orthpaedics Hospital, Chengdu, 610041, People's Republic of China.
| | - Hongyun Huang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Tong Gong
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Meining Chen
- Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, 200135, People's Republic of China
| |
Collapse
|
3
|
Pan YN, Gu MY, Mao QL, Wei YG, Zhang L, Tang GY. Value of perfusion parameters from golden-angle radial sparse parallel dynamic contrast-enhanced magnetic resonance imaging in predicting pathological complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Diagn Interv Radiol 2024; 30:228-235. [PMID: 38528760 PMCID: PMC11589510 DOI: 10.4274/dir.2024.232460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/10/2024] [Indexed: 03/27/2024]
Abstract
PURPOSE Non-invasive methods for predicting pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT) can provide distinct leverage in the management of patients with locally advanced rectal cancer (LARC). This study aimed to investigate whether including the golden-angle radial sparse parallel (GRASP) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion parameter (Ktrans), in addition to tumor regression grading (TRG) and apparent diffusion coefficient (ADC) values, can improve the predictive ability for pCR. METHODS Patients with LARC who underwent nCRT and subsequent surgery were included. The imaging parameters were compared between patients with and without pCR. Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive ability of these parameters for pCR. RESULTS A total of 111 patients were included in the study. A pCR was obtained in 32 patients (28.8%). MRI-based TRG (mrTRG) showed a negative correlation with pCR (r = -0.61, P < 0.001), and the average ADC value showed a positive correlation with pCR (r = 0.62, P < 0.001). Before nCRT, Ktrans in the pCR group was significantly higher than in the non-pCR group (1.30 ± 0.24 vs. 0.88 ± 0.34, P < 0.001), but no difference was identified after nCRT. Following ROC curve analysis, the area under the curve (AUC) of mrTRG (level 1-2), average ADC value, and Ktrans value for predicting pCR were 0.738 [95% confidence interval (CI): 0.65-0.82], 0.78 (95% CI: 0.69-0.86), and 0.84 (95% CI: 0.77-0.92), respectively. The model combining the three parameters had significantly higher predictive ability for pCR (AUC: 0.94, 95% CI: 0.88-0.98). CONCLUSION The use of a combination of the GRASP DCE-MRI Ktrans with mrTRG and ADC can lead to a better pCR predictive performance.
Collapse
Affiliation(s)
- Yu-Ning Pan
- Shanghai Tenth People’s Hospital of Tongji University, Department of Radiology, Shanghai, China
| | - Meng-Yin Gu
- Ningbo University, Department of Medical College, Ningbo, China
| | - Quan-Liang Mao
- The First Affiliated Hospital of Ningbo University, Department of Radiology, Ningbo, China
| | - Yu-Guo Wei
- GE Healthcare, Global Medical Service, Advanced Analytics, Hangzhou, China
| | - Lin Zhang
- Shanghai Tenth People’s Hospital of Tongji University, Department of Radiology, Shanghai, China
| | - Guang-Yu Tang
- Shanghai Tenth People’s Hospital of Tongji University, Department of Radiology, Shanghai, China
| |
Collapse
|
4
|
Ariyurek C, Koçanaoğulları A, Afacan O, Kurugol S. Motion-compensated image reconstruction for improved kidney function assessment using dynamic contrast-enhanced MRI. NMR IN BIOMEDICINE 2024; 37:e5116. [PMID: 38359842 PMCID: PMC11721693 DOI: 10.1002/nbm.5116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Accurately measuring renal function is crucial for pediatric patients with kidney conditions. Traditional methods have limitations, but dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides a safe and efficient approach for detailed anatomical evaluation and renal function assessment. However, motion artifacts during DCE-MRI can degrade image quality and introduce misalignments, leading to unreliable results. This study introduces a motion-compensated reconstruction technique for DCE-MRI data acquired using golden-angle radial sampling. Our proposed method achieves three key objectives: (1) identifying and removing corrupted data (outliers) using a Gaussian process model fitting with a k -space center navigator, (2) efficiently clustering the data into motion phases and performing interphase registration, and (3) utilizing a novel formulation of motion-compensated radial reconstruction. We applied the proposed motion correction (MoCo) method to DCE-MRI data affected by varying degrees of motion, including both respiratory and bulk motion. We compared the outcomes with those obtained from the conventional radial reconstruction. Our evaluation encompassed assessing the quality of images, concentration curves, and tracer kinetic model fitting, and estimating renal function. The proposed MoCo reconstruction improved the temporal signal-to-noise ratio for all subjects, with a 21.8% increase on average, while total variation values of the aorta, right, and left kidney concentration were improved for each subject, with 32.5%, 41.3%, and 42.9% increases on average, respectively. Furthermore, evaluation of tracer kinetic model fitting indicated that the median standard deviation of the estimated filtration rate (σ F T ), mean normalized root-mean-squared error (nRMSE), and chi-square goodness-of-fit of tracer kinetic model fit were decreased from 0.10 to 0.04, 0.27 to 0.24, and, 0.43 to 0.27, respectively. The proposed MoCo technique enabled more reliable renal function assessment and improved image quality for detailed anatomical evaluation in the case of bulk and respiratory motion during the acquisition of DCE-MRI.
Collapse
Affiliation(s)
- Cemre Ariyurek
- Quantitative Intelligent Imaging Lab (QUIN), Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aziz Koçanaoğulları
- Quantitative Intelligent Imaging Lab (QUIN), Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Onur Afacan
- Quantitative Intelligent Imaging Lab (QUIN), Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sila Kurugol
- Quantitative Intelligent Imaging Lab (QUIN), Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Spogis J, Katemann C, Zhang S, Esser M, Tsiflikas I, Schäfer J. Feasibility and Implementation of a 4D Free-Breathing Variable Density Stack-of-Stars Functional Magnetic Resonance Urography in Young Children Without Sedation. Invest Radiol 2024; 59:271-277. [PMID: 37707861 DOI: 10.1097/rli.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
BACKGROUND Functional magnetic resonance urography (MRU) is well established in the diagnostic workup of urinary tract anomalies in children, providing comprehensive morphological and functional information. However, dynamic contrast-enhanced images acquired in the standard Cartesian k-space manner are prone to motion artifacts. A newly introduced 4D high spatiotemporal resolution dynamic contrast-enhanced magnetic resonance imaging based on variable density elliptical centric radial stack-of-stars sharing technique has shown improved image quality regarding motions under free breathing. OBJECTIVE The aims of this study were to implement this 4D free-breathing sequence for functional MRU and to compare its image quality and analyzability with standard breath-hold Cartesian MRU. MATERIALS AND METHODS We retrospectively evaluated all functional 4D MRU performed without general anesthesia between September 2021 and December 2022 and compared them with matched pairs (age, affected kidney, diagnosis) of standard Cartesian MRU between 2016 and 2022. Image analysis was performed by 2 radiologists independently regarding the following criteria using a 4-point Likert scale, with 4 being the best: overall image quality, diagnostic confidence, respiratory motion artifacts, as well as sharpness and contrast of aorta, kidneys, and ureters. We also measured vertical kidney motion due to respiratory motion and compared the variance for each kidney using F test. Finally, both radiologists calculated the volume, split renal volume (vDRF), split renal Patlak function (pDRF), and split renal function considering the volume and Patlak function (vpDRF) for each kidney. Values were compared using Bland-Altman plots and F test. RESULTS Forty children (20 for 4D free-breathing and standard breath-hold, respectively) were enrolled. Ten children of each group were examined using feed-and-sleep technique (median age: 4D, 3.3 months; standard, 4.2 months), 10 were awake (median age: 4D, 8.9 years; standard, 8.6 years). Overall image quality, diagnostic confidence, respiratory motion artifacts, as well as sharpness and contrast of the aorta, kidneys, and ureters were rated significantly better for 4D free-breathing compared with standard breath-hold by both readers ( P ranging from <0.0001 to 0.005). Vertical kidney motion was significantly reduced in 4D free-breathing for the right and the left kidney (both P < 0.001). There was a significantly smaller variance concerning the differences between the 2 readers for vpDRF in 4D MRU ( P = 0.0003). In contrast, no significant difference could be demonstrated for volume ( P = 0.05), vDRF ( P = 0.93), and pDRF ( P = 0.14). CONCLUSIONS We demonstrated the feasibility of applying a 4D free-breathing variable density stack-of-stars imaging for functional MRU in young pediatric patients with improved image quality, fewer motion artifacts, and improved functional analyzability.
Collapse
Affiliation(s)
- Jakob Spogis
- From the Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (J.S., M.E., I.T., J.S.); and Philips GmbH Market DACH, Hamburg, Germany (C.K., S.Z.)
| | | | | | | | | | | |
Collapse
|
6
|
Zhou M, Huang H, Fan Y, Chen M, Li M, Wang Y. The application of quantitative perfusion analysis of golden-angle radial sparse parallel MRI and R2∗ value for predicting pathological prognostic factors in rectal cancer. Clin Radiol 2024; 79:124-132. [PMID: 38030505 DOI: 10.1016/j.crad.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
AIM To investigate the diagnostic value of golden-angle radial sparse parallel magnetic resonance imaging (MRI) (GRASP) and R2∗ in predicting the prognostic factors of resectable rectal cancer. MATERIALS AND METHODS A total of 108 patients with rectal adenocarcinoma were included in this retrospective study. The volume transfer constant (Ktrans), rate constant (Kep), plasma volume fraction (Ve), and R2∗ were obtained. Univariate and multivariate logistic regression were conducted. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of the imaging parameters. RESULTS The Ktrans was found to be significantly higher in rectal cancers with positive lymph node metastasis (LNM), higher tumour grade, positive lymphovascular invasion (LVI), and higher ki-67 (all p<0.05). The Kep was also significantly higher in the LNM-positive group (p<0.001), while the R2∗ was higher in rectal cancers with LNM-positive, higher tumour grade, LVI-positive, and higher ki-67 (all p<0.05). Combining the Ktrans and R2∗ provided the highest area under the ROC curve (AUC) for LNM-positive and higher ki-67 tumours differentiation (0.790 and 0.823, respectively). DISCUSSION Combining quantitative parameters of the Ktrans and R2∗ could be used to non-invasively predict pathological prognostic factors preoperatively.
Collapse
Affiliation(s)
- M Zhou
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - H Huang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Y Fan
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - M Chen
- Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, 200135, China
| | - M Li
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Y Wang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
7
|
Wang ZG, Yang FL, Liu CY, Wang F, Xiong Y, Zhang Q, Chen MN, Lai H. Predicting intraoperative hemorrhage during curettage treatment of cesarean scar pregnancy using free-breathing GRASP DCE-MRI. BMC Pregnancy Childbirth 2024; 24:22. [PMID: 38172701 PMCID: PMC10763255 DOI: 10.1186/s12884-023-06188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE To explore the feasibility of the golden-angle radial sparse parallel (GRASP) dynamic magnetic resonance imaging (MRI) technique in predicting the intraoperative bleeding risk of scar pregnancy. METHODS A total of 49 patients with cesarean scar pregnancy (CSP) who underwent curettage and GRASP-MRI imaging were retrospectively selected between January 2021 and July 2022. The pharmacokinetic parameters, including Wash-in, Wash-out, time to peck (TTP), initial area under the curve (iAUC), the transfer rate constant (Ktrans), constant flow rate (Kep), and volume of extracellular space (Ve), were calculated. The amount of intraoperative bleeding was recorded by a gynecologist who performed surgery, after which patients were divided into non-hemorrhage (blood loss ≤ 200 mL) and hemorrhage (blood loss > 200 mL) groups. The measured pharmacokinetic parameters were statistically compared using the t-test or Mann-Whitney U test with a significant level set to be p < 0.05. The receiver operating characteristic (ROC) curve was constructed, and the area under the curve (AUC) was calculated to evaluate each parameter's capability in intraoperative hemorrhage subgroup classification. RESULTS Twenty patients had intraoperative hemorrhage (blood loss > 200 mL) during curettage. The hemorrhage group had larger Wash-in, iAUC, Ktrans, Ve, and shorter TTP than the non-hemorrhage group (all P > 0.05). Wash-in had the highest AUC value (0.90), while Ktrans had the lowest value (0.67). Wash-out and Kep were not significantly different between the two groups. CONCLUSION GRASP DCE-MRI has the potential to forecast intraoperative hemorrhage during curettage treatment of CSP, with Wash-in exhibiting the highest predictive performance. This data holds promise for advancing personalized treatment. However, further study is required to compare its effectiveness with other risk factors identified through anatomical MRI and ultrasound.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- Department of Radiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No.1617 of Riyue Avenue, Qingyang District, Chengdu, 610091, China
| | - Feng-Leng Yang
- Department of Radiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No.1617 of Riyue Avenue, Qingyang District, Chengdu, 610091, China
| | - Chun-Ying Liu
- Department of Radiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No.1617 of Riyue Avenue, Qingyang District, Chengdu, 610091, China
| | - Fang Wang
- Department of Radiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No.1617 of Riyue Avenue, Qingyang District, Chengdu, 610091, China
| | - Ying Xiong
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Zhang
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei-Ning Chen
- Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China
| | - Hua Lai
- Department of Radiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No.1617 of Riyue Avenue, Qingyang District, Chengdu, 610091, China.
| |
Collapse
|
8
|
Fan Y, Chen M, Huang H, Zhou M. Predicting lymphovascular invasion in rectal cancer: evaluating the performance of golden-angle radial sparse parallel MRI for rectal perfusion assessment. Sci Rep 2023; 13:8453. [PMID: 37231115 DOI: 10.1038/s41598-023-35763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
This study aims to determine whether the dual-parameter approach combined with either time-resolved angiography with stochastic trajectories (TWIST) or golden-angle radial sparse parallel (GRASP) and diffusion-weighted imaging (DWI) has superior diagnostic performance in predicting pathological lymphovascular invasion (pLVI) rectal cancer when compared with traditional single-parameter evaluations using DWI alone. Patients with pathologically confirmed rectal cancer were enrolled. Perfusion (influx forward volume transfer constant [Ktrans] and rate constant [Kep]) and apparent diffusion coefficient (ADC) were measured by two researchers. For both sequences, areas under receiver operating characteristic (ROCs) to predict pLVI-positive rectal cancer were compared. A total of 179 patients were enrolled in our study. A combined analysis of ADC and perfusion parameters (Ktrans) acquired with GRASP yielded a higher diagnostic performance compared with diffusion parameters alone (area under the curve, 0.91 ± 0.03 vs. 0.71 ± 0.06, P < 0.001); However, ADC with GRASP-acquired Kep and ADC with TWIST-acquired perfusion parameters (Ktrans or Kep) did not offer any additional benefit. The Ktrans of the GRASP technique improved the diagnostic performance of multiparametric MRI to predict rectal cancers with pLVI-positive. In contrast, TWIST did not achieve this effect.
Collapse
Affiliation(s)
- Yingying Fan
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32, West Second Section of First Ring Road, Qingyang District, Chengdu, 610072, People's Republic of China
| | - Meining Chen
- MR Scientific Marketing, Siemens Healthineers, Shanghai, China
| | - Hongyun Huang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32, West Second Section of First Ring Road, Qingyang District, Chengdu, 610072, People's Republic of China
| | - Mi Zhou
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32, West Second Section of First Ring Road, Qingyang District, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
9
|
Jafari R, Do RKG, LaGratta MD, Fung M, Bayram E, Cashen T, Otazo R. GRASPNET: Fast spatiotemporal deep learning reconstruction of golden-angle radial data for free-breathing dynamic contrast-enhanced magnetic resonance imaging. NMR IN BIOMEDICINE 2023; 36:e4861. [PMID: 36305619 PMCID: PMC9898111 DOI: 10.1002/nbm.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The purpose of the current study was to develop a deep learning technique called Golden-angle RAdial Sparse Parallel Network (GRASPnet) for fast reconstruction of dynamic contrast-enhanced 4D MRI acquired with golden-angle radial k-space trajectories. GRASPnet operates in the image-time space and does not use explicit data consistency to minimize the reconstruction time. Three different network architectures were developed: (1) GRASPnet-2D: 2D convolutional kernels (x,y) and coil and contrast dimensions collapsed into a single combined dimension; (2) GRASPnet-3D: 3D kernels (x,y,t); and (3) GRASPnet-2D + time: two 3D kernels to first exploit spatial correlations (x,y,1) followed by temporal correlations (1,1,t). The networks were trained using iterative GRASP reconstruction as the reference. Free-breathing 3D abdominal imaging with contrast injection was performed on 33 patients with liver lesions using a T1-weighted golden-angle stack-of-stars pulse sequence. Ten datasets were used for testing. The three GRASPnet architectures were compared with iterative GRASP results using quantitative and qualitative analysis, including impressions from two body radiologists. The three GRASPnet techniques reduced the reconstruction time to about 13 s with similar results with respect to iterative GRASP. Among the GRASPnet techniques, GRASPnet-2D + time compared favorably in the quantitative analysis. Spatiotemporal deep learning enables reconstruction of dynamic 4D contrast-enhanced images in a few seconds, which would facilitate translation to clinical practice of compressed sensing methods that are currently limited by long reconstruction times.
Collapse
Affiliation(s)
- Ramin Jafari
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
10
|
Munoz C, Fotaki A, Botnar RM, Prieto C. Latest Advances in Image Acceleration: All Dimensions are Fair Game. J Magn Reson Imaging 2023; 57:387-402. [PMID: 36205716 PMCID: PMC10092100 DOI: 10.1002/jmri.28462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/20/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a versatile modality that can generate high-resolution images with a variety of tissue contrasts. However, MRI is a slow technique and requires long acquisition times, which increase with higher temporal and spatial resolution and/or when multiple contrasts and large volumetric coverage is required. In order to speedup MR data acquisition, several approaches have been introduced in the literature. Most of these techniques acquire less data than required and exploit intrinsic redundancies in the MR images to recover the information that was not sampled. This article presents a review of MR acquisition and reconstruction methods that have exploited redundancies in the temporal, spatial, and contrast/parametric dimensions to accelerate image data acquisition, focusing on cardiac and abdominal MR imaging applications. The review describes how each of these dimensions has been separately exploited for speeding up MR acquisition to then discuss more advanced techniques where multiple dimensions are exploited together for further reducing scan times. Finally, future directions for multidimensional image acceleration and remaining technical challenges are discussed. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millenium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millenium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago, Chile
| |
Collapse
|
11
|
Seo M, Yoon J, Choi Y, Nickel D, Jang J, Shin NY, Ahn KJ, Kim BS. Image Quality of High-Resolution 3-Dimensional Neck MRI Using CAIPIRINHA-VIBE and GRASP-VIBE: An Intraindividual Comparative Study. Invest Radiol 2022; 57:711-719. [PMID: 35703461 DOI: 10.1097/rli.0000000000000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Acquiring high-quality magnetic resonance imaging (MRI) of the head and neck region is often challenging due to motion and susceptibility artifacts. This study aimed to compare image quality of 2 high-resolution three-dimensional (3D) MRI sequences of the neck, controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), and golden-angle radial sparse parallel imaging (GRASP)-VIBE. MATERIALS AND METHODS One hundred seventy-three patients indicated for contrast-enhanced neck MRI examination were scanned using 3 T scanners and both CAIPIRINHA-VIBE and GRASP-VIBE with nearly isotropic 3D acquisitions (<1 mm in-plane resolution with analogous acquisition times). Patients' MRI scans were independently rated by 2 radiologists using a 5-grade Likert scale for overall image quality, artifact level, mucosal and lesion conspicuity, and fat suppression degree at separate anatomical regions. Interobserver agreement was calculated using the Cohen κ coefficient. The quality ratings of both sequences were compared using the Mann-Whitney U test. Nonuniformity and contrast-to-noise ratio values were measured in all subjects. Separate MRI scans were performed twice for each sequence in a phantom and healthy volunteer without contrast injection to calculate the signal-to-noise ratio (SNR). RESULTS The scores of overall image quality, overall artifact level, motion artifact level, and conspicuity of the nasopharynx, oropharynx, oral cavity, hypopharynx, and larynx were all significantly higher in GRASP-VIBE than in CAIPIRINHA-VIBE (all P 's < 0.001). Moderate to substantial interobserver agreement was observed in overall image quality (GRASP-VIBE κ = 0.43; CAIPIRINHA-VIBE κ = 0.59) and motion artifact level (GRASP-VIBE κ = 0.51; CAIPIRINHA-VIBE κ = 0.65). Lesion conspicuity was significantly higher in GRASP-VIBE than in CAIPIRINHA-VIBE ( P = 0.005). The degree of fat suppression was weaker in the lower neck regions in GRASP-VIBE (3.90 ± 0.72) than in CAIPIRINHA-VIBE (4.97 ± 0.21) ( P < 0.001). The contrast-to-noise ratio at hypopharyngeal level was significantly higher in GRASP-VIBE (6.28 ± 4.77) than in CAIPIRINHA-VIBE (3.14 ± 9.95) ( P < 0.001). In the phantom study, the SNR of GRASP-VIBE was 12 times greater than that of CAIPIRINHA-VIBE. The in vivo SNR of the volunteer MRI scan was 13.6 in CAIPIRINHA-VIBE and 20.7 in GRASP-VIBE. CONCLUSIONS Both sequences rendered excellent images for head and neck MRI scans. GRASP-VIBE provided better image quality, as well as mucosal and lesion conspicuities, with less motion artifacts, whereas CAIPIRINHA-VIBE provided better fat suppression in the lower neck regions.
Collapse
Affiliation(s)
- Minkook Seo
- From the Department of Radiology, Seoul St Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, South Korea
| | - Jimin Yoon
- From the Department of Radiology, Seoul St Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, South Korea
| | - Yangsean Choi
- From the Department of Radiology, Seoul St Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, South Korea
| | - Dominik Nickel
- Application Development, Siemens Healthcare GmbH, Erlangen, Germany
| | - Jinhee Jang
- From the Department of Radiology, Seoul St Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, South Korea
| | - Na-Young Shin
- From the Department of Radiology, Seoul St Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, South Korea
| | - Kook-Jin Ahn
- From the Department of Radiology, Seoul St Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, South Korea
| | - Bum-Soo Kim
- From the Department of Radiology, Seoul St Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
12
|
Dynamic Liver Magnetic Resonance Imaging During Free Breathing: A Feasibility Study With a Motion Compensated Variable Density Radial Acquisition and a Viewsharing High-Pass Filtering Reconstruction. Invest Radiol 2022; 57:470-477. [PMID: 35136004 DOI: 10.1097/rli.0000000000000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Robust dynamic contrast-enhanced T1-weighted images are crucial for accurate detection and categorization of focal liver lesions in liver/abdominal magnetic resonance imaging (MRI). As optimal dynamic imaging usually requires multiple breath-holds, its inherent susceptibility to motion artifacts frequently results in degraded image quality in incompliant patients. Because free-breathing imaging may overcome this drawback, the intention of this study was to evaluate a dynamic MRI sequence acquired during free breathing using the variable density, elliptical centric golden angle radial stack-of-stars radial sampling scheme, which so far has not been implemented in 4-dimensional applications. MATERIALS AND METHODS In a prospective pilot study, 27 patients received a routine abdominal MRI protocol including the prototype free-breathing sequence (4DFreeBreathing) for dynamic imaging. This enables more convenient and faster reconstruction through variable density, elliptical centric golden angle radial stack-of-stars without the use of additional reconstruction hardware, and even higher motion robustness through soft-gating. A standard breath-hold sequence performed subsequently served as reference standard. Of the continuous dynamic data sets, each dynamic phase was analyzed regarding image quality, motion artifacts and vessel conspicuity using 5-point Likert scales. Furthermore, correct timing of the late arterial phase was compared with the preexaminations. RESULTS 4DFreeBreathing delivered motion-free dynamic images with high temporal resolution in each subject. Overall image quality scores were rated good or excellent for 4DFreeBreathing and the gold standard without significant differences (P = 0.34). There were significantly less motion artifacts in the 4DFreeBreathing sequence (P < 0.0001), whereas vessel conspicuity in each dynamic phase was comparable for both groups (P = 0.45, P > 0.99, P = 0.22, respectively). Correct timing of the late arterial phase could be achieved in 27 of 27 (100%) examinations using 4DFreeBreathing versus 35 of 53 (66%) preexaminations using gold standard (P < 0.001). CONCLUSION The benefit of convenient and fast image reconstruction combined with the superiority in motion robustness and timing compared with standard breath hold sequences renders 4DFreeBreathing an attractive alternative to existing free-breathing techniques in dynamic liver MRI.
Collapse
|
13
|
Grattan-Smith JD, Chow J, Kurugol S, Jones RA. Quantitative renal magnetic resonance imaging: magnetic resonance urography. Pediatr Radiol 2022; 52:228-248. [PMID: 35022851 PMCID: PMC9670866 DOI: 10.1007/s00247-021-05264-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023]
Abstract
The goal of functional renal imaging is to identify and quantitate irreversible renal damage and nephron loss, as well as potentially reversible hemodynamic changes. MR urography has evolved into a comprehensive evaluation of the urinary tract that combines anatomical imaging with functional evaluation in a single test without ionizing radiation. Quantitative functional MR imaging is based on dynamic contrast-enhanced MR acquisitions that provide progressive, visible enhancement of the renal parenchyma and urinary tract. The signal changes related to perfusion, concentration and excretion of the contrast agent can be evaluated using both quantitative and qualitative measures. Functional evaluation with MR has continued to improve as a result of significant technical advances allowing for faster image acquisition as well as the development of new tracer kinetic models of renal function. The most common indications for MR urography in children are the evaluation of congenital anomalies of the kidney and urinary tract including hydronephrosis and renal malformations, and the identification of ectopic ureters in children with incontinence. In this paper, we review the underlying acquisition schemes and techniques used to generate quantitative functional parameters including the differential renal function (DRF), asymmetry index, mean transit time (MTT), signal intensity versus time curves as well as the calculation of individual kidney glomerular filtration rate (GFR). Visual inspection and semi-quantitative assessment using the renal transit time (RTT) and calyceal transit times (CTT) are fundamental to accurate diagnosis and are used as a basis for the interpretation of the quantitative data. The importance of visual assessment of the images cannot be overstated when analyzing the quantitative measures of renal function.
Collapse
Affiliation(s)
| | - Jeanne Chow
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sila Kurugol
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Richard A Jones
- Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Flouri D, Lesnic D, Chrysochou C, Parikh J, Thelwall P, Sheerin N, Kalra PA, Buckley DL, Sourbron SP. Motion correction of free-breathing magnetic resonance renography using model-driven registration. MAGMA (NEW YORK, N.Y.) 2021; 34:805-822. [PMID: 34160718 PMCID: PMC8578117 DOI: 10.1007/s10334-021-00936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Model-driven registration (MDR) is a general approach to remove patient motion in quantitative imaging. In this study, we investigate whether MDR can effectively correct the motion in free-breathing MR renography (MRR). MATERIALS AND METHODS MDR was generalised to linear tracer-kinetic models and implemented using 2D or 3D free-form deformations (FFD) with multi-resolution and gradient descent optimization. MDR was evaluated using a kidney-mimicking digital reference object (DRO) and free-breathing patient data acquired at high temporal resolution in multi-slice 2D (5 patients) and 3D acquisitions (8 patients). Registration accuracy was assessed using comparison to ground truth DRO, calculating the Hausdorff distance (HD) between ground truth masks with segmentations and visual evaluation of dynamic images, signal-time courses and parametric maps (all data). RESULTS DRO data showed that the bias and precision of parameter maps after MDR are indistinguishable from motion-free data. MDR led to reduction in HD (HDunregistered = 9.98 ± 9.76, HDregistered = 1.63 ± 0.49). Visual inspection showed that MDR effectively removed motion effects in the dynamic data, leading to a clear improvement in anatomical delineation on parametric maps and a reduction in motion-induced oscillations on signal-time courses. DISCUSSION MDR provides effective motion correction of MRR in synthetic and patient data. Future work is needed to compare the performance against other more established methods.
Collapse
Affiliation(s)
- Dimitra Flouri
- Department of Applied Mathematics, University of Leeds, Leeds, UK.
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK.
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK.
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Daniel Lesnic
- Department of Applied Mathematics, University of Leeds, Leeds, UK
| | - Constantina Chrysochou
- Department of Renal Medicine, Salford Royal National Health Service Foundation Trust, Salford, UK
| | - Jehill Parikh
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, University of Newcastle, Newcastle upon Tyne, UK
| | - Peter Thelwall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, University of Newcastle, Newcastle upon Tyne, UK
| | - Neil Sheerin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philip A Kalra
- Department of Renal Medicine, Salford Royal National Health Service Foundation Trust, Salford, UK
| | - David L Buckley
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Steven P Sourbron
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Montesi SB, Zhou IY, Liang LL, Digumarthy SR, Mercaldo S, Mercaldo N, Seethamraju RT, Rosen BR, Caravan P. Dynamic contrast-enhanced magnetic resonance imaging of the lung reveals important pathobiology in idiopathic pulmonary fibrosis. ERJ Open Res 2021; 7:00907-2020. [PMID: 34760997 PMCID: PMC8573229 DOI: 10.1183/23120541.00907-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction Evidence suggests that abnormalities occur in the lung microvasculature in idiopathic pulmonary fibrosis (IPF). We hypothesised that dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) could detect alterations in permeability, perfusion and extracellular extravascular volume in IPF, thus providing in vivo regional functional information not otherwise available. Methods Healthy controls and IPF subjects underwent DCE-MRI of the thorax using a dynamic volumetric radial sampling sequence and administration of gadoterate meglumine at a dose of 0.1 mmol·kg−1 at 2 mL·s−1. Model-free analysis of signal intensity versus time curves in regions of interest from a lower, middle and upper axial plane, a posterior coronal plane and the whole lung yielded parameters reflective of perfusion and permeability (peak enhancement and rate of contrast arrival (kwashin)) and the extracellular extravascular space (rate of contrast clearance (kwashout)). These imaging parameters were compared between IPF and healthy control subjects, and between fast/slow IPF progressors. Results IPF subjects (n=16, 56% male, age (range) 67.5 (60–79) years) had significantly reduced peak enhancement and slower kwashin in all measured lung regions compared to the healthy volunteers (n=17, 65% male, age (range) 58 (51–63) years) on unadjusted analyses consistent with microvascular alterations. kwashout, as a measure of the extravascular extracellular space, was significantly slower in the lower lung and posterior coronal regions in the IPF subjects consistent with an increased extravascular extracellular space. All estimates were attenuated after adjusting for age. Similar trends were observed, but only the associations with kwashin in certain lung regions remained statistically significant. Among IPF subjects, kwashout rates nearly perfectly discriminated between those with rapidly progressive disease versus those with stable/slowly progressive disease. Conclusions DCE-MRI detects changes in the microvasculature and extravascular extracellular space in IPF, thus providing in vivo regional functional information. Dynamic contrast-enhanced MRI demonstrates important in vivo lung regional microvascular and extravascular extracellular differences between IPF patients and healthy controls. These results signify IPF pathobiology and may have prognostic significance.https://bit.ly/3l14SWM
Collapse
Affiliation(s)
- Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,These authors contributed equally
| | - Iris Y Zhou
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Dept of Radiology, Massachusetts General Hospital, Boston, MA, USA.,These authors contributed equally
| | - Lloyd L Liang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Subba R Digumarthy
- Harvard Medical School, Boston, MA, USA.,Dept of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah Mercaldo
- Dept of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Bruce R Rosen
- Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Dept of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Caravan
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Dept of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
16
|
Harder FN, Budjan J, Nickel MD, Grimm R, Pietsch H, Schoenberg SO, Jost G, Attenberger UI. Intraindividual Comparison of Compressed Sensing-Accelerated Cartesian and Radial Arterial Phase Imaging of the Liver in an Experimental Tumor Model. Invest Radiol 2021; 56:433-441. [PMID: 33813577 DOI: 10.1097/rli.0000000000000767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to intraindividually compare the performance of 2 compressed sensing (CS)-accelerated magnetic resonance imaging (MRI) sequences, 1 featuring Cartesian (compressed sensing volumetric interpolated breath-hold examination [CS-VIBE]) and the other radial (golden-angle radial sparse parallel [GRASP]) k-space sampling in continuous dynamic imaging during hepatic vascular phases, using extracellular and hepatocyte-specific contrast agents. MATERIALS AND METHODS Seven New Zealand white rabbits, with induced VX2 liver tumors (median number of lesions, 2 ± 0.83; range, 1-3), received 2 continuously acquired T1-weighted prototype CS-accelerated MRI sequences (CS-VIBE and GRASP) with high spatial (0.8 × 0.8 × 1.5 mm) and temporal resolution (3.5 seconds) in randomized order on 2 separate days using a 1.5-T scanner. In all animals, imaging was performed using first gadobutrol at a dose of 0.1 mmol/kg and, then 45 minutes later, gadoxetic acid at a dose of 0.025 mmol/kg.The following qualitative parameters were assessed using 3- and 5-point Likert scales (3 and 5 being the highest scores respectively): image quality (IQ), arterial and venous vessel delineation, tumor enhancement, motion artifacts, and sequence-specific artifacts. Furthermore, the following quantitative parameters were obtained: relative peak signal enhancement, time to peak, mean transit time, and plasma flow ratios. Paired sampled t tests and Wilcoxon signed rank tests were used for intraindividual comparison. Image analysis was performed by 2 radiologists. RESULTS Six of 7 animals underwent the full imaging protocol and obtained data were analyzed statistically. Overall IQ was rated moderate to excellent, not differing significantly between the 2 sequences.Gadobutrol-enhanced CS-VIBE examinations revealed the highest mean Likert scale values in terms of vessel delineation and tumor enhancement (arterial 4.4 [4-5], venous 4.3 [3-5], and tumor 2.9 [2-3]). Significantly, more sequence-specific artifacts were seen in GRASP examinations (P = 0.008-0.031). However, these artifacts did not impair IQ. Excellent Likert scale ratings were found for motion artifacts in both sequences. In both sequences, a maximum of 4 hepatic arterial dominant phases were obtained. Regarding the relative peak signal enhancement, CS-VIBE and GRASP showed similar results. The relative peak signal enhancement values did not differ significantly between the 2 sequences in the aorta, the hepatic artery, or the inferior vena cava (P = 0.063-0.536). However, significantly higher values were noted for CS-VIBE in gadoxetic acid-enhanced examinations in the portal vein (P = 0.031) and regarding the tumor enhancement (P = 0.005). Time to peak and mean transit time or plasma flow ratios did not differ significantly between the sequences. CONCLUSIONS Both CS-VIBE and GRASP provide excellent results in dynamic liver MRI using extracellular and hepatocyte-specific contrast agents, in terms of IQ, peak signal intensity, and presence of artifacts.
Collapse
Affiliation(s)
- Felix N Harder
- From the Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich
| | | | | | | | | | - Stefan O Schoenberg
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim-Heidelberg University, Mannheim
| | - Gregor Jost
- MR and CT Contrast Media Research, Bayer AG, Berlin
| | - Ulrike I Attenberger
- Department of Diagnostic and Interventional Radiology, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Hausmann D, Kreul D, Klarhöfer M, Nickel D, Grimm R, Kiefer B, Riffel P, Attenberger UI, Zöllner FG, Kubik-Huch RA. Morphological and functional assessment of the uterus: "one-stop shop imaging" using a compressed-sensing accelerated, free-breathing T1-VIBE sequence. Acta Radiol 2021; 62:695-704. [PMID: 32600068 DOI: 10.1177/0284185120936260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The combination of motion-insensitive, high-temporal, and spatial resolution imaging with evaluation of quantitative perfusion has the potential to increase the diagnostic capabilities of magnetic resonance imaging (MRI) in the female pelvis. PURPOSE To compare a free-breathing compressed-sensing VIBE (fbVIBE) with flexible temporal resolution (range = 4.6-13.8 s) with breath-hold VIBE (bhVIBE) and to evaluate the potential value of quantifying uterine perfusion. MATERIAL AND METHODS A total of 70 datasets from 60 patients (bhVIBE: n = 30; fbVIBE: n = 40) were evaluated by two radiologists. Only temporally resolved reconstruction (fbVIBE) was performed on 30 of the fbVIBE datasets. For a subset (n = 10) of the fbVIBE acquisitions, a time- and motion-resolved reconstruction (mrVIBE) was evaluated. Image quality (IQ), artifacts, diagnostic confidence (DC), and delineation of uterine structures (DoS) were graded on Likert scales (IQ/DC/DoS: 1 (non-diagnostic) to 5 (perfect); artifacts: 1 (no artifacts) to 5 (severe artifacts)). A Tofts model was applied for perfusion analysis. Ktrans was obtained in the myometrium (Mm), junctional zone (Jz), and cervix (Cx). RESULTS The median IQ/DoS/DC scores of fbVIBE (4/5/5 κ >0.7-0.9) and bhVIBE (4/4/4; κ = 0.5-0.7; P > 0.05) were high, but Artifacts were graded low (fbVIBE/bhVIBE: 2/2; κ = 0.6/0.5; P > 0.05). Artifacts were only slightly improved by the additional motion-resolved reconstruction (fbVIBE/mrVIBE: 2/1.5; P = 0.08); fbVIBE was preferred in most cases (7/10). Significant differences of Ktrans values were found between Cx, Jz, and Mm (0.12/0.21/0.19; P < 0.05). CONCLUSION The fbVIBE sequence allows functional and morphological assessment of the uterus at comparable IQ to bhVIBE.
Collapse
Affiliation(s)
- Daniel Hausmann
- Department of Radiology, Kantonsspital Baden, Baden, Switzerland
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Robert Grimm
- MR Applications Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Berthold Kiefer
- MR Applications Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Philipp Riffel
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
18
|
Huber S, Balcacer De la Cruz P, Mahan M, Spektor M, Lo R, Block KT, Israel G. Comparison of image quality of subtracted and nonsubtracted breath hold VIBE and free breathing GRASP in the evaluation of renal masses. Clin Imaging 2021; 74:15-18. [PMID: 33421698 DOI: 10.1016/j.clinimag.2020.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To compare the image quality of subtracted and nonsubtracted images obtained using volumetric interpolated breath-hold exam (VIBE) and free breathing T1 weighted Golden-angle Radial Sparse Parallel (GRASP). METHODS We retrospectively evaluated 27 consecutive patients who underwent MRI for the evaluation of renal masses. Contrast enhanced VIBE and free breathing GRASP imaging were performed, and subtraction images generated. Two radiologists performed quantitative and qualitative evaluations of image quality of nonsubtracted and subtracted data sets. Statistical analysis was performed using the Wilcoxon signed-rank test, paired t-test and kappa statistics. RESULTS VIBE images scored statistically higher for the following parameters in the coronal and axial plane: sharpness, streak artifact, image noise, and overall image quality for standard and subtracted images (all P values P < 0.001). GRASP images had significantly less subtraction artifact in the coronal (P = 0.042) plane with a similar trend in the axial plane (P = 0.079). Interreader Kappa values for qualitative images scores were fair to good (0.23-0.71). Quantitative subtracted GRASP images had significant less subtraction artifact compared to VIBE in the anterior-posterior (3.9 mm SD 2.6 mm versus 5.8 mm SD 3.6 mm, P = 0.010), and craniocaudal direction (4.4 mm SD 2.9 mm versus 7.0 mm SD 5.3 mm, P = 0.010); a trend was seen in the left-right direction (2.6 mm SD 1.4 mm versus 4.0 mm SD 3.9 mm, P = 0.084). CONCLUSION VIBE images have significantly better image quality than free breathing GRASP images, however free breathing GRASP images have significantly less subtraction artifact.
Collapse
Affiliation(s)
- Steffen Huber
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, 333 Cedar St., PO Box 208042, New Haven, CT 06520, United States of America
| | - Patricia Balcacer De la Cruz
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, 333 Cedar St., PO Box 208042, New Haven, CT 06520, United States of America
| | - Mathur Mahan
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, 333 Cedar St., PO Box 208042, New Haven, CT 06520, United States of America
| | - Michael Spektor
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, 333 Cedar St., PO Box 208042, New Haven, CT 06520, United States of America
| | - Ryan Lo
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, 333 Cedar St., PO Box 208042, New Haven, CT 06520, United States of America
| | - Kai Tobias Block
- Siemens Healthcare GmbH, Diagnostic Imaging, Magnetic Resonance, SHS DI MR DL EPX, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Gary Israel
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, 333 Cedar St., PO Box 208042, New Haven, CT 06520, United States of America.
| |
Collapse
|
19
|
Tomppert A, Wuest W, Wiesmueller M, Heiss R, Kopp M, Nagel AM, Tomita H, Meixner C, Uder M, May MS. Achieving high spatial and temporal resolution with perfusion MRI in the head and neck region using golden-angle radial sampling. Eur Radiol 2020; 31:2263-2271. [PMID: 32970184 PMCID: PMC7979632 DOI: 10.1007/s00330-020-07263-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 09/04/2020] [Indexed: 12/02/2022]
Abstract
Objectives Conventional perfusion-weighted MRI sequences often provide poor spatial or temporal resolution. We aimed to overcome this problem in head and neck protocols using a golden-angle radial sparse parallel (GRASP) sequence. Methods We prospectively included 58 patients for examination on a 3.0-T MRI using a study protocol. GRASP (A) was applied to a volumetric interpolated breath-hold examination (VIBE) with 135 reconstructed pictures and high temporal (2.5 s) and spatial resolution (0.94 × 0.94 × 3.00 mm). Additional sequences of matching temporal resolution (B: 2.5 s, 1.88 × 1.88 × 3.00 mm), with a compromise between temporal and spatial resolution (C: 7.0 s, 1.30 × 1.30 × 3.00 mm) and with matching spatial resolution (D: 145 s, 0.94 × 0.94 × 3.00 mm), were subsequently without GRASP. Instant inline-image reconstructions (E) provided one additional series of averaged contrast information throughout the entire acquisition duration of A. Overall diagnostic image quality, edge sharpness and contrast of soft tissues, vessels and lesions were subjectively rated using 5-point Likert scales. Objective image quality was measured as contrast-to-noise ratio in D and E. Results Overall, the anatomic and pathologic image quality was substantially better with the GRASP sequence for the temporally (A/B/C, all p < 0.001) and spatially resolved comparisons (D/E, all p < 0.002 except lesion edge sharpness with p = 0.291). Image artefacts were also less likely to occur with GRASP. Differences in motion, aliasing and truncation were mainly significant, but pulsation and fat suppression were comparable. In addition, the contrast-to-noise ratio of E was significantly better than that of D (pD-E < 0.001). Conclusions High temporal and spatial resolution can be obtained synchronously using a GRASP-VIBE technique for perfusion evaluation in head and neck MRI. Key Points • Golden-angle radial sparse parallel (GRASP) sampling allows for temporally resolved dynamic acquisitions with a very high image quality. • Very low-contrast structures in the head and neck region can benefit from using the GRASP sequence. • Inline-image reconstruction of dynamic and static series from one single acquisition can replace the conventional combination of two acquisitions, thereby saving examination time. Electronic supplementary material The online version of this article (10.1007/s00330-020-07263-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Tomppert
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Wolfgang Wuest
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Imaging Science Institute, University Hospital Erlangen, Erlangen, Germany
| | - Marco Wiesmueller
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Rafael Heiss
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Markus Kopp
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Armin M Nagel
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hayato Tomita
- Department of Radiology, St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Christian Meixner
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Imaging Science Institute, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Stefan May
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany.
- Imaging Science Institute, University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
20
|
Free-Breathing Dynamic Contrast-Enhanced Imaging of the Upper Abdomen Using a Cartesian Compressed-Sensing Sequence With Hard-Gated and Motion-State-Resolved Reconstruction. Invest Radiol 2019; 54:728-736. [DOI: 10.1097/rli.0000000000000607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
The value of GRASP on DCE-MRI for assessing response to neoadjuvant chemotherapy in patients with esophageal cancer. BMC Cancer 2019; 19:999. [PMID: 31651280 PMCID: PMC6814031 DOI: 10.1186/s12885-019-6247-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Background To compare the value of two dynamic contrast-enhanced Magnetic Resonance Images (DCE-MRI) reconstruction approaches, namely golden-angle radial sparse parallel (GRASP) and view-sharing with golden-angle radial profile (VS-GR) reconstruction, and evaluate their values in assessing response to neoadjuvant chemotherapy (nCT) in patients with esophageal cancer (EC). Methods EC patients receiving nCT before surgery were enrolled prospectively. DCE-MRI scanning was performed after nCT and within 1 week before surgery. Tumor Regression Grade (TRG) was used for chemotherapy response evaluation, and patients were stratified into a responsive group (TRG1 + 2) and a non-responsive group (TRG3 + 4 + 5). Wilcoxon test was utilized for comparing GRASP and VS-GR reconstruction, Kruskal-Wallis and Mann-Whitney test was performed for each parameter to assess response, and Spearman test was performed for analyzing correlation between parameters and TRGs, as well as responder and non-responder. The receiver operating characteristic (ROC) was utilized for each significant parameter to assess its accuracy between responders and non-responders. Results Among the 64 patients included in this cohort (52 male, 12 female; average age of 59.1 ± 7.9 years), 4 patients showed TRG1, 4 patients were TRG2, 7 patients were TRG3, 11 patients were TRG4, and 38 patients were TRG5. They were stratified into 8 responders and 56 non-responders. A total of 15 parameters were calculated from each tumor. With VS-GR, 10/15 parameters significantly correlated with TRG and response groups. Of these, only AUCmax showed moderate correlation with TRG, 7 showed low correlation and 2 showed negligible correlation with TRG. 8 showed low correlation and 2 showed negligible correlation with response groups. With GRASP, 13/15 parameters significantly correlated with TRG and response groups. Of these, 10 showed low correlation and 3 showed negligible correlation with TRG. 11 showed low correlation and 2 showed negligible correlation with TRG. Seven parameters (AUC* > 0.70, P < 0.05) showed good performance in response groups. Conclusions In patients with esophageal cancer on neoadjuvant chemotherapy, several parameters can differentiate responders from non-responders, using both GRASP and VS-GR techniques. GRASP may be able to better differentiate these two groups compared to VS-GR. Trial registration for this prospective study: ChiCTR, ChiCTR-DOD-14005308. Registered 2 October 2014.
Collapse
|
22
|
Zöllner FG, Šerifović-Trbalić A, Kabelitz G, Kociński M, Materka A, Rogelj P. Image registration in dynamic renal MRI-current status and prospects. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:33-48. [PMID: 31598799 PMCID: PMC7210245 DOI: 10.1007/s10334-019-00782-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
Magnetic resonance imaging (MRI) modalities have achieved an increasingly important role in the clinical work-up of chronic kidney diseases (CKD). This comprises among others assessment of hemodynamic parameters by arterial spin labeling (ASL) or dynamic contrast-enhanced (DCE-) MRI. Especially in the latter, images or volumes of the kidney are acquired over time for up to several minutes. Therefore, they are hampered by motion, e.g., by pulsation, peristaltic, or breathing motion. This motion can hinder subsequent image analysis to estimate hemodynamic parameters like renal blood flow or glomerular filtration rate (GFR). To overcome motion artifacts in time-resolved renal MRI, a wide range of strategies have been proposed. Renal image registration approaches could be grouped into (1) image acquisition techniques, (2) post-processing methods, or (3) a combination of image acquisition and post-processing approaches. Despite decades of progress, the translation in clinical practice is still missing. The aim of the present article is to discuss the existing literature on renal image registration techniques and show today’s limitations of the proposed techniques that hinder clinical translation. This paper includes transformation, criterion function, and search types as traditional components and emerging registration technologies based on deep learning. The current trend points towards faster registrations and more accurate results. However, a standardized evaluation of image registration in renal MRI is still missing.
Collapse
Affiliation(s)
- Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | | | - Gordian Kabelitz
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Marek Kociński
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Andrzej Materka
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Peter Rogelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| |
Collapse
|
23
|
Zhang JL, Lee VS. Renal perfusion imaging by MRI. J Magn Reson Imaging 2019; 52:369-379. [PMID: 31452303 DOI: 10.1002/jmri.26911] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Renal perfusion can be quantitatively assessed by multiple magnetic resonance imaging (MRI) methods, including dynamic contrast enhanced (DCE), arterial spin labeling (ASL), and diffusion-weighted imaging with intravoxel incoherent motion (IVIM) analysis. In this review we summarize the advances in the field of renal-perfusion MRI over the past 5 years. The review starts with a brief introduction of relevant MRI methods, followed by a discussion of recent technical developments. In the main section of the review, we examine the clinical and preclinical applications for three disease populations: chronic kidney disease, renal transplant, and renal tumors. The DCE method has been routinely used for assessing renal tumors but not other renal diseases. As a noncontrast alternative, ASL was extensively explored in both preclinical and clinical applications and showed much promise. Protocol standardization for the methods is desperately needed, and then large-scale clinical trials for the methods can be initiated prior to their broad clinical use. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:369-379.
Collapse
Affiliation(s)
- Jeff L Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian S Lee
- Verily Life Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Update on Gadolinium-Based Contrast Agent-Enhanced Imaging in the Genitourinary System. AJR Am J Roentgenol 2019; 212:1223-1233. [PMID: 30973785 DOI: 10.2214/ajr.19.21137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE. The purpose of this article is to review gadolinium-based contrast agent (GBCA)-enhanced MRI applications in the genitourinary system. CONCLUSION. Nephrogenic systemic fibrosis is rare or nonexistent with standard dosing of group II GBCAs. Gadolinium retention, cost, and examination times are emerging considerations affecting GBCA use. GBCA is unnecessary to diagnose adrenal adenomas, simple cysts, and some Bosniak category II cysts; however, it is required to determine solid or septal renal mass enhancement. Biparametric prostate MRI requires high-quality and reproducible DWI; therefore, dynamic contrast-enhanced MRI remains valuable in selected prostate MRI examinations.
Collapse
|
25
|
Comparison of Unenhanced T1-Weighted Signal Intensities Within the Dentate Nucleus and the Globus Pallidus After Serial Applications of Gadopentetate Dimeglumine Versus Gadobutrol in a Pediatric Population. Invest Radiol 2018; 53:119-127. [PMID: 28976476 DOI: 10.1097/rli.0000000000000419] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate and compare changes in T1-weighted signal intensity (SI) within the dentate nucleus (DN) and globus pallidus (GP) in a pediatric population after serial applications of the linear gadolinium-based magnetic resonance contrast medium gadopentetate dimeglumine and the more stable macrocyclic agent gadobutrol. MATERIALS AND METHODS Institutional review board approval was obtained. Two similar pediatric patient cohorts who underwent at least 3 serial contrast-enhanced magnetic resonance imaging (MRI) examinations with sole application of gadopentetate dimeglumine or gadobutrol were analyzed. All MRI examinations were performed on a 1.5 T system acquiring unenhanced T1-weighted spin echo sequences, which were evaluated on the baseline MRI and after the contrast medium administrations. For analysis of SI changes in the DN, the ratios of the DN to the pons (P) and to the middle cerebellar peduncle (MCP) were assessed. The GP was compared with the thalamus (TH) by dividing the SIs between GP and TH (GP-to-TH ratio). RESULTS Twenty-eight patients (13 boys, 15 girls; mean age, 8.4 ± 6.8 years) who received at least 3 applications of gadopentetate dimeglumine and 25 patients (13 boys, 12 girls; mean age, 9.7 ± 5.4 years) with 3 or more gadobutrol injections were included. After 3 administrations of gadopentetate dimeglumine, the T1-weighted SI ratios significantly increased: mean difference value of 0.036 ± 0.031 (DN-to-P; P < 0.001), 0.034 ± 0.032 (DN-to-MCP; P < 0.001), and 0.025 ± 0.025 (GP-to-TH; P = 0.001). In a subanalysis of 12 patients with more than 3 injections of gadopentetate dimeglumine, the mean differences of the SI ratios were slightly higher: 0.043 ± 0.032 (DN-to-P; P = 0.001), 0.041 ± 0.035 (DN-to-MCP; P = 0.002), and 0.028 ± 0.025 (GP-to-TH; P = 0.003). In contrast, gadobutrol did not show a significant influence on the SI ratios, neither after 3 nor after more than 3 applications. CONCLUSIONS The T1-weighted SI increase within the DN and GP after serial administrations of the linear contrast medium gadopentetate dimeglumine, but not after serial applications of the macrocyclic agent gadobutrol, found in a pediatric population, is consistent with results published for adult patients. The clinical impact of the intracranial T1-hyperintensities is currently unclear. However, in accordance with the recent decision of the Pharmacovigilance and Risk Assessment Committee of the European Medicines Agency, intravenous macrocyclic agents should be preferred and MR contrast media should be used with caution and awareness of the pediatric brain development in children and adolescents.
Collapse
|
26
|
Evaluation of a free-breathing respiratory-triggered (Navigator) 3-D T1-weighted (T1W) gradient recalled echo sequence (LAVA) for detection of enhancement in cystic and solid renal masses. Eur Radiol 2018; 29:2507-2517. [PMID: 30506224 DOI: 10.1007/s00330-018-5839-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To evaluate free-breathing Navigator-triggered 3-D T1-weighted MRI (NAV-LAVA) compared to breath-hold (BH)-LAVA among cystic and solid renal masses. MATERIALS AND METHODS With an IRB waiver, 44 patients with 105 renal masses (71 non-enhancing cysts and 14 cystic and 20 solid renal masses) underwent MRI between 2016 and 2017 where BH-LAVA and NAV-LAVA were performed. Subtraction images were generated for BH-LAVA and NAV-LAVA using pre- and 3-min post-gadolinium-enhanced images and were evaluated by two blinded radiologists for overall image quality, image sharpness, motion artifact, and quality of subtraction (using 5-point Likert scales) and presence/absence of enhancement. Percentage signal intensity change (Δ%SI) = ([SI.post-gadolinium-SI.pre-gadolinium]/SI.pre-gadolinium)*100, was measured on BH-LAVA and NAV-LAVA. Likert scores were compared using Wilcoxon's sign-rank test and accuracy for detection of enhancement compared using receiver operator characteristic (ROC) analysis. RESULTS Overall image quality (p = 0.002-0.141), image sharpness (p = 0.002-0.031), and motion artifact were better (p = 0.002) comparing BH-LAVA to NAV-LAVA for both radiologists; however, quality of image subtraction did not differ between groups (p = 0.09-0.14). Sensitivity/specificity/area under ROC curve for enhancement in cystic and solid renal masses using subtraction and %SIΔ were (1) BH-LAVA: 64.7%/98.6%/0.82 (radiologist 1), 61.8%/95.8%/0.79 (radiologist 2), and 70.6%/81.7%/0.76 (%SIΔ) versus 2) NAV-LAVA: 58.8%/95.8%/0.79 (radiologist 1, p = 0.16), 58.8%/88.7%/0.73 (radiologist 2, p = 0.37), and 73.5%/76.1%/0.75 (%SIΔ, p = 0.74). CONCLUSIONS NAV-LAVA showed similar quality of subtraction and ability to detect enhancement compared to BH-LAVA in renal masses albeit with lower image quality, image sharpness, and increased motion artifact. NAV-LAVA may be considered in renal MRI for patients where BH is suboptimal. KEY POINTS • Free-breathing Navigator (NAV) 3-D subtraction MRI is comparable to breath-hold (BH) images. • Accuracy for subjective and quantitative diagnosis of enhancement in renal masses on NAV 3-D T1W is comparable to BH MRI. • NAV 3-D T1W renal MRI is useful in patients who may not be able to adequately BH.
Collapse
|
27
|
Zhou JY, Wang YC, Zeng CH, Ju SH. Renal Functional MRI and Its Application. J Magn Reson Imaging 2018; 48:863-881. [PMID: 30102436 DOI: 10.1002/jmri.26180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Renal function varies according to the nature and stage of diseases. Renal functional magnetic resonance imaging (fMRI), a technique considered superior to the most common method used to estimate the glomerular filtration rate, allows for noninvasive, accurate measurements of renal structures and functions in both animals and humans. It has become increasingly prevalent in research and clinical applications. In recent years, renal fMRI has developed rapidly with progress in MRI hardware and emerging postprocessing algorithms. Function-related imaging markers can be acquired via renal fMRI, encompassing water molecular diffusion, perfusion, and oxygenation. This review focuses on the progression and challenges of the main renal fMRI methods, including dynamic contrast-enhanced MRI, blood oxygen level-dependent MRI, diffusion-weighted imaging, diffusion tensor imaging, arterial spin labeling, fat fraction imaging, and their recent clinical applications. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:863-881.
Collapse
Affiliation(s)
- Jia-Ying Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chu-Hui Zeng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Sheng-Hong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
28
|
Quantitative Perfusion Analysis of the Rectum Using Golden-Angle Radial Sparse Parallel Magnetic Resonance Imaging: Initial Experience and Comparison to Time-Resolved Angiography With Interleaved Stochastic Trajectories. Invest Radiol 2018. [PMID: 28622248 DOI: 10.1097/rli.0000000000000397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Purpose of this study was to compare the quality of perfusion maps obtained from prototypical free-breathing magnetic resonance imaging (MRI) with continuous golden-angle radial sampling and iterative reconstruction (GRASP) to conventional acquisition using time-resolved angiography with interleaved stochastic trajectories (TWIST) in patients with rectal cancer. MATERIAL AND METHODS Forty cases were included for retrospective analysis. Twenty of the patients received routine multiparametric MRI at 3 T for rectal cancer staging, including perfusion measurement with GRASP or TWIST (10 patients for each technique, including 5 prechemoradiation and 5 postchemoradiation). Twenty patients without history of rectal disease served as control group (10 GRASP, 10 TWIST). GRASP images were reconstructed at temporal resolution of 3.45 seconds (21 spokes/frame). A voxel-by-voxel deconvolution approach was used to determine rectal plasma flow (mL/100 mL per minute). Regions of interest were placed at 3 levels within the tumor and normal rectum (lower, middle, and upper part). The quality of morphologic images, perfusion maps, and arterial input function were scored by 2 blinded radiologists. Independent t tests were applied. RESULTS Three patients of the TWIST control group had to be excluded due to technical failure of the sequence. Significantly higher scores for the perfusion maps and arterial input functions (total cohort) were obtained using GRASP (P < 0.05). Artifacts in the perfusion maps were rated significantly lower than for TWIST (P < 0.05). In the healthy rectum cohort, the average plasma flow of normal rectal wall was 31.78 ± 7.39 mL/100 mL per minute with GRASP, compared with 77.62 ± 34.08 mL/100 mL per minute with TWIST, indicating much lower variance for GRASP. Plasma flow values obtained with both methods enabled distinguishing between normal rectal wall and rectal cancer, both before and after chemoradiation. Morphologic image quality was generally higher with GRASP (P < 0.01). CONCLUSIONS GRASP perfusion imaging can distinguish between normal rectum and rectal cancers with higher image quality and less variance than TWIST. Additional morphologic assessment with high spatial resolution from the GRASP acquisition may increase the accuracy and diagnostic confidence of the examination.
Collapse
|
29
|
Chen L, Liu D, Zhang J, Xie B, Zhou X, Grimm R, Huang X, Wang J, Feng L. Free-breathing dynamic contrast-enhanced MRI for assessment of pulmonary lesions using golden-angle radial sparse parallel imaging. J Magn Reson Imaging 2018; 48:459-468. [PMID: 29437281 DOI: 10.1002/jmri.25977] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/30/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been shown to be a promising technique for assessing lung lesions. However, DCE-MRI often suffers from motion artifacts and insufficient imaging speed. Therefore, highly accelerated free-breathing DCE-MRI is of clinical interest for lung exams. PURPOSE To test the performance of rapid free-breathing DCE-MRI for simultaneous qualitative and quantitative assessment of pulmonary lesions using Golden-angle RAdial Sparse Parallel (GRASP) imaging. STUDY TYPE Prospective. POPULATION Twenty-six patients (17 males, mean age = 55.1 ± 14.4) with known pulmonary lesions. FIELD STRENGTH/SEQUENCE 3T MR scanner; a prototype fat-saturated, T1 -weighted stack-of-stars golden-angle radial sequence for data acquisition and a Cartesian breath-hold volumetric-interpolated examination (BH-VIBE) sequence for comparison. ASSESSMENT After a dual-mode GRASP reconstruction, one with 3-second temporal resolution (3s-GRASP) and the other with 15-second temporal resolution (15s-GRASP), all GRASP and BH-VIBE images were pooled together for blind assessment by two experienced radiologists, who independently scored the overall image quality, lesion delineation, overall artifact level, and diagnostic confidence of each case. Perfusion analysis was performed for the 3s-GRASP images using a Tofts model to generate the volume transfer coefficient (Ktrans ) and interstitial volume (Ve ). STATISTICAL TESTS Nonparametric paired two-tailed Wilcoxon signed-rank test; Cohen's kappa; unpaired Student's t-test. RESULTS 15s-GRASP achieved comparable image quality with conventional BH-VIBE (P > 0.05), except for the higher overall artifact level in the precontrast phase (P = 0.018). The Ktrans and Ve in inflammation were higher than those in malignant lesions (Ktrans : 0.78 ± 0.52 min-1 vs. 0.37 ± 0.22 min-1 , P = 0.020; Ve : 0.36 ± 0.16 vs. 0.26 ± 0.1, P = 0.177). Also, the Ktrans and Ve in malignant lesions were also higher than those in benign lesions (Ktrans : 0.37 ± 0.22 min-1 vs. 0.04 ± 0.04 min-1 , P = 0.001; Ve : 0.26 ± 0.12 vs. 0.10 ± 0.00, P = 0.063). DATA CONCLUSION This feasibility study demonstrated the performance of high spatiotemporal resolution free-breathing DCE-MRI of the lung using GRASP for qualitative and quantitative assessment of pulmonary lesions. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2018;48:459-468.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Radiology, PLA 101st Hospital, Wuxi Jiangsu, China
| | - Daihong Liu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Xie
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoyue Zhou
- MR Collaboration, North East Asia, Siemens Healthcare, Shanghai, China
| | | | - Xuequan Huang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
30
|
Piekarski E, Chitiboi T, Ramb R, Latson LA, Bhatla P, Feng L, Axel L. Two-dimensional XD-GRASP provides better image quality than conventional 2D cardiac cine MRI for patients who cannot suspend respiration. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:49-59. [PMID: 29067539 DOI: 10.1007/s10334-017-0655-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/16/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Residual respiratory motion degrades image quality in conventional cardiac cine MRI (CCMRI). We evaluated whether a free-breathing (FB) radial imaging CCMRI sequence with compressed sensing reconstruction [extradimensional (e.g. cardiac and respiratory phases) golden-angle radial sparse parallel, or XD-GRASP] could provide better image quality than a conventional Cartesian breath-held (BH) sequence in an unselected population of patients undergoing clinical CCMRI. MATERIALS AND METHODS One hundred one patients who underwent BH and FB imaging in a midventricular short-axis plane at a matching location were included. Visual and quantitative image analysis was performed by two blinded experienced readers, using a five-point qualitative scale to score overall image quality and visual signal-to-noise ratio (SNR) grade, with measures of noise and sharpness. End-diastolic and end-systolic left ventricular areas were also measured and compared for both BH and FB images. RESULTS Image quality was generally better with the BH cines (overall quality grade for BH vs FB images 4 vs 2.9, p < 0.001; noise 0.06 vs 0.08 p < 0.001; SNR grade 4.1 vs 3, p < 0.001), except for sharpness (p = 0.48). There were no significant differences between BH and FB images regarding end-diastolic or end-systolic areas (p = 0.35 and p = 0.12). Eighteen of the 101 patients had poor BH image quality (grade 1 or 2). In this subgroup, the quality of the FB images was better (p = 0.0032), as was the SNR grade (p = 0.003), but there were no significant differences regarding noise and sharpness (p = 0.45 and p = 0.47). CONCLUSION Although FB XD-GRASP CCMRI was visually inferior to conventional BH CCMRI in general, it provided improved image quality in the subgroup of patients with respiratory-motion-induced artifacts on BH images.
Collapse
Affiliation(s)
- Eve Piekarski
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Teodora Chitiboi
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Rebecca Ramb
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Larry A Latson
- Department of Radiology, New York University Langone Medical Center, 650 First Ave., New York, NY, USA
| | - Puneet Bhatla
- Department of Radiology, New York University Langone Medical Center, 650 First Ave., New York, NY, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Leon Axel
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA.
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA.
- Department of Radiology, New York University Langone Medical Center, 650 First Ave., New York, NY, USA.
| |
Collapse
|
31
|
Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid–Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing. Invest Radiol 2017; 52:596-604. [DOI: 10.1097/rli.0000000000000385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Johansson A, Balter J, Cao Y. Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI. Magn Reson Med 2017; 79:1345-1353. [PMID: 28617993 DOI: 10.1002/mrm.26782] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. METHODS Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. RESULTS Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P < 0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. CONCLUSIONS Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Adam Johansson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - James Balter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Zhang JL. Functional Magnetic Resonance Imaging of the Kidneys-With and Without Gadolinium-Based Contrast. Adv Chronic Kidney Dis 2017; 24:162-168. [PMID: 28501079 DOI: 10.1053/j.ackd.2017.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Assessment of renal function with magnetic resonance imaging (MRI) has been actively explored in the past decade. In this review, we introduce the principle of MRI and review recent progress of MRI methods (contrast enhanced and noncontrast) in assessing renal function. Contrast-enhanced MRI using ultra-low dose of gadolinium-based agent has been validated for measuring single-kidney glomerular filtration rate and renal plasma flow accurately. For routine functional test, contrast-enhanced MRI may not replace the simple serum-creatinine method. However, for patients with renal diseases, it is often worthy to perform MRI to accurately monitor renal function, particularly for the diseased kidney. As contrast-enhanced MRI is already an established clinical tool for characterizing renal structural abnormalities, including renal mass and ureteral obstruction, it is possible to adapt the clinical MRI protocol to measure single-kidney glomerular filtration rate and renal plasma flow, as demonstrated by recent studies. What makes MRI unique is the promise of its noncontrast methods. These methods include arterial spin labeling for tissue perfusion, blood oxygen-level dependent for blood and tissue oxygenation, and diffusion-weighted imaging for water diffusion. For each method, we reviewed recent findings and summarized challenges.
Collapse
|
34
|
|
35
|
Feng L, Benkert T, Block KT, Sodickson DK, Otazo R, Chandarana H. Compressed sensing for body MRI. J Magn Reson Imaging 2016; 45:966-987. [PMID: 27981664 DOI: 10.1002/jmri.25547] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/25/2016] [Indexed: 12/18/2022] Open
Abstract
The introduction of compressed sensing for increasing imaging speed in magnetic resonance imaging (MRI) has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This article presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and nonlinear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the article discusses current challenges and future opportunities. LEVEL OF EVIDENCE 5 J. Magn. Reson. Imaging 2017;45:966-987.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|