1
|
Huang Y, Herbst EB, Xie Y, Yin L, Islam ZH, Kent EW, Wang B, Klibanov AL, Hossack JA. In Vivo Validation of Modulated Acoustic Radiation Force-Based Imaging in Murine Model of Abdominal Aortic Aneurysm Using VEGFR-2-Targeted Microbubbles. Invest Radiol 2023; 58:865-873. [PMID: 37433074 PMCID: PMC10784413 DOI: 10.1097/rli.0000000000001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
OBJECTIVES The objective of this study is to validate the modulated acoustic radiation force (mARF)-based imaging method in the detection of abdominal aortic aneurysm (AAA) in murine models using vascular endothelial growth factor receptor 2 (VEGFR-2)-targeted microbubbles (MBs). MATERIALS AND METHODS The mouse AAA model was prepared using the subcutaneous angiotensin II (Ang II) infusion combined with the β-aminopropionitrile monofumarate solution dissolved in drinking water. The ultrasound imaging session was performed at 7 days, 14 days, 21 days, and 28 days after the osmotic pump implantation. For each imaging session, 10 C57BL/6 mice were implanted with Ang II-filled osmotic pumps, and 5 C57BL/6 mice received saline infusion only as the control group. Biotinylated lipid MBs conjugated to either anti-mouse VEGFR-2 antibody (targeted MBs) or isotype control antibody (control MBs) were prepared before each imaging session and were injected into mice via tail vein catheter. Two separate transducers were colocalized to image the AAA and apply ARF to translate MBs simultaneously. After each imaging session, tissue was harvested and the aortas were used for VEGFR-2 immunostaining analysis. From the collected ultrasound image data, the signal magnitude response of the adherent targeted MBs was analyzed, and a parameter, residual-to-saturation ratio ( Rres - sat ), was defined to measure the enhancement in the adherent targeted MBs signal after the cessation of ARF compared with the initial signal intensity. Statistical analysis was performed with the Welch t test and analysis of variance test. RESULTS The Rres - sat of abdominal aortic segments from Ang II-challenged mice was significantly higher compared with that in the saline-infused control group ( P < 0.001) at all 4 time points after osmotic pump implantation (1 week to 4 weeks). In control mice, the Rres - sat values were 2.13%, 1.85%, 3.26%, and 4.85% at 1, 2, 3, and 4 weeks postimplantation, respectively. In stark contrast, the Rres - sat values for the mice with Ang II-induced AAA lesions were 9.20%, 20.6%, 22.7%, and 31.8%, respectively. It is worth noting that there was a significant difference between the Rres - sat for Ang II-infused mice at all 4 time points ( P < 0.005), a finding not present in the saline-infused mice. Immunostaining results revealed the VEGFR-2 expression was increased in the abdominal aortic segments of Ang II-infused mice compared with the control group. CONCLUSIONS The mARF-based imaging technique was validated in vivo using a murine model of AAA and VEGFR-2-targeted MBs. Results in this study indicated that the mARF-based imaging technique has the ability to detect and assess AAA growth at early stages based on the signal intensity of adherent targeted MBs, which is correlated with the expression level of the desired molecular biomarker. The results may suggest, in very long term, a pathway toward eventual clinical implementation for an ultrasound molecular imaging-based approach to AAA risk assessment in asymptomatic patients.
Collapse
Affiliation(s)
- Yi Huang
- From the Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (Y.H., Y.X., J.A.H.); Philips Research North America, Cambridge, MA (E.B.H.); Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA (L.Y., Z.H.I., E.W.K., B.W.); and Division of Cardiovascular Medicine, Cardiovascular Research Center and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (A.L.K.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Navarro-Becerra JA, Borden MA. Targeted Microbubbles for Drug, Gene, and Cell Delivery in Therapy and Immunotherapy. Pharmaceutics 2023; 15:1625. [PMID: 37376072 DOI: 10.3390/pharmaceutics15061625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Microbubbles are 1-10 μm diameter gas-filled acoustically-active particles, typically stabilized by a phospholipid monolayer shell. Microbubbles can be engineered through bioconjugation of a ligand, drug and/or cell. Since their inception a few decades ago, several targeted microbubble (tMB) formulations have been developed as ultrasound imaging probes and ultrasound-responsive carriers to promote the local delivery and uptake of a wide variety of drugs, genes, and cells in different therapeutic applications. The aim of this review is to summarize the state-of-the-art of current tMB formulations and their ultrasound-targeted delivery applications. We provide an overview of different carriers used to increase drug loading capacity and different targeting strategies that can be used to enhance local delivery, potentiate therapeutic efficacy, and minimize side effects. Additionally, future directions are proposed to improve the tMB performance in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
| | - Mark A Borden
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, CO 80309, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
3
|
Yao Y, Zhang P. Novel ultrasound techniques in the identification of vulnerable plaques-an updated review of the literature. Front Cardiovasc Med 2023; 10:1069745. [PMID: 37293284 PMCID: PMC10244552 DOI: 10.3389/fcvm.2023.1069745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Atherosclerosis is an inflammatory disease partly mediated by lipoproteins. The rupture of vulnerable atherosclerotic plaques and thrombosis are major contributors to the development of acute cardiovascular events. Despite various advances in the treatment of atherosclerosis, there has been no satisfaction in the prevention and assessment of atherosclerotic vascular disease. The identification and classification of vulnerable plaques at an early stage as well as research of new treatments remain a challenge and the ultimate goal in the management of atherosclerosis and cardiovascular disease. The specific morphological features of vulnerable plaques, including intraplaque hemorrhage, large lipid necrotic cores, thin fibrous caps, inflammation, and neovascularisation, make it possible to identify and characterize plaques with a variety of invasive and non-invasive imaging techniques. Notably, the development of novel ultrasound techniques has introduced the traditional assessment of plaque echogenicity and luminal stenosis to a deeper assessment of plaque composition and the molecular field. This review will discuss the advantages and limitations of five currently available ultrasound imaging modalities for assessing plaque vulnerability, based on the biological characteristics of the vulnerable plaque, and their value in terms of clinical diagnosis, prognosis, and treatment efficacy assessment.
Collapse
|
4
|
Hao Y, Luo J, Wang Y, Li Z, Wang X, Yan F. Ultrasound molecular imaging of p32 protein translocation for evaluation of tumor metastasis. Biomaterials 2023; 293:121974. [PMID: 36566551 DOI: 10.1016/j.biomaterials.2022.121974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Protein translocation is an essential process for living cells to respond to different physiological, pathological or environmental stimuli. However, its abnormal occurrence usually results in undesirable outcomes such as tumors. To date, there is still a lack of appropriate methods to detect this event in live animals in a real-time manner. Here, we identified the gradually increased cell-surface translocation of p32 protein from mitochondria during tumor progression. LyP-1-modified gas vesicles (LyP-1-GVs) were developed through conjugating LyP-1 (p32-targeting peptide) to the biosynthetic GVs to monitor the cell-surface level of p32 translocation. The resulting LyP-1-GVs have about 200 nm particle size and good tumor cell targeting performance. Upon systemic administration, LyP-1-GVs can traverse through blood vessels and bind to the tumor cells, producing strong contrast imaging signals in comparison with the non-targeted GVs. The contrast imaging signals correlate well with the cell-surface translocation level of p32 protein and tumor metastatic ability. To our knowledge, this is the first report about the in vivo detection of protein translocation to cell membrane from mitochondria by ultrasound molecular imaging. Our study provides a new strategy to explore the molecular events of protein membrane translocations for evaluation of tumor metastasis at the live animal level.
Collapse
Affiliation(s)
- Yongsheng Hao
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Shenzhen College of Advanced Technology, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingna Luo
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, PR China; Shenzhen University Health Science Center, Shenzhen 518000, PR China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, PR China; Shenzhen University Health Science Center, Shenzhen 518000, PR China
| | - Xiangwei Wang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518055, PR China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| |
Collapse
|
5
|
Pan X, Zhu J, Xu Z, Xiao Q, Zhou X, Xu K, Li C, Jiang Y, Wang Y, Xue Z, Lei P, He Y. 68Ga-WRWWWW Is a Potential Positron Emission Tomography Probe for Imaging Inflammatory Diseases by Targeting Formyl Peptide Receptor 2. Mol Pharm 2022; 19:1368-1377. [PMID: 35393860 DOI: 10.1021/acs.molpharmaceut.1c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inflammation plays a significant role in many physiological and pathological processes. Molecular imaging could provide functional as well as anatomical information for visualizing various inflammatory diseases. Advancements in imaging tracers for inflammation would improve the accuracy of diagnosis and monitoring, thus facilitating patient care. The positron emission tomography (PET) imaging tracer, 68Ga-labeled antagonist peptide Trp-Arg-Trp-Trp-Trp-Trp (WRWWWW, WRW4), targets formyl peptide receptor 2 (FPR2), which is in turn widely distributed in a variety of tissues and is associated with many inflammatory diseases. In the current study, we aimed to investigate the potential of 68Ga-WRW4 for detecting and monitoring inflammatory lesions in mice. We established an inflammation mouse model by the intramuscular injection of turpentine oil into the left thigh. WRW4 was labeled with 68Ga with an overall radiochemical yield >90% and radiochemical purity >99%. 68Ga-WRW4 uptake in inflamed muscle peaked on day 2 (1.14 ± 0.01 percentage of the injected dose per gram of tissue (%ID/g)) and the uptake ratio of inflammatory/normal muscle also reached a maximum (12.36 ± 2.35). Strong PET signals were detected in the left thigh at 60 min after the injection of 68Ga-WRW4 in experimental mice, but weak or no signals were detected in mice in the blocking and control groups. 68Ga-WRW4 uptake was in agreement with the dynamics of immune cell infiltration during the inflammatory reaction. These results suggest that 68Ga-WRW4 is a promising PET tracer suitable for the noninvasive detection of FPR2 expression and for monitoring inflammatory activity in inflammation-bearing mice.
Collapse
Affiliation(s)
- Xin Pan
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430071, China
| | - Jiaxu Zhu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430071, China
| | - Zhuoshuo Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Qin Xiao
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430071, China
| | - Xiaoqi Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Kui Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430071, China
| | - Chongjiao Li
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430071, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430071, China
| | - Yichun Wang
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430071, China
| | - Zejian Xue
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430071, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yong He
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430071, China
| |
Collapse
|
6
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
7
|
Zhao F, Unnikrishnan S, Herbst EB, Klibanov AL, Mauldin FW, Hossack JA. A Targeted Molecular Localization Imaging Method Applied to Tumor Microvasculature. Invest Radiol 2021; 56:197-206. [PMID: 32976207 PMCID: PMC9462590 DOI: 10.1097/rli.0000000000000728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Ultrasound contrast agents, consisting of gas-filled microbubbles (MBs), have been imaged using several techniques that include ultrasound localization microscopy and targeted molecular imaging. Each of these techniques aims to provide indicators of the disease state but has traditionally been performed independently without co-localization of molecular markers and super-resolved vessels. In this article, we present a new imaging technology: a targeted molecular localization (TML) approach, which uses a single imaging sequence and reconstruction approach to co-localize super-resolved vasculature with molecular imaging signature to provide simultaneous anatomic and biological information for potential multiscale disease evaluation. MATERIALS AND METHODS The feasibility of the proposed TML technique was validated in a murine hindlimb tumor model. Targeted molecular localization imaging was performed on 3 groups, which included control tissue (leg), tumor tissue, and tumor tissue after sunitinib an-tivascular treatment. Quantitative measures for vascular index (VI) and molecular index (MITML) were calculated from the microvasculature and TML images, respectively. In addition to these conventional metrics, a new metric unique to the TML technique, reporting the ratio of targeted molecular index to vessel surface, was assessed. RESULTS The quantitative resolution results of the TML approach showed resolved resolution of the microvasculature down to 28.8 μm. Vascular index increased in tumors with and without sunitinib compared with the control leg, but the trend was not statistically significant. A decrease in MITML was observed for the tumor after treatment (P < 0.0005) and for the control leg (P < 0.005) compared with the tumor before treatment. Statistical differences in the ratio of molecular index to vessel surface were found between all groups: the control leg and tumor (P < 0.05), the control leg and tumor after sunitinib treatment (P < 0.05), and between tumors with and without sunitinib treatment (P < 0.001). CONCLUSIONS These findings validated the technical feasibility of the TML method and pre-clinical feasibility for differentiating between the normal and diseased tissue states.
Collapse
Affiliation(s)
- Feifei Zhao
- From the Department of Biomedical Engineering
| | | | | | | | | | | |
Collapse
|
8
|
Molecular Ultrasound Imaging. NANOMATERIALS 2020; 10:nano10101935. [PMID: 32998422 PMCID: PMC7601169 DOI: 10.3390/nano10101935] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.
Collapse
|
9
|
Characterization and Significance of Monocytes in Acute Stanford Type B Aortic Dissection. J Immunol Res 2020; 2020:9670360. [PMID: 32509885 PMCID: PMC7245667 DOI: 10.1155/2020/9670360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/05/2020] [Indexed: 01/16/2023] Open
Abstract
Acute aortic dissection (AAD) is one of the most common fatal diseases noted in vascular surgery. Human monocytes circulate in dynamic equilibrium and display a considerable heterogeneity. However, the role of monocytes in AAD remains elusive. In our recent study, we firstly obtained blood samples from 22 patients with Stanford type B AAD and 44 age-, sex-, and comorbidity-matched control subjects. And the monocyte proportions were evaluated by flow cytometry. Results showed that the percentage of total CD14+ monocytes in the blood samples of Stanford AAD patients was increased significantly compared with that of normal volunteers (P < 0.0005), and the absolute numbers of CD14brightCD16+ and CD14brightCD16− monocytes both increased significantly regardless of the percentage of PBMC or CD14+ cells, while CD14dimCD16+ monocytes displayed the opposite tendency. However, the percentage of CD14+ cells and its three subsets demonstrated no correlation with D-dimer (DD) and C-reactive protein (CRP). Then, blood mononuclear cell (PBMC) samples were collected by Ficoll density gradient centrifugation, followed with CD14+ magnetic bead sorting. After the purity of CD14+ cells was validated over 90%, AAD-related genes were concentrated in CD14+ monocytes. There were no significant differences observed with regard to the mRNA expression levels of MMP1 (P = 0.0946), MMP2 (P = 0.3941), MMP9 (P = 0.2919), IL-6 (P = 0.4223), and IL-10 (P = 0.3375) of the CD14+ monocytes in Stanford type B AAD patients compared with those of normal volunteers. The expression levels of IL-17 (P < 0.05) was higher in Stanford type B AAD patients, while the expression levels of TIMP1(P<0.05), TIMP2(P<0.01), TGF-β1 (P < 0.01), SMAD3 (P < 0.01), ACTA2 (P < 0.001), and ADAMTS-1 (P < 0.001) decreased. The data suggested that monocytes might play an important role in the development of Stanford type B AAD. Understanding of the production, differentiation, and function of monocyte subsets might dictate future therapeutic avenues for Stanford type B AAD treatment and can aid the identification of novel biomarkers or potential therapeutic targets for decreasing inflammation in AAD.
Collapse
|
10
|
Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment. Pharmacol Ther 2020; 211:107550. [PMID: 32325067 DOI: 10.1016/j.pharmthera.2020.107550] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Inflammation is a key factor in multiple diseases including primary immune-mediated inflammatory diseases e.g. rheumatoid arthritis but also, less obviously, in many other common conditions, e.g. cardiovascular disease and diabetes. Together, chronic inflammatory diseases contribute to the majority of global morbidity and mortality. However, our understanding of the underlying processes by which the immune response is activated and sustained is limited by a lack of cellular and molecular information obtained in situ. Molecular imaging is the visualization, detection and quantification of molecules in the body. The ability to reveal information on inflammatory biomarkers, pathways and cells can improve disease diagnosis, guide and monitor therapeutic intervention and identify new targets for research. The optimum molecular imaging modality will possess high sensitivity and high resolution and be capable of non-invasive quantitative imaging of multiple disease biomarkers while maintaining an acceptable safety profile. The mainstays of current clinical imaging are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and nuclear imaging such as positron emission tomography (PET). However, none of these have yet progressed to routine clinical use in the molecular imaging of inflammation, therefore new approaches are required to meet this goal. This review sets out the respective merits and limitations of both established and emerging imaging modalities as clinically useful molecular imaging tools in addition to potential theranostic applications.
Collapse
|
11
|
Xie Z, Yang Y, He Y, Shu C, Chen D, Zhang J, Chen J, Liu C, Sheng Z, Liu H, Liu J, Gong X, Song L, Dong S. In vivo assessment of inflammation in carotid atherosclerosis by noninvasive photoacoustic imaging. Am J Cancer Res 2020; 10:4694-4704. [PMID: 32292523 PMCID: PMC7150488 DOI: 10.7150/thno.41211] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/15/2020] [Indexed: 01/22/2023] Open
Abstract
Objectives: The objective of this study was to demonstrate the feasibility of using noninvasive photoacoustic imaging technology along with novel semiconducting polymer nanoparticles for in vivo identifying inflammatory components in carotid atherosclerosis and assessing the severity of inflammation using mouse models. Methods and Results: Healthy carotid arteries and atherosclerotic carotid arteries were imaged in vivo by the noninvasive photoacoustic imaging system. Molecular probes PBD-CD36 were used to label the inflammatory cells to show the inflammation information by photoacoustic imaging. In in vivo imaging experiments, we observed the maximum photoacoustic signal enhancement of 4.3, 5.2, 8 and 16.3 times between 24 h post probe injection and that before probe injection in four carotid arteries belonging to three atherosclerotic mice models. In the corresponding carotid arteries stained with CD36, the ratio of 0.043, 0.061, 0.082 and 0.113 was found between CD36 positive (CD36(+)) expression area and intima-media area (P < 0.05). For the CD36(+) expression less than 0.008 in eight arteries, no photoacoustic signal enhancement was found due to the limited system sensitivity. The photoacoustic signal reflects CD36(+) expression in plaques, which shows the feasibility of using photoacoustic imaging for in vivo assessment of carotid atherosclerosis. Conclusion: This research demonstrates a semiconducting polymer nanoparticle along with photoacoustic technology for noninvasive imaging and assessment of inflammation of carotid atherosclerotic plaques in vivo.
Collapse
|
12
|
Luong A, Smith D, Tai CH, Cotter B, Luo C, Strachan M, DeMaria A, Rychak JJ. Development of a Translatable Ultrasound Molecular Imaging Agent for Inflammation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:690-702. [PMID: 31899038 DOI: 10.1016/j.ultrasmedbio.2019.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This study details the development, characterization and non-clinical efficacy of an ultrasound molecular imaging agent intended for molecular imaging of P-selectin in humans. A targeting ligand based on a recently discovered human selectin ligand was manufactured as fusion protein, and activity for human and mouse P- and E-selectin was evaluated by functional immunoassay. The targeting ligand was covalently conjugated to a lipophilic anchor inserted into a phospholipid microbubble shell. Three lots of the targeted microbubble drug product, TS-07-009, were produced, and assays for size distribution, zeta potential and morphology were established. The suitability of TS-07-009 as a molecular imaging agent was evaluated in vitro in a flow-based adhesion assay and in vivo using a canine model of transient myocardial ischemia. Selectivity for P-selectin over E-selectin was observed in both the human and murine systems. Contrast agent adhesion increased with P-selectin concentration in a dynamic adhesion assay. Significant contrast enhancement was observed on ultrasound imaging with TS-07-009 in post-ischemic canine myocardium at 30 or 90 min of re-perfusion. Negligible enhancement was observed in resting (no prior ischemia) hearts or with a control microbubble 90 min after ischemia. The microbubble contrast agent described here exhibits physiochemical properties and in vivo behavior suitable for development as a clinical imaging agent.
Collapse
Affiliation(s)
| | - Dan Smith
- Targeson, Inc., San Diego, California, USA
| | | | - Bruno Cotter
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Colin Luo
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Monet Strachan
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Anthony DeMaria
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Joshua J Rychak
- Targeson, Inc., San Diego, California, USA; Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
13
|
Perkins LA, Anderson CJ, Novelli EM. Targeting P-Selectin Adhesion Molecule in Molecular Imaging: P-Selectin Expression as a Valuable Imaging Biomarker of Inflammation in Cardiovascular Disease. J Nucl Med 2019; 60:1691-1697. [PMID: 31601694 DOI: 10.2967/jnumed.118.225169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
P-selectin is an adhesion molecule translocated to the surface of endothelial cells and platelets under inflammatory stimuli, and its potential as a biomarker in inflammatory conditions has driven preclinical studies to investigate its application for molecular imaging of inflammation. Clinical imaging of P-selectin expression for disease characterization could have an important role in stratifying patients and determining treatment strategies. The objective of this review is to outline the role of P-selectin in cardiovascular inflammatory conditions and its translation as an early inflammatory biomarker for several molecular imaging modalities for diagnostic purposes and therapeutic planning.
Collapse
Affiliation(s)
- Lydia A Perkins
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carolyn J Anderson
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Enrico M Novelli
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Kanoulas E, Butler M, Rowley C, Voulgaridou V, Diamantis K, Duncan WC, McNeilly A, Averkiou M, Wijkstra H, Mischi M, Wilson RS, Lu W, Sboros V. Super-Resolution Contrast-Enhanced Ultrasound Methodology for the Identification of In Vivo Vascular Dynamics in 2D. Invest Radiol 2019; 54:500-516. [PMID: 31058661 PMCID: PMC6661242 DOI: 10.1097/rli.0000000000000565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this study was to provide an ultrasound-based super-resolution methodology that can be implemented using clinical 2-dimensional ultrasound equipment and standard contrast-enhanced ultrasound modes. In addition, the aim is to achieve this for true-to-life patient imaging conditions, including realistic examination times of a few minutes and adequate image penetration depths that can be used to scan entire organs without sacrificing current super-resolution ultrasound imaging performance. METHODS Standard contrast-enhanced ultrasound was used along with bolus or infusion injections of SonoVue (Bracco, Geneva, Switzerland) microbubble (MB) suspensions. An image analysis methodology, translated from light microscopy algorithms, was developed for use with ultrasound contrast imaging video data. New features that are tailored for ultrasound contrast image data were developed for MB detection and segmentation, so that the algorithm can deal with single and overlapping MBs. The method was tested initially on synthetic data, then with a simple microvessel phantom, and then with in vivo ultrasound contrast video loops from sheep ovaries. Tracks detailing the vascular structure and corresponding velocity map of the sheep ovary were reconstructed. Images acquired from light microscopy, optical projection tomography, and optical coherence tomography were compared with the vasculature network that was revealed in the ultrasound contrast data. The final method was applied to clinical prostate data as a proof of principle. RESULTS Features of the ovary identified in optical modalities mentioned previously were also identified in the ultrasound super-resolution density maps. Follicular areas, follicle wall, vessel diameter, and tissue dimensions were very similar. An approximately 8.5-fold resolution gain was demonstrated in vessel width, as vessels of width down to 60 μm were detected and verified (λ = 514 μm). Best agreement was found between ultrasound measurements and optical coherence tomography with 10% difference in the measured vessel widths, whereas ex vivo microscopy measurements were significantly lower by 43% on average. The results were mostly achieved using video loops of under 2-minute duration that included respiratory motion. A feasibility study on a human prostate showed good agreement between density and velocity ultrasound maps with the histological evaluation of the location of a tumor. CONCLUSIONS The feasibility of a 2-dimensional contrast-enhanced ultrasound-based super-resolution method was demonstrated using in vitro, synthetic and in vivo animal data. The method reduces the examination times to a few minutes using state-of-the-art ultrasound equipment and can provide super-resolution maps for an entire prostate with similar resolution to that achieved in other studies.
Collapse
Affiliation(s)
- Evangelos Kanoulas
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | - Mairead Butler
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | - Caitlin Rowley
- Department of Physics, Heriot-Watt University, Riccarton
| | - Vasiliki Voulgaridou
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | | | - William Colin Duncan
- Center for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan McNeilly
- Center for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Massimo Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| | - Rhodri Simon Wilson
- **Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Weiping Lu
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | - Vassilis Sboros
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| |
Collapse
|
15
|
Applications of Ultrasound to Stimulate Therapeutic Revascularization. Int J Mol Sci 2019; 20:ijms20123081. [PMID: 31238531 PMCID: PMC6627741 DOI: 10.3390/ijms20123081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Many pathological conditions are characterized or caused by the presence of an insufficient or aberrant local vasculature. Thus, therapeutic approaches aimed at modulating the caliber and/or density of the vasculature by controlling angiogenesis and arteriogenesis have been under development for many years. As our understanding of the underlying cellular and molecular mechanisms of these vascular growth processes continues to grow, so too do the available targets for therapeutic intervention. Nonetheless, the tools needed to implement such therapies have often had inherent weaknesses (i.e., invasiveness, expense, poor targeting, and control) that preclude successful outcomes. Approximately 20 years ago, the potential for using ultrasound as a new tool for therapeutically manipulating angiogenesis and arteriogenesis began to emerge. Indeed, the ability of ultrasound, especially when used in combination with contrast agent microbubbles, to mechanically manipulate the microvasculature has opened several doors for exploration. In turn, multiple studies on the influence of ultrasound-mediated bioeffects on vascular growth and the use of ultrasound for the targeted stimulation of blood vessel growth via drug and gene delivery have been performed and published over the years. In this review article, we first discuss the basic principles of therapeutic ultrasound for stimulating angiogenesis and arteriogenesis. We then follow this with a comprehensive cataloging of studies that have used ultrasound for stimulating revascularization to date. Finally, we offer a brief perspective on the future of such approaches, in the context of both further research development and possible clinical translation.
Collapse
|
16
|
Vigne J, Thackeray J, Essers J, Makowski M, Varasteh Z, Curaj A, Karlas A, Canet-Soulas E, Mulder W, Kiessling F, Schäfers M, Botnar R, Wildgruber M, Hyafil F. Current and Emerging Preclinical Approaches for Imaging-Based Characterization of Atherosclerosis. Mol Imaging Biol 2019; 20:869-887. [PMID: 30250990 DOI: 10.1007/s11307-018-1264-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atherosclerotic plaques can remain quiescent for years, but become life threatening upon rupture or disruption, initiating clot formation in the vessel lumen and causing acute myocardial infarction and ischemic stroke. Whether and how a plaque ruptures is determined by its macroscopic structure and microscopic composition. Rupture-prone plaques usually consist of a thin fibrous cap with few smooth muscle cells, a large lipid core, a dense infiltrate of inflammatory cells, and neovessels. Such lesions, termed high-risk plaques, can remain asymptomatic until the thrombotic event. Various imaging technologies currently allow visualization of morphological and biological characteristics of high-risk atherosclerotic plaques. Conventional protocols are often complex and lack specificity for high-risk plaque. Conversely, new imaging approaches are emerging which may overcome these limitations. Validation of these novel imaging techniques in preclinical models of atherosclerosis is essential for effective translational to clinical practice. Imaging the vessel wall, as well as its biological milieu in small animal models, is challenging because the vessel wall is a small structure that undergoes continuous movements imposed by the cardiac cycle as it is adjacent to circulating blood. The focus of this paper is to provide a state-of-the-art review on techniques currently available for preclinical imaging of atherosclerosis in small animal models and to discuss the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Jonathan Vigne
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP; INSERM, U-1148, DHU FIRE, University Diderot, Paris, France
| | - James Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Jeroen Essers
- Departments of Vascular Surgery, Molecular Genetics, Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Marcus Makowski
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Zoreh Varasteh
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Adelina Curaj
- Institute for Molecular Cardiovascular Research (IMCAR), Institute for Experimental Molecular Imaging (ExMI), University Hospital Aachen, RWTH, Aachen, Germany
| | - Angelos Karlas
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Emmanuel Canet-Soulas
- Laboratoire CarMeN, INSERM U-1060, Lyon/Hospices Civils Lyon, IHU OPERA Cardioprotection, Université de Lyon, Bron, France
| | - Willem Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, USA
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), University Hospital Aachen, RWTH, Aachen, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - René Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Moritz Wildgruber
- Translational Research Imaging Center, Institut für Klinische Radiologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Fabien Hyafil
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP; INSERM, U-1148, DHU FIRE, University Diderot, Paris, France. .,Département de Médecine Nucléaire, Centre Hospitalier Universitaire Bichat, 46 rue Henri Huchard, 75018, Paris, France.
| | | |
Collapse
|
17
|
Vishal TMD, Ji-Bin LMD, John EP. Applications in Molecular Ultrasound Imaging: Present and Future. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2019. [DOI: 10.37015/audt.2019.190812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Rix A, Lederle W, Theek B, Lammers T, Moonen C, Schmitz G, Kiessling F. Advanced Ultrasound Technologies for Diagnosis and Therapy. J Nucl Med 2018; 59:740-746. [DOI: 10.2967/jnumed.117.200030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/20/2018] [Indexed: 12/27/2022] Open
|
19
|
Yan F, Sun Y, Mao Y, Wu M, Deng Z, Li S, Liu X, Xue L, Zheng H. Ultrasound Molecular Imaging of Atherosclerosis for Early Diagnosis and Therapeutic Evaluation through Leucocyte-like Multiple Targeted Microbubbles. Am J Cancer Res 2018; 8:1879-1891. [PMID: 29556362 PMCID: PMC5858506 DOI: 10.7150/thno.22070] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/02/2018] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases resulting from atherosclerosis have become a serious threat to human health. It is well-known that an ongoing inflammatory response is involved during atherosclerosis progression that ultimately results in the accumulation of lipids and formation of plaques. Monitoring the pathological changes during the inflammatory response will be of great significance for early diagnosis and therapeutic evaluation of atherosclerosis. Targeted contrast-enhanced ultrasonography has been shown to be a promising noninvasive imaging technique for evaluating the degree of atherosclerosis and may potentially be translated to clinical imaging in the future. However, inadequate cell adhesion of targeted microbubbles (MBs) in large arterial vessels still remains a great challenge. Methods: By mimicking the leucocytes that are recruited to the vessel wall during the initiation of atherosclerosis through selectin-dependent arrest and cell adhesion molecule-mediated firm cell adhesion, we developed VCAM-1/ICAM-1/P-selectin-targeted MBVIS by integrating VCAM-1 and ICAM-1 antibodies and synthetic polymeric sialyl Lewis X (sLex) onto the MB surface. Results: The resulting MBVIS had a high affinity to inflammatory bEnd.3 cells in both static and dynamic flow conditions. Significantly enhanced ultrasound imaging signals were achieved by MBVIS in detecting the atherosclerosis progress when compared with the single- or dual-targeted MBs. Taking advantage of the artificial MBVIS, less ultrasound imaging signals were found in the atorvastatin-treated, but not placebo-treated, ApoE-deficient mice with atherosclerosis, revealing a potential therapeutic efficacy of atorvastatin for early stage atherosclerosis. This was further confirmed by histologic staining examination. Conclusions: Our study provides a promising ultrasound molecular imaging probe for early-stage diagnosis and therapeutic evaluation of atherosclerosis.
Collapse
|