1
|
Liu Y, Cao B, Wang X, Zhong J, Li Z, Peng R, Zhao D, Gu N, Yang Q. Ferumoxytol-enhanced MR venography for mapping lower-extremity venous networks and evaluating varicose veins in patients with diabetes. Eur Radiol 2024; 34:7197-7207. [PMID: 38713277 DOI: 10.1007/s00330-024-10772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVES Comprehensive evaluation of lower-extremity varicose veins (VVs) in patients with diabetes is crucial for treatment strategizing. The study aims to assess the feasibility of using ferumoxytol-enhanced MR venography (FE-MRV) for lower-extremity venous mapping and the detection of VVs in patients with diabetes. MATERIALS AND METHODS As part of a phase II clinical trial of a generic brand of ferumoxytol, documented patients with diabetes were enrolled and underwent FE-MRV on a 3-Τ MRI system. Two observers assessed FE-MRV images for image quality, signal intensity ratio (SIR), perforator (PV) diameter, and luminal signal uniformity in deep-to-superficial venous networks with the assessment of intra- and inter-rater reliability. FE-MRV was used to detect lower-extremity VVs. RESULTS Eleven patients underwent FE-MRV without adverse events. The average image quality, as scored by the two observers who assessed 275 venous segments, was 3.4 ± 0.6. Two observers strongly agreed on image quality (κ = 0.90) and SIR measurements (interclass correlation coefficient [ICC]: 0.72) and had good agreement on PV diameter (ICC: 0.64). FE-MRV revealed uniform luminal signals in deep and saphenous venous networks (0.13 ± 0.05 vs 0.08 ± 0.03). Below-knee segments exhibited a significantly higher heterogeneity index than above-knee (p = 0.039) segments. Superficial VVs were observed in 55% (12/22) of legs in 64% (7/11) of patients. Calf muscle VVs were present in 64% (14/22) of legs in 9 patients. CONCLUSION FE-MRV safely and robustly mapped entire lower-extremity venous networks, enabling the detection and pre-treatment evaluation of both superficial, and deep VVs in patients with diabetes. CLINICAL RELEVANCE STATEMENT Ferumoxytol-enhanced magnetic resonance venography offers a "one-stop" imaging strategy for the detection and pre-operative evaluation of both superficial and deep VVs in diabetic patients. KEY POINTS Diabetic patients with VVs are at a higher risk of ulcer-related complications. FE-MRV allowed rapid and comprehensive visualization of the lower-limb venous networks and abdominopelvic veins in diabetic patients. This technique allowed for the detection of superficial and deep VVs in diabetic patients before the development of severe peripheral artery disease.
Collapse
Affiliation(s)
- Yuehong Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bin Cao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xinyu Wang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiali Zhong
- Department of Radiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Li
- Department of Radiology, Central Hospital Affiliated to Xinxiang Medical University, Xinxiang, China
| | - Ruchen Peng
- Department of Radiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Ning Gu
- Medical School of Nanjing University, Nanjing, China.
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
van der Heijden RA, Tamada D, Mao L, Rice J, Reeder SB. Relaxivity and In Vivo Human Performance of Brand Name Versus Generic Ferumoxytol. Invest Radiol 2024:00004424-990000000-00261. [PMID: 39437023 DOI: 10.1097/rli.0000000000001130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Ferumoxytol is a superparamagnetic iron-oxide product that is increasingly used off-label for contrast-enhanced magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA). With the recent regulatory approval of generic ferumoxytol, there may be an opportunity to reduce cost, so long as generic ferumoxytol has similar imaging performance to brand name ferumoxytol. This study aims to compare the relaxation-concentration dependence and MRI performance of brand name ferumoxytol with generic ferumoxytol through phantom and in vivo experiments. The secondary purpose was to determine the optimal flip angle and optimal weight-based dosing. MATERIALS AND METHODS Phantom experiments were performed using both brand name (AMAG Pharmaceuticals) and generic (Sandoz Pharmaceuticals) ferumoxytol products. Each ferumoxytol product was diluted in saline, and separately in adult bovine whole blood, at 5 iron concentrations ranging from 0.3 to 2.1 mM. Vials were placed in an MR-compatible water bath at 37°C and imaged at both 1.5 T and 3.0 T. Longitudinal and transverse relaxation rate constants (R1, R2, R2*) were measured for each ferumoxytol concentration, and relaxation-concentration curves were estimated. An in vivo dose accumulation study with flip angle optimization was also implemented using a cross-over design, in healthy volunteers. Cumulative doses of 1, 3, 5, and 7 mg/kg diluted ferumoxytol were administered prior to MRA of the chest on a 3.0 T clinical MRI system. For each incremental dose, the flip angle was varied from 40° to 10° in -10° increments over 5 breath-holds followed by a repeated 40° flip angle acquisition. Regions of interest were drawn in the aortic arch, paraspinous muscles, and a noisy area outside of the patient, free from obvious artifact. Signal-to-noise ratio (SNR) was calculated as the quotient of the average signal in the aortic arch and the standard deviation of the noise, corrected for a Rician noise distribution. Contrast-to-noise ratio was calculated as the difference in SNR between the aorta and paraspinous muscles. Absolute SNR and contrast-to-noise ratio values were compared between products for different flip angles and doses. RESULTS There were no statistically significant or clinically relevant differences in relaxation-concentration curves between AMAG and Sandoz products in phantom experiments. Six healthy volunteers (38.8 ± 11.5 years, 3 female, 3 male) were successfully recruited and completed both imaging visits. No clinically relevant differences in image quality were observed between ferumoxytol products. The optimal flip angle range and dose for both products was 20°-30° and 5 mg/kg, respectively. CONCLUSIONS Brand name and generic ferumoxytol products can be used interchangeably for MRA.
Collapse
Affiliation(s)
- Rianne A van der Heijden
- From the Department of Radiology, University of Wisconsin-Madison, Madison, WI (R.A.V., D.T., J.R., S.B.R.); Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands (R.A.V.); Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI (L.M.); Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI (J.R.); Department of Medical Physics, University of Wisconsin-Madison, Madison, WI (S.B.R.); Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI (S.B.R.); Department of Medicine, University of Wisconsin-Madison, Madison, WI (S.B.R.); and Department of Emergency Medicine, University of Wisconsin-Madison, Madison, WI (S.B.R.)
| | | | | | | | | |
Collapse
|
3
|
Li X, Wang C, Huang J, Reeder SB, Hernando D. Effect of particle size on liver MRI R 2 * relaxometry: Monte Carlo simulation and phantom studies. Magn Reson Med 2024; 92:1743-1754. [PMID: 38725136 PMCID: PMC11262983 DOI: 10.1002/mrm.30154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
PURPOSE To investigate the effect of particle size on liverR 2 * $$ {\mathrm{R}}_2^{\ast } $$ by Monte Carlo simulation and phantom studies at both 1.5 T and 3.0 T. METHODS Two kinds of particles (i.e., iron sphere and fat droplet) with varying sizes were considered separately in simulation and phantom studies. MRI signals were synthesized and analyzed for predictingR 2 * $$ {\mathrm{R}}_2^{\ast } $$ , based on simulations by incorporating virtual liver model, particle distribution, magnetic field generation, and proton movement into phase accrual. In the phantom study, iron-water and fat-water phantoms were constructed, and each phantom contained 15 separate vials with combinations of five particle concentrations and three particle sizes.R 2 * $$ {\mathrm{R}}_2^{\ast } $$ measurements in the phantom were made at both 1.5 T and 3.0 T. Finally, differences inR 2 * $$ {\mathrm{R}}_2^{\ast } $$ predictions or measurements were evaluated across varying particle sizes. RESULTS In the simulation study, strong linear and positively correlated relationships were observed betweenR 2 * $$ {\mathrm{R}}_2^{\ast } $$ predictions and particle concentrations across varying particle sizes and magnetic field strengths (r ≥ 0.988 $$ r\ge 0.988 $$ ). The relationships were affected by iron sphere size (p < 0.001 $$ p<0.001 $$ ), where smaller iron sphere size yielded higher predictedR 2 * $$ {\mathrm{R}}_2^{\ast } $$ , whereas fat droplet size had no effect onR 2 * $$ {\mathrm{R}}_2^{\ast } $$ predictions (p ≥ 0.617 $$ p\ge 0.617 $$ ) for constant total fat concentration. Similarly, the phantom study showed thatR 2 * $$ {\mathrm{R}}_2^{\ast } $$ measurements were relatively sensitive to iron sphere size (p ≤ 0.004 $$ p\le 0.004 $$ ) unlike fat droplet size (p ≥ 0.223 $$ p\ge 0.223 $$ ). CONCLUSION LiverR 2 * $$ {\mathrm{R}}_2^{\ast } $$ is affected by iron sphere size, but is relatively unaffected by fat droplet size. These findings may lead to an improved understanding of the underlying mechanisms ofR 2 * $$ {\mathrm{R}}_2^{\ast } $$ relaxometry in vivo, and enable improved quantitative MRI phantom design.
Collapse
Affiliation(s)
- Xiaoben Li
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Changqing Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Jinhong Huang
- College of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, China
| | - Scott B. Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Kaniewska M, Deininger-Czermak E, Ensle F, Donati OF, Guggenberger R. Delayed Ferumoxtran-10-Enhanced Magnetic Resonance Neurography of the Lumbosacral Plexus: Impact on Vascular Suppression and Image Quality. J Magn Reson Imaging 2024. [PMID: 39228293 DOI: 10.1002/jmri.29604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Intravenous Ferumoxtran-10 belongs to ultra-small superparamagnetic iron oxide particles and can be used for magnetic resonance neurography (MRN) as an alternative to other imaging methods which use contrast agents. PURPOSE To examine the impact of intravenous Ferumoxtran-10 on vascular suppression and compare image quality to gadolinium (Gd)-enhanced image acquisition in MRN of lumbosacral plexus (LS). STUDY TYPE Prospective. POPULATION/SUBJECTS 17 patients with Ferumoxtran-10-enhanced MRN, and 20 patients with Gd-enhanced MRN. FIELDSTRENGTH/SEQUENCE 3T/3D STIR sequence. ASSESSMENT Image quality, nerve visibility and vascular suppression were evaluated by 3 readers using a 5-point Likert scale. STATISTICAL TESTS Inter-reader agreement (IRA) was calculated using intraclass coefficients (ICC). Quantitative analysis of image quality was performed by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurements and compared using Student's t-testing. RESULTS Image quality, nerve visibility and vascular suppression were significantly higher for Ferumoxtran-10-enhanced MRN compared to Gd-enhanced MRN sequences (p < 0.05). IRA for image quality of nerves was good in Gd-enhanced and Ferumoxtran-10 MRN with ICC values of 0.76 and 0.89, respectively. IRA for nerve visibility was good in Gd- and Ferumoxtran-10 enhanced MR neurography (ICC 0.72 and 0.90). Mean SNR was significantly higher in Ferumoxtran-10-enhanced MRN for all analyzed structures, while mean CNR was for significantly better for S1 ganglion and femoral nerve in Ferumoxtran-10-enhanced MRN (p < 0.05). DATA CONCLUSION Ferumoxtran-10-enhanced MRN of the LS plexus showed significantly higher image quality and nerve visibility with better vascular suppression as compared to Gd-enhanced MRN. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Malwina Kaniewska
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), Zurich, Switzerland
- University of Zurich (UZH), Zurich, Switzerland
| | - Eva Deininger-Czermak
- University of Zurich (UZH), Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Falko Ensle
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), Zurich, Switzerland
- University of Zurich (UZH), Zurich, Switzerland
| | - Olivio F Donati
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), Zurich, Switzerland
- University of Zurich (UZH), Zurich, Switzerland
- Radiologie Hirslanden Zurich, Octorad AG, Zürich, Switzerland
| | - Roman Guggenberger
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), Zurich, Switzerland
- University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
5
|
Li Y, Li W, Paez A, Cao D, Sun Y, Gu C, Zhang K, Miao X, Liu P, Li W, Pillai J, Lu H, van Zijl PCM, Earley C, Li X, Hua J. Imaging arterial and venous vessels using Iron Dextran enhanced multi-echo 3D gradient echo MRI at 7T. NMR IN BIOMEDICINE 2024:e5251. [PMID: 39187441 DOI: 10.1002/nbm.5251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Iron Dextran is a widely used iron oxide compound to treat iron-deficiency anemia patients in the clinic. Similar to other iron oxide compounds such as Ferumoxytol, it can also be used off-label as an intravascular magnetic resonance imaging (MRI) contrast agent due to its strong iron-induced T2 and T2* shortening effects. In this study, we seek to evaluate the feasibility of using Iron Dextran enhanced multi-echo susceptibility weighted imaging (SWI) MRI at 7T to image arterial and venous blood vessels in the human brain. Phantom experiments were performed to measure the r2* relaxivity for Iron Dextran in blood, based on which the SWI sequence was optimized. Pre- and post-infusion MR images were acquired in human subjects from which maps of arteries and veins were extracted. The post-contrast SWI images showed enhanced susceptibility difference between blood and the surrounding tissue in both arteries and veins. Our results showed that the proposed Iron Dextran enhanced multi-echo SWI approach allowed the visualization of blood vessels with diameters down to ~100 μm, including small blood vessels supplying and draining small brain structures such as the hippocampus. We conclude that Iron Dextran can be an alternative iron-based MRI contrast agent for blood vessel imaging in the human brain.
Collapse
Affiliation(s)
- Yinghao Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wei Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology, Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child, Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Di Cao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuanqi Sun
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chunming Gu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kaihua Zhang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- School of Psychology, Shandong Normal University, Jinan, China
| | - Xinyuan Miao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenbo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jay Pillai
- Division of Neuroradiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher Earley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Hua
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Si G, Du Y, Tang P, Ma G, Jia Z, Zhou X, Mu D, Shen Y, Lu Y, Mao Y, Chen C, Li Y, Gu N. Unveiling the next generation of MRI contrast agents: current insights and perspectives on ferumoxytol-enhanced MRI. Natl Sci Rev 2024; 11:nwae057. [PMID: 38577664 PMCID: PMC10989670 DOI: 10.1093/nsr/nwae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) is a pivotal tool for global disease diagnosis and management. Since its clinical availability in 2009, the off-label use of ferumoxytol for ferumoxytol-enhanced MRI (FE-MRI) has significantly reshaped CE-MRI practices. Unlike MRI that is enhanced by gadolinium-based contrast agents, FE-MRI offers advantages such as reduced contrast agent dosage, extended imaging windows, no nephrotoxicity, higher MRI time efficiency and the capability for molecular imaging. As a leading superparamagnetic iron oxide contrast agent, ferumoxytol is heralded as the next generation of contrast agents. This review delineates the pivotal clinical applications and inherent technical superiority of FE-MRI, providing an avant-garde medical-engineering interdisciplinary lens, thus bridging the gap between clinical demands and engineering innovations. Concurrently, we spotlight the emerging imaging themes and new technical breakthroughs. Lastly, we share our own insights on the potential trajectory of FE-MRI, shedding light on its future within the medical imaging realm.
Collapse
Affiliation(s)
- Guangxiang Si
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yue Du
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Peng Tang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Gao Ma
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhaochen Jia
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 200126, China
| | - Dan Mu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yan Shen
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Yi Lu
- School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Mao
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
7
|
Sekita A, Unterweger H, Berg S, Ohlmeyer S, Bäuerle T, Zheng KH, Coolen BF, Nederveen AJ, Cabella C, Rossi S, Stroes ESG, Alexiou C, Lyer S, Cicha I. Accumulation of Iron Oxide-Based Contrast Agents in Rabbit Atherosclerotic Plaques in Relation to Plaque Age and Vulnerability Features. Int J Nanomedicine 2024; 19:1645-1666. [PMID: 38406599 PMCID: PMC10893894 DOI: 10.2147/ijn.s430693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/14/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose In this study, a detailed characterization of a rabbit model of atherosclerosis was performed to assess the optimal time frame for evaluating plaque vulnerability using superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI). Methods The progression of atherosclerosis induced by ballooning and a high-cholesterol diet was monitored using angiography, and the resulting plaques were characterized using immunohistochemistry and histology. Morphometric analyses were performed to evaluate plaque size and vulnerability features. The accumulation of SPIONs (novel dextran-coated SPIONDex and ferumoxytol) in atherosclerotic plaques was investigated by histology and MRI and correlated with plaque age and vulnerability. Toxicity of SPIONDex was evaluated in rats. Results Weak positive correlations were detected between plaque age and intima thickness, and total macrophage load. A strong negative correlation was observed between the minimum fibrous cap thickness and plaque age as well as the mean macrophage load. The accumulation of SPION in the atherosclerotic plaques was detected by MRI 24 h after administration and was subsequently confirmed by Prussian blue staining of histological specimens. Positive correlations between Prussian blue signal in atherosclerotic plaques, plaque age, and macrophage load were detected. Very little iron was observed in the histological sections of the heart and kidney, whereas strong staining of SPIONDex and ferumoxytol was detected in the spleen and liver. In contrast to ferumoxytol, SPIONDex administration in rabbits was well tolerated without inducing hypersensitivity. The maximum tolerated dose in rat model was higher than 100 mg Fe/kg. Conclusion Older atherosclerotic plaques with vulnerable features in rabbits are a useful tool for investigating iron oxide-based contrast agents for MRI. Based on the experimental data, SPIONDex particles constitute a promising candidate for further clinical translation as a safe formulation that offers the possibility of repeated administration free from the risks associated with other types of magnetic contrast agents.
Collapse
Affiliation(s)
- Alexander Sekita
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Harald Unterweger
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sonja Berg
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Ohlmeyer
- Institute of Radiology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen (PIPE), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kang H Zheng
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudia Cabella
- Bracco Imaging SpA, Centro Ricerche Bracco, Colleretto Giacosa, Turin, Italy
| | - Silvia Rossi
- Bracco Imaging SpA, Centro Ricerche Bracco, Colleretto Giacosa, Turin, Italy
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Christoph Alexiou
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Iwona Cicha
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Proffitt EK, Kaproth-Joslin K, Chaturvedi A, Hobbs SK. Role of Magnetic Resonance Imaging in Transcatheter Structural Heart Disease Interventions. Semin Roentgenol 2024; 59:20-31. [PMID: 38388093 DOI: 10.1053/j.ro.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 02/24/2024]
Affiliation(s)
| | | | - Abhishek Chaturvedi
- Department of Imaging Sciences, Division of Cardiothoracic Imaging, University of Rochester Medical Center, Rochester, NY.
| | - Susan K Hobbs
- University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
9
|
Shah R, VanSyckel A, Popescu AR, Rigsby CK, Griffin LM. Guide to use of ferumoxytol for hepatic vascular assessment as part of dual contrast MRI. Pediatr Radiol 2023; 53:2180-2187. [PMID: 37599288 DOI: 10.1007/s00247-023-05737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
Magnetic resonance imaging (MRI) assessment of hepatic vasculature can be challenging in the setting of liver disease and liver lesions. The widely used hepatobiliary contrast agent gadoxetate is an extracellular contrast agent that provides excellent soft tissue characterization but has limitations as a vascular contrast agent. Ferumoxytol is an iron oxide nanoparticle with superparamagnetic properties that can be used as blood pool contrast agent to provide dedicated vascular assessment. We provide a detailed protocol for evaluation of pediatric liver vasculature using ferumoxytol, after imaging of the parenchyma with gadoxetate. We provide multiple examples and discuss practical considerations when incorporating ferumoxytol into practice.
Collapse
Affiliation(s)
- Risha Shah
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arielle VanSyckel
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Andrada R Popescu
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Cynthia K Rigsby
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lindsay M Griffin
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
10
|
Dong Z, Si G, Zhu X, Li C, Hua R, Teng J, Zhang W, Xu L, Qian W, Liu B, Wang J, Wang T, Tang Y, Zhao Y, Gong X, Tao Z, Xu Z, Li Y, Chen B, Kong X, Xu Y, Gu N, Li C. Diagnostic Performance and Safety of a Novel Ferumoxytol-Enhanced Coronary Magnetic Resonance Angiography. Circ Cardiovasc Imaging 2023; 16:580-590. [PMID: 37463240 DOI: 10.1161/circimaging.123.015404] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Currently, noninvasive arteriography for the diagnosis of coronary artery disease is clinically limited to the computed tomography scanning, where patients have to be exposed to the radiation and risks associated with iodinated contrast. We aimed to investigate the diagnostic performance and safety of a novel ferumoxytol-enhanced coronary magnetic resonance angiography (CMRA) in patients with suspected coronary artery disease. METHODS Thirty patients, 19 males, with a median age of 63 years old, and 17 with renal insufficiency, who were scheduled for invasive coronary angiography, were enrolled. Ferumoxytol was administered intravenously with a dose of 3 mg/kg during CMRA. Images were acquired with an ECG-triggered, navigator-gated, inversion recovery-prepared 3D fast low-angle shot sequence, and the image quality was assessed by a 4-point scale. Eighteen-segment coronary artery model was adopted to evaluate the visibility of the coronary arteries, and the image quality and stenosis were evaluated in nine segments. The diagnostic performance of CMRA is described as sensitivity, specificity, positive and negative predictive values, and accuracy with the invasive coronary angiography results as reference. The patients' vital signs were monitored during CMRA, and their hepatic and renal functions were followed up for 3 months to evaluate the safety of ferumoxytol. RESULTS Two hundred fifty-two of the 270 study segments were identified by CMRA, and their quality score reached 3.6±0.7. Referring to the invasive coronary angiography results, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of ferumoxytol-enhanced CMRA reached 100.0%, 66.7%, 92.3%, 100.0%, and 93.3% respectively in patient-based analysis; 91.4%, 90.9%, 86.5%, 94.3%, and 91.1%, respectively in vessel-based analysis; and 92.3%, 96.7%, 83.7%, 98.6%, and 96.0%, respectively in segment-based analysis. No ferumoxytol-related adverse event was observed during the 3-month follow-up. CONCLUSIONS Ferumoxytol-enhanced CMRA demonstrated good diagnostic performance and excellent safety in the diagnosis of significant coronary stenosis, providing an alternative to coronary computed tomography angiography for the diagnosis of coronary artery disease. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT05032937.
Collapse
Affiliation(s)
- Zhou Dong
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Guangxiang Si
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China (G.S., N.G.)
| | - Xiaomei Zhu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Chen Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Rui Hua
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Jianzhen Teng
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Wenhao Zhang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Lulu Xu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Wen Qian
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Bo Liu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Jun Wang
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Tong Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Yingdan Tang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, China (Y.T., Y.Z.)
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, China (Y.T., Y.Z.)
| | - Xiaoxuan Gong
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Zhiwen Tao
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Zhihui Xu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Yong Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Bo Chen
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Xiangqing Kong
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Yi Xu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Ning Gu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
- Medical School, Nanjing University, Nanjing, Jiangsu, China (N.G.)
| | - Chunjian Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| |
Collapse
|
11
|
Kawassaki R, Romano M, Klimuk Uchiyama M, Cardoso RM, Baptista M, Farsky SHP, Chaim KT, Guimarães RR, Araki K. Novel Gadolinium-Free Ultrasmall Nanostructured Positive Contrast for Magnetic Resonance Angiography and Imaging. NANO LETTERS 2023; 23:5497-5505. [PMID: 37300521 PMCID: PMC10312191 DOI: 10.1021/acs.nanolett.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Nanostructured contrast agents are promising alternatives to Gd3+-based chelates in magnetic resonance (MR) imaging techniques. A novel ultrasmall paramagnetic nanoparticle (UPN) was strategically designed to maximize the number of exposed paramagnetic sites and r1 while minimizing r2, by decorating 3 nm titanium dioxide nanoparticles with suitable amounts of iron oxide. Its relaxometric parameters are comparable to those of gadoteric acid (GA) in agar phantoms, and the r2/r1 ratio of 1.38 at 3 T is close to the ideal unitary value. The strong and prolonged contrast enhancement of UPN before renal excretion was confirmed by T1-weighted MR images of Wistar rats after intravenous bolus injection. Those results associated with good biocompatibility indicate its high potential as an alternative blood-pool contrast agent to the GA gold standard for MR angiography, especially for patients with severe renal impairment.
Collapse
Affiliation(s)
- Rodrigo
Ken Kawassaki
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mariana Romano
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mayara Klimuk Uchiyama
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
- Laboratory
of Magnetic Resonance in Neuroradiology (LIM44), Department of Radiology
and Oncology, Faculty of Medicine, University
of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Roberta Mansini Cardoso
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Maurício
S. Baptista
- Laboratory
of Interfaces and Photoinduced Processes, Department of Biochemistry,
Institute of Chemistry, University of Sao
Paulo, Sao Paulo 05508-000, Brazil
| | - Sandra H. P. Farsky
- Laboratory
of Inflammation and Immunotoxicology, Department of Clinical and Toxicological
Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Khallil Taverna Chaim
- Laboratory
of Magnetic Resonance in Neuroradiology (LIM44), Department of Radiology
and Oncology, Faculty of Medicine, University
of Sao Paulo, Sao Paulo 01246-903, Brazil
- Imaging
Platform (PISA), Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Robson Raphael Guimarães
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Koiti Araki
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
12
|
Colbert CM, Ming Z, Pogosyan A, Finn JP, Nguyen KL. Comparison of Three Ultrasmall, Superparamagnetic Iron Oxide Nanoparticles for MRI at 3.0 T. J Magn Reson Imaging 2023; 57:1819-1829. [PMID: 36250695 PMCID: PMC10106532 DOI: 10.1002/jmri.28457] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The ultrasmall, superparamagnetic iron oxide (USPIO) nanoparticle ferumoxytol has unique applications in cardiac, vascular, and body magnetic resonance imaging (MRI) due to its long intravascular half-life and suitability as a blood pool agent. However, limited availability and high cost have hindered its clinical adoption. A new ferumoxytol generic, and the emergence of MoldayION as an alternative USPIO, represent opportunities to expand the use of USPIO-enhanced MRI techniques. PURPOSE To compare in vitro and in vivo MRI relaxometry and enhancement of Feraheme, generic ferumoxytol, and MoldayION. STUDY TYPE Prospective. ANIMAL MODEL Ten healthy swine and six swine with artificially induced coronary narrowing underwent cardiac MRI. FIELD STRENGTH/SEQUENCE 3.0 T; T1-weighted (4D-MUSIC, 3D-VIBE, 2D-MOLLI) and T2-weighted (2D-HASTE) sequences pre- and post-contrast. ASSESSMENT We compared the MRI relaxometry of Feraheme, generic ferumoxytol, and MoldayION using saline, plasma, and whole blood MRI phantoms with contrast concentrations from 0.26 mM to 2.10 mM. In-vivo contrast effects on T1- and T2-weighted sequences and fractional intravascular contrast distribution volume in myocardium, liver, and spleen were evaluated. STATISTICAL TESTS Analysis of variance and covariance were used for group comparisons. A P value <0.05 was considered statistically significant. RESULTS The r1 relaxivities for Feraheme, generic ferumoxytol, and MoldayION in saline (22 °C) were 7.11 ± 0.13 mM-1 s-1 , 8.30 ± 0.29 mM-1 s-1 , 8.62 ± 0.16 mM-1 s-1 , and the r2 relaxivities were 111.74 ± 3.76 mM-1 s-1 , 105.07 ± 2.20 mM-1 s-1 , and 109.68 ± 2.56 mM-1 s-1 , respectively. The relationship between contrast concentration and longitudinal (R1) and transverse (R2) relaxation rate was highly linear in saline and plasma. The three agents produced similar in vivo contrast effects on T1 and T2 relaxation time-weighted sequences. DATA CONCLUSION Relative to clinically approved ferumoxytol formulations, MoldayION demonstrates minor differences in in vitro relaxometry and comparable in vivo MRI characteristics. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Caroline M. Colbert
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Zhengyang Ming
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Arutyun Pogosyan
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
| | - J. Paul Finn
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| |
Collapse
|
13
|
Tyagi P, Moon CH, Connell M, Ganguly A, Cho KJ, Tarin T, Dhir R, Sholosh B, Maranchie J. Intravesical Contrast-Enhanced MRI: A Potential Tool for Bladder Cancer Surveillance and Staging. Curr Oncol 2023; 30:4632-4647. [PMID: 37232808 PMCID: PMC10217503 DOI: 10.3390/curroncol30050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
This review article gives an overview of the current state of the art of bladder cancer imaging and then discusses in depth the scientific and technical merit of a novel imaging approach, tracing its evolution from murine cancer models to cancer patients. While the poor resolution of soft tissue obtained by widely available imaging options such as abdominal sonography and radiation-based CT leaves them only suitable for measuring the gross tumor volume and bladder wall thickening, dynamic contrast-enhanced magnetic resolution imaging (DCE MRI) is demonstrably superior in resolving muscle invasion. However, major barriers still exist in its adoption. Instead of injection for DCE-MRI, intravesical contrast-enhanced MRI (ICE-MRI) instills Gadolinium chelate (Gadobutrol) together with trace amounts of superparamagnetic agents for measurement of tumor volume, depth, and aggressiveness. ICE-MRI leverages leaky tight junctions to accelerate passive paracellular diffusion of Gadobutrol (604.71 Daltons) by treading the paracellular ingress pathway of fluorescein sodium and of mitomycin (<400 Daltons) into bladder tumor. The soaring cost of diagnosis and care of bladder cancer could be mitigated by reducing the use of expensive operating room resources with a potential non-surgical imaging option for cancer surveillance, thereby reducing over-diagnosis and over-treatment and increasing organ preservation.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ravi H, Arias-Lorza AM, Costello JR, Han HS, Jeong DK, Klinz SG, Sachdev JC, Korn RL, Raghunand N. Pretherapy Ferumoxytol-enhanced MRI to Predict Response to Liposomal Irinotecan in Metastatic Breast Cancer. Radiol Imaging Cancer 2023; 5:e220022. [PMID: 36734848 PMCID: PMC10077095 DOI: 10.1148/rycan.220022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Purpose To investigate ferumoxytol (FMX)-enhanced MRI as a pretreatment predictor of response to liposomal irinotecan (nal-IRI) for thoracoabdominal and brain metastases in women with metastatic breast cancer (mBC). Materials and Methods In this phase 1 expansion trial (ClinicalTrials.gov identifier, NCT01770353; 27 participants), 49 thoracoabdominal (19 participants; mean age, 48 years ± 11 [SD]) and 19 brain (seven participants; mean age, 54 years ± 8) metastases were analyzed on MR images acquired before, 1-4 hours after, and 16-24 hours after FMX administration. In thoracoabdominal metastases, tumor transverse relaxation rate (R*2) was normalized to the mean R*2 in the spleen (rR*2), and the tumor histogram metric rR*2,N, representing the average of rR*2 in voxels above the nth percentile, was computed. In brain metastases, a novel compartmentation index was derived by applying the MRI signal equation to phantom-calibrated coregistered FMX-enhanced MRI brain scans acquired before, 1-4 hours after, and 16-24 hours after FMX administration. The fraction of voxels with an FMX compartmentation index greater than 1 was computed over the whole tumor (FCIGT1) and from voxels above the 90th percentile R*2 (FCIGT1 R*2,90). Results rR*2,90 computed from pretherapy MRI performed 16-24 hours after FMX administration, without reference to calibration phantoms, predicted response to nal-IRI in thoracoabdominal metastases (accuracy, 74%). rR*2,90 performance was robust to the inclusion of some peritumoral tissue within the tumor region of interest. FCIGT1 R*2,90 provided 79% accuracy on cross-validation in prediction of response in brain metastases. Conclusion This first in-human study focused on mBC suggests that FMX-enhanced MRI biologic markers can be useful for pretherapy prediction of response to nal-IRI in patients with mBC. Keywords: MRI Contrast Agent, MRI, Breast, Head/Neck, Tumor Response, Experimental Investigations, Brain/Brain Stem Clinical trial registration no. NCT01770353 Supplemental material is available for this article. © RSNA, 2023 See also commentary by Daldrup-Link in this issue.
Collapse
Affiliation(s)
- Harshan Ravi
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Andres M Arias-Lorza
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - James R Costello
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Hyo Sook Han
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Daniel K Jeong
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Stephan G Klinz
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Jasgit C Sachdev
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Ronald L Korn
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Natarajan Raghunand
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| |
Collapse
|
15
|
Yang K, Shang Y, Yang N, Pan S, Jin J, He Q. Application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Front Med (Lausanne) 2023; 10:1132355. [PMID: 37138743 PMCID: PMC10149997 DOI: 10.3389/fmed.2023.1132355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
With the development of nanotechnology, nanoparticles have been used in various industries. In medicine, nanoparticles have been used in the diagnosis and treatment of diseases. The kidney is an important organ for waste excretion and maintaining the balance of the internal environment; it filters various metabolic wastes. Kidney dysfunction may result in the accumulation of excess water and various toxins in the body without being discharged, leading to complications and life-threatening conditions. Based on their physical and chemical properties, nanoparticles can enter cells and cross biological barriers to reach the kidneys and therefore, can be used in the diagnosis and treatment of chronic kidney disease (CKD). In the first search, we used the English terms "Renal Insufficiency, Chronic" [Mesh] as the subject word and terms such as "Chronic Renal Insufficiencies," "Chronic Renal Insufficiency," "Chronic Kidney Diseases," "Kidney Disease, Chronic," "Renal Disease, Chronic" as free words. In the second search, we used "Nanoparticles" [Mesh] as the subject word and "Nanocrystalline Materials," "Materials, Nanocrystalline," "Nanocrystals," and others as free words. The relevant literature was searched and read. Moreover, we analyzed and summarized the application and mechanism of nanoparticles in the diagnosis of CKD, application of nanoparticles in the diagnosis and treatment of renal fibrosis and vascular calcification (VC), and their clinical application in patients undergoing dialysis. Specifically, we found that nanoparticles can detect CKD in the early stages in a variety of ways, such as via breath sensors that detect gases and biosensors that detect urine and can be used as a contrast agent to avoid kidney damage. In addition, nanoparticles can be used to treat and reverse renal fibrosis, as well as detect and treat VC in patients with early CKD. Simultaneously, nanoparticles can improve safety and convenience for patients undergoing dialysis. Finally, we summarize the current advantages and limitations of nanoparticles applied to CKD as well as their future prospects.
Collapse
Affiliation(s)
- Kaibi Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwei Shang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shujun Pan
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Juan Jin,
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Qiang He,
| |
Collapse
|
16
|
Pedrick EG, Sneag DB, Colucci PG, Duong M, Tan ET. Three-dimensional MR Neurography of the Brachial Plexus: Vascular Suppression with Low-dose Ferumoxytol. Radiology 2022; 307:e221087. [PMID: 36511805 DOI: 10.1148/radiol.221087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background The efficacy of ferumoxytol, an ultrasmall superparamagnetic iron oxide particle for three-dimensional (3D) MR neurography, has yet to be evaluated. Purpose To evaluate the effects of low-dose ferumoxytol for vascular suppression and nerve visualization in 3D brachial plexus MR neurography as a pilot study. Materials and Methods Volunteers without anemia were prospectively enrolled in July 2021. Brachial plexus MR neurography was performed 30 minutes following infusion of 25% of the standard (510 mg of iron) therapeutic ferumoxytol dose with use of a 3D short-tau inversion recovery T2-weighted fast spin-echo sequence. The 3D fast spin-echo was acquired with and without the use of additional flow suppression techniques. Two musculoskeletal radiologists qualitatively evaluated examinations for the degree of vascular suppression (0-3, none to complete), nerve visualization (0-2, none to full), and motion artifact (0-4, none to severe). Nerve-to-fat, muscle, or vessel contrast ratios were calculated with use of manually drawn regions of interests. Comparisons of the proportion of scans with adequate image quality (vascular suppression, 3; nerve visualization, 1, 2; motion artifacts, 0, 1) were made with use of the McNemar test. Comparisons of quantitative contrast ratios were performed with use of Wilcoxon signed rank tests. P < .05 was deemed statistically significant. Results There were 12 volunteers (mean age, 25 years ± 3; six women) evaluated. The scans with adequate vascular suppression increased from 0% to 98% with and without ferumoxytol, respectively (P < .001). All individual nerve assessments of adequate nerve visualization increased from 4%-63% to 36%-100% without and with ferumoxytol, respectively (P < .001-.010), while motion artifacts were unchanged (from 33% to 52%, P = .212). Quantitatively, nerve-to-vessel contrast ratios increased from 0.6 without to 7.6 with ferumoxytol (P < .001). The addition of flow suppression did not change nerve-to-vessel contrast ratio quantitatively (from 7.5 to 8.4, P > .99) following ferumoxytol. Conclusion Low-dose ferumoxytol improved vascular suppression and nerve visualization in three-dimensional MR neurography of the brachial plexus compared to imaging without ferumoxytol. © RSNA, 2022.
Collapse
Affiliation(s)
- Emily G. Pedrick
- From the Department of Radiology and Imaging (E.G.P., D.B.S., P.G.C., E.T.T.) and Department of Pharmacy (M.D.), Hospital for Special Surgery, 535 E 70th St, New York, NY 10021
| | - Darryl B. Sneag
- From the Department of Radiology and Imaging (E.G.P., D.B.S., P.G.C., E.T.T.) and Department of Pharmacy (M.D.), Hospital for Special Surgery, 535 E 70th St, New York, NY 10021
| | - Philip G. Colucci
- From the Department of Radiology and Imaging (E.G.P., D.B.S., P.G.C., E.T.T.) and Department of Pharmacy (M.D.), Hospital for Special Surgery, 535 E 70th St, New York, NY 10021
| | - Mylinh Duong
- From the Department of Radiology and Imaging (E.G.P., D.B.S., P.G.C., E.T.T.) and Department of Pharmacy (M.D.), Hospital for Special Surgery, 535 E 70th St, New York, NY 10021
| | - Ek T. Tan
- From the Department of Radiology and Imaging (E.G.P., D.B.S., P.G.C., E.T.T.) and Department of Pharmacy (M.D.), Hospital for Special Surgery, 535 E 70th St, New York, NY 10021
| |
Collapse
|
17
|
Cell sorting microbeads as novel contrast agent for magnetic resonance imaging. Sci Rep 2022; 12:17640. [PMID: 36271098 PMCID: PMC9586996 DOI: 10.1038/s41598-022-21762-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/30/2022] [Indexed: 01/18/2023] Open
Abstract
The success of several cell-based therapies and prevalent use of magnetic resonance imaging (MRI) in the clinic has fueled the development of contrast agents for specific cell tracking applications. Safe and efficient labeling of non-phagocytic cell types such as T cells nonetheless remains challenging. We developed a one-stop shop approach where the T cell sorting agent also labels the cells which can subsequently be depicted using non-invasive MRI. We compared the MR signal effects of magnetic-assisted cell sorting microbeads (CD25) to the current preclinical gold standard, ferumoxytol. We investigated in vitro labeling efficiency of regulatory T cells (Tregs) with MRI and histopathologic confirmation. Thereafter, Tregs and T cells were labeled with CD25 microbeads in vitro and delivered via intravenous injection. Liver MRIs pre- and 24 h post-injection were performed to determine in vivo tracking feasibility. We show that CD25 microbeads exhibit T2 signal decay properties similar to other iron oxide contrast agents. CD25 microbeads are readily internalized by Tregs and can be detected by non-invasive MRI with dose dependent T2 signal suppression. Systemically injected labeled Tregs can be detected in the liver 24 h post-injection, contrary to T cell control. Our CD25 microbead-based labeling method is an effective tool for Treg tagging, yielding detectable MR signal change in cell phantoms and in vivo. This novel cellular tracking method will be key in tracking the fate of Tregs in inflammatory pathologies and solid organ transplantation.
Collapse
|
18
|
Kader A, Kaufmann JO, Mangarova DB, Moeckel J, Brangsch J, Adams LC, Zhao J, Reimann C, Saatz J, Traub H, Buchholz R, Karst U, Hamm B, Makowski MR. Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI. Cancers (Basel) 2022; 14:cancers14122909. [PMID: 35740575 PMCID: PMC9221397 DOI: 10.3390/cancers14122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. For detection and diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different tumor volumes, 500 mm3 and 1000 mm3. Macrophages play a key role in tumor progression, and they are able to internalize iron-oxide particles, such as ferumoxytol. When evaluating T2*-weighted sequences on MRI, a significant decrease of signal intensity between pre- and post-contrast images for each tumor volume (n = 14; p < 0.001) was measured. We, furthermore, observed a higher signal loss for a tumor volume of 500 mm3 than for 1000 mm3. These findings were confirmed by histological examinations and laser ablation inductively coupled plasma-mass spectrometry. The 500 mm3 tumors had 1.5% iron content (n = 14; σ = 1.1), while the 1000 mm3 tumors contained only 0.4% iron (n = 14; σ = 0.2). In vivo MRI data demonstrated a correlation with the ex vivo data (R2 = 0.75). The results of elemental analysis by inductively coupled plasma-mass spectrometry correlated strongly with the MRI data (R2 = 0.83) (n = 4). Due to its long retention time in the blood, biodegradability, and low toxicity to patients, ferumoxytol has great potential as a contrast agent for visualization PCa.
Collapse
Affiliation(s)
- Avan Kader
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
- Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- Correspondence:
| | - Jan O. Kaufmann
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
- Division 1.5 Protein Analysis, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Dilyana B. Mangarova
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, 14163 Berlin, Germany
| | - Jana Moeckel
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Julia Brangsch
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Lisa C. Adams
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Jing Zhao
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Carolin Reimann
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Jessica Saatz
- Division 1.1 Inorganic Trace Analysis, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany; (J.S.); (H.T.)
| | - Heike Traub
- Division 1.1 Inorganic Trace Analysis, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany; (J.S.); (H.T.)
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; (R.B.); (U.K.)
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; (R.B.); (U.K.)
| | - Bernd Hamm
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
| | - Marcus R. Makowski
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.O.K.); (D.B.M.); (J.M.); (J.B.); (L.C.A.); (J.Z.); (C.R.); (B.H.); (M.R.M.)
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital Westminster Bridge Road, London SE1 7EH, UK
| |
Collapse
|
19
|
Iron-doped calcium phytate nanoparticles as a bio-responsive contrast agent in 1H/ 31P magnetic resonance imaging. Sci Rep 2022; 12:2118. [PMID: 35136162 PMCID: PMC8826874 DOI: 10.1038/s41598-022-06125-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
We present the MR properties of a novel bio-responsive phosphorus probe doped with iron for dual proton and phosphorus magnetic resonance imaging (1H/31P-MRI), which provide simultaneously complementary information. The probes consist of non-toxic biodegradable calcium phytate (CaIP6) nanoparticles doped with different amounts of cleavable paramagnetic Fe3+ ions. Phosphorus atoms in the phytate structure delivered an efficient 31P-MR signal, with iron ions altering MR contrast for both 1H and 31P-MR. The coordinated paramagnetic Fe3+ ions broadened the 31P-MR signal spectral line due to the short T2 relaxation time, resulting in more hypointense signal. However, when Fe3+ was decomplexed from the probe, relaxation times were prolonged. As a result of iron release, intensity of 1H-MR, as well as the 31P-MR signal increase. These 1H and 31P-MR dual signals triggered by iron decomplexation may have been attributable to biochemical changes in the environment with strong iron chelators, such as bacterial siderophore (deferoxamine). Analysing MR signal alternations as a proof-of-principle on a phantom at a 4.7 T magnetic field, we found that iron presence influenced 1H and 31P signals and signal recovery via iron chelation using deferoxamine.
Collapse
|
20
|
Yekeler E, Krishnamurthy G, Smith CL, Escobar FA, Pinto E, Rapp JB, Otero HJ, White AM, Dori Y, Biko DM. Dynamic contrast-enhanced MR lymphangiography: feasibility of using ferumoxytol in patients with chronic kidney disease. Eur Radiol 2022; 32:2564-2571. [PMID: 35001156 DOI: 10.1007/s00330-021-08448-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To assess the feasibility of direct intra-lymphatic administration of diluted ferumoxytol as a T1-positive contrast agent for dynamic contrast-enhanced MR lymphangiography (DCMRL) imaging of the central lymphatics in children with renal disease. METHODS In vitro scan of dilute ferumoxytol was initially performed using time-resolved and high-resolution 3D gradient echo (GRE) sequences with short TE values (1 to 1.5 ms). A ferumoxytol concentration of 0.25 to 0.40 mg/mL was found to retain high signal in the T1-weighted sequences. DCMRL was then performed in 4 children with renal disease with the same 3D GRE sequences administrating diluted ferumoxytol via intra-mesenteric (IM), intra-hepatic (IH), and intra-nodal (IN) routes (6 to 9 mL to each site; average total dose of 0.75 mg/kg) by slow hand injection (0.5 to 1.0 mL/min). The signal-to-noise ratio (SNR) of the lymphatics was measured for quantitative evaluation. RESULTS Ferumoxytol-enhanced DCMRL was technically successful in all patients. Contrast conspicuity within the lymphatics was sufficient without subtraction. The mean SNR was significantly higher than the muscle (50.1 ± 12.2 vs 13.2 ± 2.8; t = 15.9; p < .001). There were no short-term complications attributed to the administration of ferumoxytol in any of the four patients. CONCLUSION Magnetic resonance lymphangiography using ferumoxytol via IN, IH, and IM access is a new method to directly visualize the central lymphatic system and can be applied safely in patients with renal failure based on our preliminary report of four cases. Ferumoxytol-enhanced DCMRL shows diagnostic image quality by using 3D GRE sequences with short TE values and appropriate dilution of ferumoxytol. KEY POINTS • MR lymphangiography using ferumoxytol via intra-nodal, intra-hepatic, and intra-mesenteric access is a new method to directly visualize the central lymphatic system from the groin to the venous angle. • FDCMRL can be applied safely in patients with renal failure based on our preliminary report of four cases. • FDCMRL shows diagnostic image quality by using 3D GRE sequences with short TE values and appropriate dilution of the ferumoxytol.
Collapse
Affiliation(s)
- Ensar Yekeler
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Ganesh Krishnamurthy
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher L Smith
- Division of Cardiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Fernando A Escobar
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erin Pinto
- Center for Lymphatic Imaging and Interventions, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jordan B Rapp
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ammie M White
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yoav Dori
- Division of Cardiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David M Biko
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
21
|
Shahrouki P, Khan SN, Yoshida T, Iskander PJ, Ghahremani S, Finn JP. High-resolution three‑dimensional contrast‑enhanced magnetic resonance venography in children: comparison of gadofosveset trisodium with ferumoxytol. Pediatr Radiol 2022; 52:501-512. [PMID: 34936018 PMCID: PMC8857136 DOI: 10.1007/s00247-021-05225-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Gadofosveset is a gadolinium-based blood pool contrast agent that was approved by the United States Food and Drug Administration in 2008. Its unanticipated withdrawal from production in 2016 created a void in the blood pool agent inventory and highlighted the need for an alternative agent with comparable imaging properties. OBJECTIVE The purpose of our study is to compare the diagnostic image quality, vascular contrast-to-noise ratio (CNR) and temporal signal characteristics of gadofosveset trisodium and ferumoxytol at similar molar doses for high-resolution, three-dimensional (3-D) magnetic resonance (MR) venography in children. MATERIALS AND METHODS The medical records and imaging data sets of patients who underwent high-resolution 3-D gadofosveset-enhanced MR venography (GE-MRV) or ferumoxytol-enhanced MR venography (FE-MRV) were retrospectively reviewed. Two groups of 20 pediatric patients (age- and weight-matched with one patient common to both groups; age range: 2 days-15 years) who underwent high-resolution 3-D GE-MRV or FE-MRV at similar molar doses were identified and analyzed. Qualitative analysis of image quality and vessel definition was performed by two blinded pediatric radiologists. Interobserver agreement was assessed with the AC1 (first-order agreement coefficient) statistic. Signal-to-noise ratio (SNR) and CNR of the inferior vena cava and aorta were measured in the steady-state venous phase. Medical records were retrospectively reviewed for any adverse reactions associated with either contrast agent. RESULTS Measured SNR and CNR of the inferior vena cava were higher for FE-MRV than GE-MRV (P = 0.034 and P < 0.001, respectively). The overall image quality score and individual vessel scores of FE-MRV were equal to or greater than GE-MRV (P = 0.084), with good interobserver agreement (AC1 = 0.657). The venous signal on FE-MRV was stable over the longest interval measured (1 h, 13 min and 46 s), whereas venous signal on GE-MRV showed more variability and earlier loss of signal. No adverse reactions were noted in any patient with either contrast agent. CONCLUSION Ferumoxytol produces more uniform and stable enhancement throughout the entire venous circulation in children than gadofosveset, offering a wider time window for optimal image acquisition. FE-MRV offers a near-ideal approach to high-resolution venography in children at all levels of anatomical complexity.
Collapse
Affiliation(s)
- Puja Shahrouki
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| | - Sarah N. Khan
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| | - Takegawa Yoshida
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| | - Paul J. Iskander
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA ,grid.19006.3e0000 0000 9632 6718Division of Pediatric Radiology, Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA USA ,grid.239546.f0000 0001 2153 6013Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA USA
| | - Shahnaz Ghahremani
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA ,grid.19006.3e0000 0000 9632 6718Division of Pediatric Radiology, Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA USA
| | - J. Paul Finn
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| |
Collapse
|
22
|
Kastelik-Hryniewiecka A, Jewula P, Bakalorz K, Kramer-Marek G, Kuźnik N. Targeted PET/MRI Imaging Super Probes: A Critical Review of Opportunities and Challenges. Int J Nanomedicine 2022; 16:8465-8483. [PMID: 35002239 PMCID: PMC8733213 DOI: 10.2147/ijn.s336299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, the demand for hybrid PET/MRI imaging techniques has increased significantly, which has sparked the investigation into new ways to simultaneously track multiple molecular targets and improve the localization and expression of biochemical markers. Multimodal imaging probes have recently emerged as powerful tools for improving the detection sensitivity and accuracy-both important factors in disease diagnosis and treatment; however, only a limited number of bimodal probes have been investigated in preclinical models. Herein, we briefly describe the strengths and limitations of PET and MRI modalities and highlight the need for the development of multimodal molecularly-targeted agents. We have tried to thoroughly summarize data on bimodal probes available on PubMed. Emphasis was placed on their design, safety profiles, pharmacokinetics, and clearance properties. The challenges in PET/MR probe development using a number of illustrative examples are also discussed, along with future research directions for these novel conjugates.
Collapse
Affiliation(s)
- Anna Kastelik-Hryniewiecka
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Pawel Jewula
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Karolina Bakalorz
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
| | - Gabriela Kramer-Marek
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Nikodem Kuźnik
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
| |
Collapse
|
23
|
de Bortoli T, Boehm-Sturm P, Koch SP, Nieminen-Kelhä M, Wessels L, Mueller S, Ielacqua GD, Klohs J, Vajkoczy P, Hecht N. Three-Dimensional Iron Oxide Nanoparticle-Based Contrast-Enhanced Magnetic Resonance Imaging for Characterization of Cerebral Arteriogenesis in the Mouse Neocortex. Front Neurosci 2021; 15:756577. [PMID: 34899163 PMCID: PMC8662986 DOI: 10.3389/fnins.2021.756577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Subsurface blood vessels in the cerebral cortex have been identified as a bottleneck in cerebral perfusion with the potential for collateral remodeling. However, valid techniques for non-invasive, longitudinal characterization of neocortical microvessels are still lacking. In this study, we validated contrast-enhanced magnetic resonance imaging (CE-MRI) for in vivo characterization of vascular changes in a model of spontaneous collateral outgrowth following chronic cerebral hypoperfusion. Methods: C57BL/6J mice were randomly assigned to unilateral internal carotid artery occlusion or sham surgery and after 21 days, CE-MRI based on T2*-weighted imaging was performed using ultra-small superparamagnetic iron oxide nanoparticles to obtain subtraction angiographies and steady-state cerebral blood volume (ss-CBV) maps. First pass dynamic susceptibility contrast MRI (DSC-MRI) was performed for internal validation of ss-CBV. Further validation at the histological level was provided by ex vivo serial two-photon tomography (STP). Results: Qualitatively, an increase in vessel density was observed on CE-MRI subtraction angiographies following occlusion; however, a quantitative vessel tracing analysis was prone to errors in our model. Measurements of ss-CBV reliably identified an increase in cortical vasculature, validated by DSC-MRI and STP. Conclusion: Iron oxide nanoparticle-based ss-CBV serves as a robust, non-invasive imaging surrogate marker for neocortical vessels, with the potential to reduce and refine preclinical models targeting the development and outgrowth of cerebral collateralization.
Collapse
Affiliation(s)
- Till de Bortoli
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Philipp Boehm-Sturm
- Center for Stroke Research Berlin (CSB), Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan P Koch
- Center for Stroke Research Berlin (CSB), Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Lars Wessels
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Susanne Mueller
- Center for Stroke Research Berlin (CSB), Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Giovanna D Ielacqua
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Berlin, Germany
| |
Collapse
|
24
|
Queler SC, Tan ET, Geannette C, Prince M, Sneag DB. Ferumoxytol-enhanced vascular suppression in magnetic resonance neurography. Skeletal Radiol 2021; 50:2255-2266. [PMID: 33961070 DOI: 10.1007/s00256-021-03804-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate ferumoxytol-enhanced vascular suppression for visualizing branch nerves of the brachial plexus in magnetic resonance (MR) neurography. MATERIALS AND METHODS Signal simulations were performed to determine ferumoxytol's effect on nerve-, fat-, and blood-to-muscle contrast and to optimize pulse sequence parameters. Prospective, in vivo assessment included 10 subjects with chronic anemia who underwent a total of 19 (9 bilateral) pre- and post-infusion brachial plexus exams using three-dimensional (3D), T2-weighted short-tau inversion recovery (T2-STIR) sequences at 3.0 T. Two musculoskeletal radiologists qualitatively rated sequences for the degree of vascular suppression and brachial plexus branch nerve conspicuity. Nerve-to-muscle, -fat, and -vessel contrast ratios were measured. RESULTS Quantitative nerve/muscle and nerve/small vessel contrast ratios (CRs) increased with ferumoxytol (p < 0.05). Qualitative vascular suppression and suprascapular nerve visualization improved following ferumoxytol administration for both raters (p < .05). Pre- and post-ferumoxytol exams demonstrated moderate to near-perfect inter-rater agreement for nerve visualization and diagnostic confidence for the suprascapular and axillary nerves but poor to no agreement for the long thoracic nerve. CONCLUSION Ferumoxytol in T2-weighted brachial plexus MR neurography provides robust vascular suppression and aids visualization of the suprascapular nerve in volunteers without neuropathy.
Collapse
Affiliation(s)
- Sophie C Queler
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Ek Tsoon Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Christian Geannette
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Martin Prince
- Department of Radiology, NewYork-Presbyterian/Weill Cornell Medical Center, 535 E. 70th St., New York, NY, 10021, USA
| | - Darryl B Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
25
|
Assessment of Albumin ECM Accumulation and Inflammation as Novel In Vivo Diagnostic Targets for Multi-Target MR Imaging. BIOLOGY 2021; 10:biology10100964. [PMID: 34681063 PMCID: PMC8533611 DOI: 10.3390/biology10100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023]
Abstract
Atherosclerosis is a progressive inflammatory vascular disease characterized by endothelial dysfunction and plaque burden. Extracellular matrix (ECM)-associated plasma proteins play an important role in disease development. Our magnetic resonance imaging (MRI) study investigates the feasibility of using two different molecular MRI probes for the simultaneous assessment of ECM-associated intraplaque albumin deposits caused by endothelial damage and progressive inflammation in atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-)-mice were fed a high-fat diet (HFD) for 2 or 4 months. Another ApoE-/--group was treated with pravastatin and received a HFD for 4 months. T1- and T2*-weighted MRI was performed before and after albumin-specific MRI probe (gadofosveset) administration and a macrophage-specific contrast agent (ferumoxytol). Thereafter, laser ablation inductively coupled plasma mass spectrometry and histology were performed. With advancing atherosclerosis, albumin-based MRI signal enhancement and ferumoxytol-induced signal loss areas in T2*-weighted MRI increased. Significant correlations between contrast-to-noise-ratio (CNR) post-gadofosveset and albumin stain (R2 = 0.78, p < 0.05), and signal loss areas in T2*-weighted MRI with Perls' Prussian blue stain (R2 = 0.83, p < 0.05) were observed. No interference of ferumoxytol with gadofosveset enhancement was detectable. Pravastatin led to decreased inflammation and intraplaque albumin. Multi-target MRI combining ferumoxytol and gadofosveset is a promising method to improve diagnosis and treatment monitoring in atherosclerosis.
Collapse
|
26
|
van Zandwijk JK, Simonis FFJ, Heslinga FG, Hofmeijer EIS, Geelkerken RH, ten Haken B. Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI. PLoS One 2021; 16:e0256252. [PMID: 34403442 PMCID: PMC8370648 DOI: 10.1371/journal.pone.0256252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, there has been a renewed interest in low-field MRI. Contrast agents (CA) in MRI have magnetic behavior dependent on magnetic field strength. Therefore, the optimal contrast agent for low-field MRI might be different from what is used at higher fields. Ultra-small superparamagnetic iron-oxides (USPIOs), commonly used as negative CA, might also be used for generating positive contrast in low-field MRI. The purpose of this study was to determine whether an USPIO or a gadolinium based contrast agent is more appropriate at low field strengths. Relaxivity values of ferumoxytol (USPIO) and gadoterate (gadolinium based) were used in this research to simulate normalized signal intensity (SI) curves within a concentration range of 0–15 mM. Simulations were experimentally validated on a 0.25T MRI scanner. Simulations and experiments were performed using spin echo (SE), spoiled gradient echo (SGE), and balanced steady-state free precession (bSSFP) sequences. Maximum achievable SIs were assessed for both CAs in a range of concentrations on all sequences. Simulations at 0.25T showed a peak in SIs at low concentrations ferumoxytol versus a wide top at higher concentrations for gadoterate in SE and SGE. Experiments agreed well with the simulations in SE and SGE, but less in the bSSFP sequence due to overestimated relaxivities in simulations. At low magnetic field strengths, ferumoxytol generates similar signal enhancement at lower concentrations than gadoterate.
Collapse
Affiliation(s)
- Jordy K. van Zandwijk
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
- Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, Netherlands
- * E-mail:
| | - Frank F. J. Simonis
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Friso G. Heslinga
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Elfi I. S. Hofmeijer
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Robert H. Geelkerken
- Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, Netherlands
- Multimodality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Bennie ten Haken
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| |
Collapse
|
27
|
Peller M, Lanza A, Wuttke S. MRI‐Active Metal‐Organic Frameworks: Concepts for the Translation from Lab to Clinic. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Peller
- Department of Radiology University Hospital, LMU Munich Munich 80539 Germany
| | - Arianna Lanza
- Center for Nanotechnology Innovation @NEST Istituto Italiano di Tecnologia Pisa 56127 Italy
| | - Stefan Wuttke
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Ikerbasque‐Basque Foundation for Science Bilbao 48011 Spain
| |
Collapse
|
28
|
Nguyen SM, Wiepz GJ, Schotzko M, Simmons HA, Mejia A, Ludwig KD, Zhu A, Brunner K, Hernando D, Reeder SB, Wieben O, Johnson K, Shah D, Golos TG. Impact of ferumoxytol magnetic resonance imaging on the rhesus macaque maternal-fetal interface†. Biol Reprod 2021; 102:434-444. [PMID: 31511859 DOI: 10.1093/biolre/ioz181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 01/26/2023] Open
Abstract
Ferumoxytol is a superparamagnetic iron oxide nanoparticle used off-label as an intravascular magnetic resonance imaging (MRI) contrast agent. Additionally, ferumoxytol-uptake by macrophages facilitates detection of inflammatory sites by MRI through ferumoxytol-induced image contrast changes. Therefore, ferumoxytol-enhanced MRI holds great potential for assessing vascular function and inflammatory response, critical to determine placental health in pregnancy. This study sought to assess the fetoplacental unit and selected maternal tissues, pregnancy outcomes, and fetal well-being after ferumoxytol administration. In initial developmental studies, seven pregnant rhesus macaques were imaged with or without ferumoxytol administration. Pregnancies went to term with vaginal delivery and infants showed normal growth rates compared to control animals born the same year that did not undergo MRI. To determine the impact of ferumoxytol on the maternal-fetal interface (MFI), fetal well-being, and pregnancy outcome, four pregnant rhesus macaques at ~100 gestational day underwent MRI before and after ferumoxytol administration. Collection of the fetoplacental unit and selected maternal tissues was performed 2-3 days following ferumoxytol administration. A control group that did not receive ferumoxytol or MRI was used for comparison. Iron levels in fetal and MFI tissues did not differ between groups, and there was no significant difference in tissue histopathology with or without exposure to ferumoxytol, and no effect on placental hormone secretion. Together, these results suggest that the use of ferumoxytol and MRI in pregnant rhesus macaques does not negatively impact the MFI and can be a valuable experimental tool in research with this important animal model.
Collapse
Affiliation(s)
- Sydney M Nguyen
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA.,Obstetrics & Gynecology, University of Wisconsin Madison School of Medicine, Madison, Wisconsin, USA
| | - Gregory J Wiepz
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA
| | - Michele Schotzko
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA
| | - Kai D Ludwig
- Medical Physics, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Ante Zhu
- Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Kevin Brunner
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA.,Emergency Medicine, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Diego Hernando
- Medical Physics, University of Wisconsin Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Scott B Reeder
- Medical Physics, University of Wisconsin Madison, Madison, Wisconsin, USA.,Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin Madison, Madison, Wisconsin, USA.,Emergency Medicine, University of Wisconsin Madison, Madison, Wisconsin, USA.,Medicine, University of Wisconsin Madison, Madison, Wisconsin, USA, and
| | - Oliver Wieben
- Medical Physics, University of Wisconsin Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Kevin Johnson
- Medical Physics, University of Wisconsin Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Dinesh Shah
- Obstetrics & Gynecology, University of Wisconsin Madison School of Medicine, Madison, Wisconsin, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA.,Obstetrics & Gynecology, University of Wisconsin Madison School of Medicine, Madison, Wisconsin, USA.,Comparative Biosciences, University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
29
|
Merinopoulos I, Gunawardena T, Stirrat C, Cameron D, Eccleshall SC, Dweck MR, Newby DE, Vassiliou VS. Diagnostic Applications of Ultrasmall Superparamagnetic Particles of Iron Oxide for Imaging Myocardial and Vascular Inflammation. JACC Cardiovasc Imaging 2021; 14:1249-1264. [PMID: 32861658 DOI: 10.1016/j.jcmg.2020.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
Cardiac magnetic resonance (CMR) is at the forefront of noninvasive methods for the assessment of myocardial anatomy, function, and most importantly tissue characterization. The role of CMR is becoming even more significant with an increasing recognition that inflammation plays a major role for various myocardial diseases such as myocardial infarction, myocarditis, and takotsubo cardiomyopathy. Ultrasmall superparamagnetic particles of iron oxide (USPIO) are nanoparticles that are taken up by monocytes and macrophages accumulating at sites of inflammation. In this context, USPIO-enhanced CMR can provide valuable additional information regarding the cellular inflammatory component of myocardial and vascular diseases. Here, we will review the recent diagnostic applications of USPIO in terms of imaging myocardial and vascular inflammation, and highlight some of their future potential.
Collapse
Affiliation(s)
- Ioannis Merinopoulos
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Tharusha Gunawardena
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Colin Stirrat
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Donnie Cameron
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; C.J. Gorter Centre for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Simon C Eccleshall
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Vassilios S Vassiliou
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom.
| |
Collapse
|
30
|
Colbert CM, Thomas MA, Yan R, Radjenovic A, Finn JP, Hu P, Nguyen KL. Estimation of fractional myocardial blood volume and water exchange using ferumoxytol-enhanced magnetic resonance imaging. J Magn Reson Imaging 2021; 53:1699-1709. [PMID: 33382176 PMCID: PMC8297410 DOI: 10.1002/jmri.27494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023] Open
Abstract
Fractional myocardial blood volume (fMBV) estimated using ferumoxytol-enhanced magnetic resonance imaging (MRI) (FE-MRI) has the potential to capture a hemodynamic response to myocardial hypoperfusion during contrast steady state without reliance on gadolinium chelates. Ferumoxytol has a long intravascular half-life and its use for steady-state MRI is off-label. The aim of this prospective study was to optimize and evaluate a two-compartment model for estimation of fMBV based on FE-MRI. Nine healthy swine and one swine with artificially induced single-vessel coronary stenosis underwent MRI on a 3.0 T clinical magnet. Myocardial longitudinal spin-lattice relaxation rate (R1) was measured using the 5(3)3(3)3 modified Look-Locker inversion recovery (MOLLI) sequence before and at contrast steady state following seven ferumoxytol infusions (0.125-4.0 mg/kg). fMBV and water exchange were estimated using a two-compartment model. Model-fitted fMBV was compared to simple fast-exchange fMBV approximation and percent change in pre- and postferumoxytol R1. Dose undersampling schemes were investigated to reduce acquisition duration. Variation in fMBV was assessed using one-way analysis of variance. Fast-exchange fMBV and ferumoxytol dose undersampling were evaluated using Bland-Altman analysis. Healthy normal swine showed a mean mid-ventricular fMBV of 7.2 ± 1.4% and water exchange rate of 11.3 ± 5.1 s-1 . There was intersubject variation in fMBV (p < 0.05) without segmental variation (p = 0.387). fMBV derived from eight-dose and four-dose sampling schemes had no significant bias (mean difference = 0.07, p = 0.541, limits of agreement -1.04% [-1.45, -0.62%] to 1.18% [0.77, 1.59%]). Pixel-wise fMBV in one swine model with coronary artery stenosis showed elevated fMBV in ischemic segments (apical anterior: 11.90 ± 4.00%, apical septum: 16.10 ± 5.71%) relative to remote segments (apical inferior: 9.59 ± 3.35%, apical lateral: 9.38 ± 2.35%). A two-compartment model based on FE-MRI using the MOLLI sequence may enable estimation of fMBV in studies of ischemic heart disease. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Caroline M. Colbert
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
| | - Michael A. Thomas
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Ran Yan
- Bioengineering Graduate Program, Henry Samueli School of
Engineering and Applied Science at UCLA
| | - Aleksandra Radjenovic
- Institute of Cardiovascular & Medical Sciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - J. Paul Finn
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
- Diagnostic Cardiovascular Imaging Laboratory, Department of
Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Peng Hu
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
- Bioengineering Graduate Program, Henry Samueli School of
Engineering and Applied Science at UCLA
- Diagnostic Cardiovascular Imaging Laboratory, Department of
Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Laboratory, Department of
Radiological Sciences, David Geffen School of Medicine at UCLA
| |
Collapse
|
31
|
Dallet L, Stanicki D, Voisin P, Miraux S, Ribot EJ. Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment. Sci Rep 2021; 11:3286. [PMID: 33558583 PMCID: PMC7870900 DOI: 10.1038/s41598-021-82095-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Iron oxide particles (IOP) are commonly used for Cellular Magnetic Resonance Imaging (MRI) and in combination with several treatments, like Magnetic Fluid Hyperthermia (MFH), due to the rise in temperature they provoke under an Alternating Magnetic Field (AMF). Micrometric IOP have a high sensitivity of detection. Nevertheless, little is known about their internalization processes or their potential heat power. Two micrometric commercial IOP (from Bangs Laboratories and Chemicell) were characterized by Transmission Electron Microscopy (TEM) and their endocytic pathways into glioma cells were analyzed. Their Specific Absorption Rate (SAR) and cytotoxicity were evaluated using a commercial AMF inductor. T2-weighted imaging was used to monitor tumor growth in vivo after MFH treatment in mice. The two micron-sized IOP had similar structures and r2 relaxivities (100 mM-1 s-1) but involved different endocytic pathways. Only ScreenMAG particles generated a significant rise in temperature following AMF (SAR = 113 W g-1 Fe). After 1 h of AMF exposure, 60% of ScreenMAG-labeled cells died. Translated to a glioma model, 89% of mice responded to the treatment with smaller tumor volume 42 days post-implantation. Micrometric particles were investigated from their characterization to their intracellular internalization pathways and applied in one in vivo cancer treatment, i.e. MFH.
Collapse
Affiliation(s)
- Laurence Dallet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000, Mons, Belgium
| | - Pierre Voisin
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.
| |
Collapse
|
32
|
Lu Y, Huang J, Neverova NV, Nguyen KL. USPIOs as targeted contrast agents in cardiovascular magnetic resonance imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2021; 14:2. [PMID: 33824694 PMCID: PMC8021129 DOI: 10.1007/s12410-021-09552-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW We aim to discuss the diagnostic use of ultra-small superparamagnetic iron oxide (USPIOs) including ferumoxytol in targeted cardiovascular magnetic resonance imaging (MRI). RECENT FINDINGS Ferumoxytol is the only USPIO clinically available in the U.S. and is a negatively charged USPIO that has potential use for tracking and characterization of macrophage-infiltrated cardiovascular structures. As an iron supplement that is approved for treatment of iron deficiency anemia, the iron core of ferumoxytol is incorporated into the body once it is phagocytosed by macrophages. In organs or tissues with high inflammatory cellular infiltration, such as atherosclerotic plaques and myocardial infarction, localization of iron-laden macrophages can be visualized on delayed MRI. The iron core of ferumoxytol alters the magnetic susceptibility and results in shortening of T2* and T2 relaxation rates. Areas with high concentration appear hypointense (negative contrast) on T2 and T2* MRI. Recently, in vitro findings support the potential specificity of ferumoxytol interactions with macrophage subtypes, which has implications for therapeutic interventions. With increasing concerns about gadolinium retention in the brain and other tissues, the value of ferumoxytol-enhanced MR for targeted clinical imaging is aided by its positive safety profile in patients with impaired renal function. SUMMARY This paper discusses pharmacokinetic properties of USPIOs with a focus on ferumoxytol, and summarizes relevant in vitro, animal, and human studies investigating the diagnostic use of USPIOs in targeted contrast-enhanced imaging. We also discuss future directions for USPIOs as targeted imaging agents and associated challenges.
Collapse
Affiliation(s)
- Yi Lu
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Jenny Huang
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Research Laboratory,
Department of Radiology, David Geffen School of Medicine at UCLA
| | - Natalia V. Neverova
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Physics and Biology in Medicine Graduate Program,
University of California, Los Angeles
- Diagnostic Cardiovascular Imaging Research Laboratory,
Department of Radiology, David Geffen School of Medicine at UCLA
| |
Collapse
|
33
|
Deng LH, Jiang H, Lu FL, Wang HW, Pu Y, Wu CQ, Tang HJ, Xu Y, Chen TW, Zhu J, Shen CY, Zhang XM. Size and PEG Length-Controlled PEGylated Monocrystalline Superparamagnetic Iron Oxide Nanocomposite for MRI Contrast Agent. Int J Nanomedicine 2021; 16:201-211. [PMID: 33447035 PMCID: PMC7802780 DOI: 10.2147/ijn.s271461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE PEGylated superparamagnetic iron oxide (SPIO) is the most promising alternatives to gadolinium-based contrast agents (GBCAs) in MRI. This paper is to explore the imaging effects of PEGylated SPIO, which is influenced by particle sizes and surface polyethylene glycol (PEG) coating, using as MRI contrast agents at different magnetic field intensities. METHODS Firstly, nine PEGylated monocrystalline SPIO nanoparticles with different nanocrystal sizes and different molecular weights PEG coating were prepared, and then physical and biological properties were analyzed. Finally, MRI imaging in vivo was performed to observe the imaging performance. RESULTS Nine PEGylated monocrystalline SPIO nanoparticles have good relaxivities, serum stability, and biosecurity. At the same time, they show different imaging characteristics at different magnetic field intensities. Eight-nanometer SPIO@PEG5k is an effective T 2 contrast agent at 3.0 T (r 2/r 1 = 14.0), is an ideal T 1-T 2 dual-mode contrast agent at 1.5 T (r 2/r 1 = 6.52), and is also an effective T 1 contrast agent at 0.5 T (r 2/r 1 = 2.49), while 4-nm SPIO@PEG5k is a T 1-T 2 dual-mode contrast agent at 3.0 T (r 2/r 1 = 5.24), and is a useful T 1 contrast agent at 0.5 T (r 2/r 1 = 1.74) and 1.5 T (r 2/r 1 = 2.85). MRI studies in vivo at 3.0 T further confirm that 4-nm SPIO@PEG5k displays excellent T 1-T 2 dual-mode contrast enhancement, whereas 8-nm SPIO@PEG5k only displays T 2 contrast enhancement. CONCLUSION PEGylated SPIOs with different nanocrystal sizes and PEG coating can be used as T 1, T 2, or T 1-T 2 dual-mode contrast agents to meet the clinical demands of MRI at specific magnetic fields.
Collapse
Affiliation(s)
- Li-Hua Deng
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Radiology, First People’s Hospital of Neijiang, Neijiang641000, People’s Republic of China
| | - Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Fu-Lin Lu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Han-Wei Wang
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Chang-Qiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Hong-Jie Tang
- Department of Radiology, Nanchong Hospital of Traditional Chinese Medicine, Nanchong637000, People’s Republic of China
| | - Ye Xu
- Department of Radiology, Children’s Hospital of Chongqing Medical University, Chongqing401122, People’s Republic of China
| | - Tian-Wu Chen
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Cheng-Yi Shen
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| |
Collapse
|
34
|
Marasini R, Rayamajhi S, Moreno-Sanchez A, Aryal S. Iron(iii) chelated paramagnetic polymeric nanoparticle formulation as a next-generation T1-weighted MRI contrast agent. RSC Adv 2021; 11:32216-32226. [PMID: 35495502 PMCID: PMC9041822 DOI: 10.1039/d1ra05544e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
In pursuit of safer alternatives to Gd-based MRI contrast agents due to its toxicity and organ deposition, herein, we developed a safer and efficient clinically relevant iron(iii) chelated polymeric nanoparticle as a T1-weighted MRI contrast agent.
Collapse
Affiliation(s)
- Ramesh Marasini
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506, USA
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Sagar Rayamajhi
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506, USA
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Anthony Moreno-Sanchez
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506, USA
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Santosh Aryal
- Department of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, The University of Texas, Tyler, TX 75799, USA
| |
Collapse
|
35
|
Feasibility and optimization of ultra-short echo time MRI for improved imaging of IVC-filters at 3.0 T. Abdom Radiol (NY) 2021; 46:362-372. [PMID: 32535691 DOI: 10.1007/s00261-020-02548-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To determine the feasibility of ultra-short echo time (UTE) MRA for assessment of inferior vena cava (IVC) filters and evaluate the impact of different imaging protocols at 3.0 T, using conventional Cartesian MRA (cMRA) as the reference standard. METHODS Patients with IVC-filters were recruited for this prospective IRB-approved, HIPAA-compliant study. Subjects underwent contrast-enhanced breath-held and a free-breathing 3D radial acquisition UTE-MRA (bhUTE, fbUTE) at three different flip angles (FA: 10°, 15°, 20°) to optimize T1-weighted image quality. Two radiologists performed a direct comparison consensus reading to assess the optimal FA. Image quality (IQ) of both UTE techniques at the best FA was rated independently on a 4-point Likert scale (0 = non-diagnostic, 3 = excellent) and compared to 3D T1-weighted breath-held cMRA. RESULTS Nine subjects were recruited. Low FAs of 10° were rated best for both UTE techniques. fbUTE was excellent (3, IQR: 2; 3) and significantly better for IVC-filter depiction than cMRA (2, IQR: 0.75; 2, p = 0.001) and bhUTE (1.5, IQR: 0.75; 2, p < 0.001). Both UTE techniques showed significantly less filter-related artifacts (fbUTE: 28%, bhUTE: 33%) than cMRA (89%, p = 0.001 and p = 0.002, respectively). However, IQ of bhUTE was generally degraded due to high image noise and low image contrast. IQ of the IVC venogram was best with cMRA. Clinically relevant signal voids were only observed with the cage-shaped OptEase filter. CONCLUSION UTE-MRA is feasible at 3.0 T for the assessment of IVC-filters, particularly using a free-breathing protocol. Larger studies are needed to investigate the clinical utility of free-breathing UTE-MRA for assessment of IVC-filter-related complications.
Collapse
|
36
|
Modak M, Bobbala S, Lescott C, Liu YG, Nandwana V, Dravid VP, Scott EA. Magnetic Nanostructure-Loaded Bicontinuous Nanospheres Support Multicargo Intracellular Delivery and Oxidation-Responsive Morphological Transitions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55584-55595. [PMID: 33259182 DOI: 10.1021/acsami.0c15920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic nanostructures (MNS) have a wide range of biological applications due to their biocompatibility, superparamagnetic properties, and customizable composition that includes iron oxide (Fe3O4), Zn2+, and Mn2+. However, several challenges to the biomedical usage of MNS must still be addressed, such as formulation stability, inability to encapsulate therapeutic payloads, and variable clearance rates in vivo. Here, we enhance the utility of MNS during controlled delivery applications via encapsulation within polymeric bicontinuous nanospheres (BCNs) composed of poly(ethylene glycol)-block-poly(propylene sulfide) (PEG-b-PPS) copolymers. PEG-b-PPS BCNs have demonstrated versatile encapsulation and delivery capabilities for both hydrophilic and hydrophobic payloads due to their unique and highly organized cubic phase nanoarchitecture. MNS-embedded BCNs (MBCNs) were thus coloaded with physicochemically diverse molecular payloads using the technique of flash nanoprecipitation and characterized in terms of their structure and in vivo biodistribution following intravenous administration. Retention of the internal aqueous channels and cubic architecture of MBCNs were verified using cryogenic transmission electron microscopy and small-angle X-ray scattering, respectively. MBCNs demonstrated improvement in magnetic resonance imaging (MRI) contrast enhancement (r2 relaxivity) as compared to free MNS, which in combination with scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy evidenced the clustering and continued access to water of MNS following encapsulation. Furthermore, MBCNs were found to be noncytotoxic and able to deliver their hydrophilic and hydrophobic small-molecule payloads both in vitro and in vivo. Finally, the oxidation sensitivity of the hydrophobic PPS block allowed MBCNs to undergo a unique, triggerable transition in morphology into MNS-bearing micellar nanocarriers. In summary, MBCNs are an attractive platform for the delivery of molecular and nanoscale payloads for diverse on-demand and sustained drug delivery applications.
Collapse
Affiliation(s)
- Mallika Modak
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chamille Lescott
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yu-Gang Liu
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Vikas Nandwana
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
37
|
Thomas MA, Hazany S, Ellingson BM, Hu P, Nguyen KL. Pathophysiology, classification, and MRI parallels in microvascular disease of the heart and brain. Microcirculation 2020; 27:e12648. [PMID: 32640064 DOI: 10.1111/micc.12648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Diagnostic imaging technology in vascular disease has long focused on large vessels and the pathologic processes that impact them. With improved diagnostic techniques, investigators are now able to uncover many underlying mechanisms and prognostic factors for microvascular disease. In the heart and brain, these pathologic entities include coronary microvascular disease and cerebral small vessel disease, both of which have significant impact on patients, causing angina, myocardial infarction, heart failure, stroke, and dementia. In the current paper, we will discuss parallels in pathophysiology, classification, and diagnostic modalities, with a focus on the role of magnetic resonance imaging in microvascular disease of the heart and brain. Novel approaches for streamlined imaging of the cardiac and central nervous systems including the use of intravascular contrast agents such as ferumoxytol are presented, and unmet research gaps in diagnostics are summarized.
Collapse
Affiliation(s)
- Michael A Thomas
- Division of Cardiology, David Geffen School of Medicine at, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Radiology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Saman Hazany
- Department of Radiology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine at, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
38
|
Niedbalski PJ, Cochran AS, Akinyi TG, Thomen RP, Fugate EM, Lindquist DM, Pratt RG, Cleveland ZI. Preclinical hyperpolarized 129 Xe MRI: ventilation and T 2 * mapping in mouse lungs at 7 T using multi-echo flyback UTE. NMR IN BIOMEDICINE 2020; 33:e4302. [PMID: 32285574 PMCID: PMC7702724 DOI: 10.1002/nbm.4302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 05/13/2023]
Abstract
Fast apparent transverse relaxation (short T2 *) is a common obstacle when attempting to perform quantitative 1 H MRI of the lungs. While T2 * times are longer for pulmonary hyperpolarized (HP) gas functional imaging (in particular for gaseous 129 Xe), T2 * can still lead to quantitative inaccuracies for sequences requiring longer echo times (such as diffusion weighted images) or longer readout duration (such as spiral sequences). This is especially true in preclinical studies, where high magnetic fields lead to shorter relaxation times than are typically seen in human studies. However, the T2 * of HP 129 Xe in the most common animal model of human disease (mice) has not been reported. Herein, we present a multi-echo radial flyback imaging sequence and use it to measure HP 129 Xe T2 * at 7 T under a variety of respiratory conditions. This sequence mitigates the impact of T1 relaxation outside the animal by using multiple gradient-refocused echoes to acquire images at a number of effective echo times for each RF excitation. After validating the sequence using a phantom containing water doped with superparamagnetic iron oxide nanoparticles, we measured the 129 Xe T2 * in vivo for 10 healthy C57Bl/6 J mice and found T2 * ~ 5 ms in the lung airspaces. Interestingly, T2 * was relatively constant over all experimental conditions, and varied significantly with sex, but not age, mass, or the O2 content of the inhaled gas mixture. These results are discussed in the context of T2 * relaxation within porous media.
Collapse
Affiliation(s)
- Peter J. Niedbalski
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Alexander S. Cochran
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Teckla G. Akinyi
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Robert P. Thomen
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Elizabeth M. Fugate
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Diana M. Lindquist
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ronald G. Pratt
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
39
|
Buch S, Wang Y, Park MG, Jella PK, Hu J, Chen Y, Shah K, Ge Y, Haacke EM. Subvoxel vascular imaging of the midbrain using USPIO-Enhanced MRI. Neuroimage 2020; 220:117106. [PMID: 32615253 DOI: 10.1016/j.neuroimage.2020.117106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/26/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for better detection and understanding of vascular abnormalities at the micro-level, where critical vascular nourishment and cellular metabolic changes occur. This is especially the case for structures such as the midbrain where both the feeding and draining vessels are quite small. Being able to monitor and diagnose vascular changes earlier will aid in better understanding the etiology of the disease and in the development of therapeutics. In this work, thirteen healthy volunteers were scanned with a dual echo susceptibility weighted imaging (SWI) sequence, with a resolution of 0.22 × 0.44 × 1 mm3 at 3T. Ultra-small superparamagnetic iron oxides (USPIO) were used to induce an increase in susceptibility in both arteries and veins. Although the increased vascular susceptibility enhances the visibility of small subvoxel vessels, the accompanying strong signal loss of the large vessels deteriorates the local tissue contrast. To overcome this problem, the SWI data were acquired at different time points during a gradual administration (final concentration = 4 mg/kg) of the USPIO agent, Ferumoxytol, and the data was processed to combine the SWI data dynamically, in order to see through these blooming artifacts. The major vessels and their tributaries (such as the collicular artery, peduncular artery, peduncular vein and the lateral mesencephalic vein) were identified on the combined SWI data using arterio-venous maps. Dynamically combined SWI data was then compared with previous histological work to validate that this protocol was able to detect small vessels on the order of 50 μm-100 μm. A complex division-based phase unwrapping was also employed to improve the quality of quantitative susceptibility maps by reducing the artifacts due to aliased voxels at the vessel boundaries. The smallest detectable vessel size was then evaluated by revisiting numerical simulations, using estimated true susceptibilities for the basal vein and the posterior cerebral artery in the presence of Ferumoxytol. These simulations suggest that vessels as small as 50 μm should be visible with the maximum dose of 4 mg/kg.
Collapse
Affiliation(s)
- Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Ying Wang
- Department of Radiology, Wayne State University, Detroit, MI, USA; Magnetic Resonance Innovations, Inc., Bingham Farms, MI, USA
| | - Min-Gyu Park
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Republic of Korea
| | - Pavan K Jella
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Kamran Shah
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA; Magnetic Resonance Innovations, Inc., Bingham Farms, MI, USA.
| |
Collapse
|
40
|
Allen BD, Schiebler ML, François CJ. Pulmonary Vascular Disease Evaluation with Magnetic Resonance Angiography. Radiol Clin North Am 2020; 58:707-719. [PMID: 32471539 DOI: 10.1016/j.rcl.2020.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pulmonary vascular assessment commonly relies on computed tomography angiography (CTA), but continued advances in magnetic resonance angiography have allowed pulmonary magnetic resonance angiography (pMRA) to become a reasonable alternative to CTA without exposing patients to ionizing radiation. pMRA allows the evaluation of pulmonary vascular anatomy, hemodynamic physiology, lung parenchymal perfusion, and (optionally) right and left ventricular function with a single examination. This article discusses pMRA techniques and artifacts; performance in commonly encountered pulmonary vascular diseases, specifically pulmonary embolism and pulmonary hypertension; and recent advances in both contrast-enhanced and noncontrast pMRA.
Collapse
Affiliation(s)
- Bradley D Allen
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611, USA.
| | - Mark L Schiebler
- Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Christopher J François
- Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| |
Collapse
|
41
|
Bush AM, Sandino CM, Ramachandran S, Ong F, Dwork N, Zucker EJ, Syed AB, Pauly JM, Alley MT, Vasanawala SS. Rosette Trajectories Enable Ungated, Motion-Robust, Simultaneous Cardiac and Liver T 2 * Iron Assessment. J Magn Reson Imaging 2020; 52:1688-1698. [PMID: 32452088 DOI: 10.1002/jmri.27196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Quantitative T2 * MRI is the standard of care for the assessment of iron overload. However, patient motion corrupts T2 * estimates. PURPOSE To develop and evaluate a motion-robust, simultaneous cardiac and liver T2 * imaging approach using non-Cartesian, rosette sampling and a model-based reconstruction as compared to clinical-standard Cartesian MRI. STUDY TYPE Prospective. PHANTOM/POPULATION Six ferumoxytol-containing phantoms (26-288 μg/mL). Eight healthy subjects and 18 patients referred for clinically indicated iron overload assessment. FIELD STRENGTH/SEQUENCE 1.5T, 2D Cartesian and rosette gradient echo (GRE) ASSESSMENT: GRE T2 * values were validated in ferumoxytol phantoms. In healthy subjects, test-retest and spatial coefficient of variation (CoV) analysis was performed during three breathing conditions. Cartesian and rosette T2 * were compared using correlation and Bland-Altman analysis. Images were rated by three experienced radiologists on a 5-point scale. STATISTICAL TESTS Linear regression, analysis of variance (ANOVA), and paired Student's t-testing were used to compare reproducibility and variability metrics in Cartesian and rosette scans. The Wilcoxon rank test was used to assess reader score comparisons and reader reliability was measured using intraclass correlation analysis. RESULTS Rosette R2* (1/T2 *) was linearly correlated with ferumoxytol concentration (r2 = 1.00) and not significantly different than Cartesian values (P = 0.16). During breath-holding, ungated rosette liver and heart T2 * had lower spatial CoV (liver: 18.4 ± 9.3% Cartesian, 8.8% ± 3.4% rosette, P = 0.02, heart: 37.7% ± 14.3% Cartesian, 13.4% ± 1.7% rosette, P = 0.001) and higher-quality scores (liver: 3.3 [3.0-3.6] Cartesian, 4.7 [4.1-4.9] rosette, P = 0.005, heart: 3.0 [2.3-3] Cartesian, 4.5 [3.8-5.0] rosette, P = 0.005) compared to Cartesian values. During free-breathing and failed breath-holding, Cartesian images had very poor to average image quality with significant artifacts, whereas rosette remained very good, with minimal artifacts (P = 0.001). DATA CONCLUSION Rosette k-sampling with a model-based reconstruction offers a clinically useful motion-robust T2 * mapping approach for iron quantification. J. MAGN. RESON. IMAGING 2020;52:1688-1698.
Collapse
Affiliation(s)
- Adam M Bush
- Department of Radiology, Stanford University, Palo Alto, California, USA
| | - Christopher M Sandino
- Department of Electrical Engineering, Stanford University, Palo Alto, California, USA
| | - Shreya Ramachandran
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, California, USA
| | - Frank Ong
- Department of Radiology, Stanford University, Palo Alto, California, USA
| | - Nicholas Dwork
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Evan J Zucker
- Department of Radiology, Stanford University, Palo Alto, California, USA
| | - Ali B Syed
- Department of Radiology, Stanford University, Palo Alto, California, USA
| | - John M Pauly
- Department of Electrical Engineering, Stanford University, Palo Alto, California, USA
| | - Marcus T Alley
- Department of Radiology, Stanford University, Palo Alto, California, USA
| | | |
Collapse
|
42
|
Langsjoen J, Neuwelt A, Eberhardt S, Mlady G, Shukla U, Murali S, Pizanis C, Sillerud LO. A comparison of ferumoxytol with gadolinium as contrast agents for the diagnostic magnetic resonance imaging of osteomyelitis. Magn Reson Imaging 2020; 71:45-54. [PMID: 32439428 DOI: 10.1016/j.mri.2020.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ferumoxytol, an FDA-approved superparamagnetic iron oxide nanoparticle (SPION) preparation used for the treatment of iron deficiency anemia, is also known to be taken up by macrophages in areas of infection or inflammation, where it produces negative contrast changes on T2-weighted MR images. PURPOSE We sought to compare Ferumoxytol-induced MRI contrast changes with those observed using standard-of-care Gadolinium in patients presenting with symptoms suggestive of osteomyelitis. SUBJECTS Out of eighteen enrolled patients, 15 had MR imaging with both ferumoxytol and gadolinium. Based on clinical and/or pathologic criteria, 7 patients were diagnosed with osteomyelitis, 5 patients had osteomyelitis ruled out, and in 3 patients a definitive diagnosis could not be made. FIELD STRENGTH 1.5 Tesla. SEQUENCES Used included STIR, T1-weighted and T2-weighted spin echo. ASSESSMENT The mean contrast changes upon ferumoxytol and gadolinium administration were measured from lesion regions of interest and compared with control regions. STATISTICAL TESTS Student's t-test, propagation of errors. Data are reported as means ± S.E. RESULTS The mean contrast changes, ΔC, associated with a diagnosis of osteomyelitis were found to be ΔCFe = -2.7 ± 0.7 when Ferumoxytol and T2w imaging sequences were used and ΔCGd = +3.1 ± 1.1 (P < 0.001) when Gadolinium and a T1w imaging sequence was used. The MRI contrast changes for both agents correlated with systemic markers of inflammation, such as the erythrocyte sedimentation rate. In patients without osteomyelitis, no significant contrast changes were observed in T2-weighted, Ferumoxytol-contrasted MRI. The macrophages in osteomyelitic lesions were found to take up at least 16 times as much iron as benign bone marrow. DATA CONCLUSION We conclude that in terms of its MRI diagnostic accuracy for osteomyelitis Ferumoxytol-contrasted MRI is a promising approach for diagnosing osteomyelitis that merits further study.
Collapse
Affiliation(s)
- Jens Langsjoen
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Alex Neuwelt
- Department of Medical Oncology, Department of Veterans Affairs, Richmond, VA 23249, United States of America
| | - Stephen Eberhardt
- Department of Radiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Gary Mlady
- Department of Radiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Utkarsh Shukla
- University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Sowmiya Murali
- University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Charles Pizanis
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Laurel O Sillerud
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America.
| |
Collapse
|
43
|
Gholami YH, Yuan H, Wilks MQ, Maschmeyer R, Normandin MD, Josephson L, El Fakhri G, Kuncic Z. A Radio-Nano-Platform for T1/T2 Dual-Mode PET-MR Imaging. Int J Nanomedicine 2020; 15:1253-1266. [PMID: 32161456 PMCID: PMC7049573 DOI: 10.2147/ijn.s241971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/09/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose This study aimed to develop a chelate-free radiolabeled nanoparticle platform for simultaneous positron emission tomography (PET) and magnetic resonance (MR) imaging that provides contrast-enhanced diagnostic imaging and significant image quality gain by integrating the high spatial resolution of MR with the high sensitivity of PET. Methods A commercially available super-paramagnetic iron oxide nanoparticle (SPION) (Feraheme®, FH) was labeled with the [89Zr]Zr using a novel chelate-free radiolabeling technique, heat-induced radiolabeling (HIR). Radiochemical yield (RCY) and purity (RCP) were measured using size exclusion chromatography (SEC) and radio-thin layer chromatography (radio-TLC). Characterization of the non-radioactive isotope 90Zr-labeled FH was performed by transmission electron microscopy (TEM). Simultaneous PET-MR phantom imaging was performed with different 89Zr-FH concentrations. The MR quantitative image analysis determined the contrast-enhancing properties of FH. The signal-to-noise ratio (SNR) and full-width half-maximum (FWHM) of the line spread function (LSF) were calculated before and after co-registering the PET and MR image data. Results High RCY (92%) and RCP (98%) of the [89Zr]Zr-FH product was achieved. TEM analysis confirmed the 90Zr atoms adsorption onto the SPION surface (≈ 10% average radial increase). Simultaneous PET-MR scans confirmed the capability of the [89Zr]Zr-FH nano-platform for this multi-modal imaging technique. Relative contrast image analysis showed that [89Zr]Zr-FH can act as a dual-mode T1/T2 contrast agent. For co-registered PET-MR images, higher spatial resolution (FWHM enhancement ≈ 3) and SNR (enhancement ≈ 8) was achieved at a clinical dose of radio-isotope and Fe. Conclusion Our results demonstrate FH is a highly suitable SPION-based platform for chelate-free labeling of PET tracers for hybrid PET-MR. The high RCY and RCP confirmed the robustness of the chelate-free HIR technique. An overall image quality gain was achieved compared to PET- or MR-alone imaging with a relatively low dosage of [89Zr]Zr-FH. Additionally, FH is suitable as a dual-mode T1/T2 MR image contrast agent. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: http://youtu.be/Me_QBfX7I3s
Collapse
Affiliation(s)
- Yaser Hadi Gholami
- Faculty of Science, School of Physics, The University of Sydney, Sydney, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Hushan Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Maschmeyer
- Faculty of Science, School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zdenka Kuncic
- Faculty of Science, School of Physics, The University of Sydney, Sydney, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia.,The University of Sydney Nano Institute, Sydney, NSW, Australia
| |
Collapse
|
44
|
Kapre R, Zhou J, Li X, Beckett L, Louie AY. A novel gamma GLM approach to MRI relaxometry comparisons. Magn Reson Med 2020; 84:1592-1604. [PMID: 32048764 PMCID: PMC7317199 DOI: 10.1002/mrm.28192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To demonstrate that constant coefficient of variation (CV), but nonconstant absolute variance in MRI relaxometry (T1 , T2 , R1 , R2 ) data leads to erroneous conclusions based on standard linear models such as ordinary least squares (OLS). We propose a gamma generalized linear model identity link (GGLM-ID) framework that factors the inherent CV into parameter estimates. We first examined the effects on calculations of contrast agent relaxivity before broadening to other applications such as analysis of variance (ANOVA) and liver iron content (LIC). METHODS Eight models including OLS and GGLM-ID were initially fit to data obtained on sulfated dextran iron oxide (SDIO) nanoparticles. Both a resampling simulation on the data as well as two separate Monte Carlo simulations (with and without concentration error) were performed to determine mean square error (MSE) and type I error rate. We then evaluated the performance of OLS/GGLM-ID on R1 repeatability and LIC data sets. RESULTS OLS had an MSE of 4-5× that of GGLM-ID as well as a type I error rate of 20-30%, whereas GGLM-ID was near the nominal 5% level in the relaxivity study. Only OLS found statistically significant effects of MRI facility on relaxivity in an R1 repeatability study, but no significant differences were found in a resampling, whereas GGLM was more consistent. GGLM-ID was also superior to OLS for modeling LIC. CONCLUSIONS OLS leads to erroneous conclusions when analyzing MRI relaxometry data. GGLM-ID factors in the inherent CV of an MRI experiment, leading to more reproducible conclusions.
Collapse
Affiliation(s)
- Rohan Kapre
- Department of Biomedical Engineering, University of California, Davis, CA.,Biostatistics Graduate Group, University of California, Davis, CA
| | - Junhan Zhou
- Chemistry Graduate Group, University of California, Davis, CA
| | - Xinzhe Li
- Department of Biomedical Engineering, University of California, Davis, CA
| | - Laurel Beckett
- Biostatistics Graduate Group, University of California, Davis, CA
| | - Angelique Y Louie
- Department of Biomedical Engineering, University of California, Davis, CA.,Chemistry Graduate Group, University of California, Davis, CA
| |
Collapse
|
45
|
Brangsch J, Reimann C, Kaufmann JO, Adams LC, Onthank DC, Thöne-Reineke C, Robinson SP, Buchholz R, Karst U, Botnar RM, Hamm B, Makowski MR. Concurrent Molecular Magnetic Resonance Imaging of Inflammatory Activity and Extracellular Matrix Degradation for the Prediction of Aneurysm Rupture. Circ Cardiovasc Imaging 2020; 12:e008707. [PMID: 30871334 DOI: 10.1161/circimaging.118.008707] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Molecular magnetic resonance imaging is a promising modality for the characterization of abdominal aortic aneurysms (AAAs). The combination of different molecular imaging biomarkers may improve the assessment of the risk of rupture. This study investigates the feasibility of imaging inflammatory activity and extracellular matrix degradation by concurrent dual-probe molecular magnetic resonance imaging in an AAA mouse model. METHODS Osmotic minipumps with a continuous infusion of Ang II (angiotensin II; 1000 ng/[kg·min]) to induce AAAs were implanted in apolipoprotein-deficient mice (N=58). Animals were assigned to 2 groups. In group 1 (longitudinal group, n=13), imaging was performed once after 1 week with a clinical dose of a macrophage-specific iron oxide-based probe (ferumoxytol, 4 mgFe/kg, surrogate marker for inflammatory activity) and an elastin-specific gadolinium-based probe (0.2 mmol/kg, surrogate marker for extracellular matrix degradation). Animals were then monitored with death as end point. In group 2 (week-by-week-group), imaging with both probes was performed after 1, 2, 3, and 4 weeks (n=9 per group). Both probes were evaluated in 1 magnetic resonance session. RESULTS The combined assessment of inflammatory activity and extracellular matrix degradation was the strongest predictor of AAA rupture (sensitivity 100%; specificity 89%; area under the curve, 0.99). Information from each single probe alone resulted in lower predictive accuracy. In vivo measurements for the elastin- and iron oxide-probe were in good agreement with ex vivo histopathology (Prussian blue-stain: R2=0.96, P<0.001; Elastica van Giesson stain: R2=0.79, P<0.001). Contrast-to-noise ratio measurements for the iron oxide and elastin-probe were in good agreement with inductively coupled mass spectroscopy ( R2=0.88, R2=0.75, P<0.001) and laser ablation coupled to inductively coupled plasma-mass spectrometry. CONCLUSIONS This study demonstrates the potential of the concurrent assessment of inflammatory activity and extracellular matrix degradation by dual-probe molecular magnetic resonance imaging in an AAA mouse model. Based on the combined information from both molecular probes, the rupture of AAAs could reliably be predicted.
Collapse
Affiliation(s)
- Julia Brangsch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.).,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Germany (J.B., C.R., C.T.-R.)
| | - Carolin Reimann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.).,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Germany (J.B., C.R., C.T.-R.)
| | - Jan O Kaufmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.).,Federal Institute for Materials Research and Testing (BAM), Division 1.5 Protein Analysis, Berlin, Germany (J.O.K.).,Department of Chemistry, Humboldt-Universität zu Berlin, Germany (J.O.K.)
| | - Lisa C Adams
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.)
| | - David C Onthank
- Lantheus Medical Imaging, North Billerica, MA (D.C.O., S.P.R.)
| | - Christa Thöne-Reineke
- Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Germany (J.B., C.R., C.T.-R.)
| | | | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Germany (R.B., U.K.)
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Germany (R.B., U.K.)
| | - Rene M Botnar
- School of Biomedical Engineering and Imaging Sciences (R.M.B., M.R.M.), King's College London, United Kingdom.,BHF Centre of Excellence (R.M.B., M.R.M.), King's College London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago (R.M.B.)
| | - Bernd Hamm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.)
| | - Marcus R Makowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.).,School of Biomedical Engineering and Imaging Sciences (R.M.B., M.R.M.), King's College London, United Kingdom.,BHF Centre of Excellence (R.M.B., M.R.M.), King's College London, United Kingdom
| |
Collapse
|
46
|
Colgan TJ, Knobloch G, Reeder SB, Hernando D. Sensitivity of quantitative relaxometry and susceptibility mapping to microscopic iron distribution. Magn Reson Med 2020; 83:673-680. [PMID: 31423637 PMCID: PMC7041893 DOI: 10.1002/mrm.27946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/27/2019] [Accepted: 07/23/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE Determine the impact of the microscopic spatial distribution of iron on relaxometry and susceptibility-based estimates of iron concentration. METHODS Monte Carlo simulations and in vitro experiments of erythrocytes were used to create different microscopic distributions of iron. Measuring iron with intact erythrocyte cells created a heterogeneous distribution of iron, whereas lysing erythrocytes was used to create a homogeneous distribution of iron. Multi-echo spin echo and spoiled gradient echo acquisitions were then used to estimate relaxation parameters ( R 2 and R 2 * ) and susceptibility. RESULTS Simulations demonstrate that R 2 and R 2 * measurements depend on the spatial distribution of iron even for the same iron concentration and volume susceptibility. Similarly, in vitro experiments demonstrate that R 2 and R 2 * measurements depend on the microscopic spatial distribution of iron whereas the quantitative susceptibility mapping (QSM) susceptibility estimates reflect iron concentration without sensitivity to spatial distribution. CONCLUSIONS R 2 and R 2 * for iron quantification depend on the spatial distribution or iron. QSM-based estimation of iron concentration is insensitive to the microscopic spatial distribution of iron, potentially providing a distribution independent measure of iron concentration.
Collapse
Affiliation(s)
- Timothy J. Colgan
- Department of Radiology, University of Wisconsin, Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Gesine Knobloch
- Department of Radiology, University of Wisconsin, Madison, Wisconsin
| | - Scott B. Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
- Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
47
|
Measurement Variability in Treatment Response Determination for Non-Small Cell Lung Cancer: Improvements Using Radiomics. J Thorac Imaging 2019; 34:103-115. [PMID: 30664063 DOI: 10.1097/rti.0000000000000390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multimodality imaging measurements of treatment response are critical for clinical practice, oncology trials, and the evaluation of new treatment modalities. The current standard for determining treatment response in non-small cell lung cancer (NSCLC) is based on tumor size using the RECIST criteria. Molecular targeted agents and immunotherapies often cause morphological change without reduction of tumor size. Therefore, it is difficult to evaluate therapeutic response by conventional methods. Radiomics is the study of cancer imaging features that are extracted using machine learning and other semantic features. This method can provide comprehensive information on tumor phenotypes and can be used to assess therapeutic response in this new age of immunotherapy. Delta radiomics, which evaluates the longitudinal changes in radiomics features, shows potential in gauging treatment response in NSCLC. It is well known that quantitative measurement methods may be subject to substantial variability due to differences in technical factors and require standardization. In this review, we describe measurement variability in the evaluation of NSCLC and the emerging role of radiomics.
Collapse
|
48
|
Siedek F, Muehe AM, Theruvath AJ, Avedian R, Pribnow A, Spunt SL, Liang T, Farrell C, Daldrup-Link HE. Comparison of ferumoxytol- and gadolinium chelate-enhanced MRI for assessment of sarcomas in children and adolescents. Eur Radiol 2019; 30:1790-1803. [PMID: 31844962 DOI: 10.1007/s00330-019-06569-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We compared the value of ferumoxytol (FMX)- and gadolinium (Gd)-enhanced MRI for assessment of sarcomas in paediatric/adolescent patients and hypothesised that tumour size and morphological features can be equally well assessed with both protocols. METHODS We conducted a retrospective study of paediatric/adolescent patients with newly diagnosed bone or soft tissue sarcomas and both pre-treatment FMX- and Gd-MRI scans, which were maximal 4 weeks apart. Both protocols included T1- and T2-weighted sequences. One reader assessed tumour volumes, signal-to-noise ratios (SNR) of the primary tumour and adjacent tissues and contrast-to-noise ratios (CNR) of FMX- and Gd-MRI scans. Additionally, four readers scored FMX- and Gd-MRI scans according to 15 diagnostic parameters, using a Likert scale. The results were pooled across readers and compared between FMX- and Gd-MRI scans. Statistical methods included multivariate analyses with different models. RESULTS Twenty-two patients met inclusion criteria (16 males, 6 females; mean age 15.3 ± 5.0). Tumour volume was not significantly different on T1-LAVA (p = 0.721), T1-SE (p = 0.290) and T2-FSE (p = 0.609) sequences. Compared to Gd-MRI, FMX-MRI demonstrated significantly lower tumour SNR on T1-LAVA (p < 0.001), equal tumour SNR on T1-SE (p = 0.104) and T2-FSE (p = 0.305), significantly higher tumour-to-marrow CNR (p < 0.001) on T2-FSE as well as significantly higher tumour-to-liver (p = 0.021) and tumour-to-vessel (p = 0.003) CNR on T1-LAVA images. Peritumoural and marrow oedema enhanced significantly more on Gd-MRI compared to FMX-MRI (p < 0.001/p = 0.002, respectively). Tumour thrombi and neurovascular bundle involvement were assessed with a significantly higher confidence on FMX-MRI (both p < 0.001). CONCLUSIONS FMX-MRI provides equal assessment of the extent of bone and soft tissue sarcomas compared to Gd-MRI with improved tumour delineation and improved evaluation of neurovascular involvement and tumour thrombi. Therefore, FMX-MRI is a possible alternative to Gd-MRI for tumour staging in paediatric/adolescent sarcoma patients. KEY POINTS • Ferumoxytol can be used as an alterative to gadolinium chelates for MRI staging ofpaediatric sarcomas. • Ferumoxytol-enhanced MRI provides equal assessment of tumour size and other diagnostic parameters compared to gadolinium chelate-enhanced MRI. • Ferumoxytol-enhanced MRI provides improved delineation of sarcomas from bone marrow, liver and vessels compared to gadolinium chelate-enhanced MRI.
Collapse
Affiliation(s)
- Florian Siedek
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne M Muehe
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA
| | - Ashok J Theruvath
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany
| | - Raffi Avedian
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Allison Pribnow
- Department of Pediatrics, Hematology and Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Sheri L Spunt
- Department of Pediatrics, Hematology and Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Tie Liang
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA
| | - Crystal Farrell
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Hematology and Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA.
| |
Collapse
|
49
|
Rivera-Rivera LA, Schubert T, Johnson KM. Measurements of cerebral blood volume using quantitative susceptibility mapping, R 2 * relaxometry, and ferumoxytol-enhanced MRI. NMR IN BIOMEDICINE 2019; 32:e4175. [PMID: 31482602 PMCID: PMC6868300 DOI: 10.1002/nbm.4175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 05/08/2023]
Abstract
Ferumoxytol-enhanced MRI holds potential for the non-invasive assessment of vascular architecture using estimates of cerebral blood volume (CBV). Ferumoxytol specifically enables steady-state imaging with extended acquisition times, for substantial improvements in resolution and contrast-to-noise ratio. With such data, quantitative susceptibility mapping (QSM) can be used to obtain images of local tissue magnetic susceptibility and hence estimate the increase in blood susceptibility after administration of a contrast agent, which in turn can be correlated to tissue CBV. Here, we explore the use of QSM for CBV estimation and compare it with R2 * (1/T2 *)-based results. Institutional review board approval was obtained, and all subjects provided written informed consent. For this prospective study, MR images were acquired on a 3.0 T scanner in 19 healthy subjects using a multiple-echo T2 *-weighted sequence. Scanning was performed before and after the administration of two doses of ferumoxytol (1 mg FE/kg and 4 mg FE/kg). Different QSM approaches were tested on numerical phantom simulations. Results showed that the accuracy of magnetic susceptibility measurements improved with increasing image resolution and decreasing vascular density. In vivo changes in magnetic susceptibility were measured after the administration of ferumoxytol utilizing QSM, and significantly higher QSM-based CBV was measured in gray matter compared with white matter. QSM- and R2 *-based CBV estimates correlated well, with similar average values, but a larger variance was found in QSM-based estimates.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275, USA
| | - Tilman Schubert
- Department of Radiology and Nuclear Medicine, Basel University Hospital, Petersgraben 4, 4031 Basel, Switzerland
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53705-2275, USA
| |
Collapse
|
50
|
Wells SA, Schubert T, Motosugi U, Sharma SD, Campo CA, Kinner S, Woo KM, Hernando D, Reeder SB. Pharmacokinetics of Ferumoxytol in the Abdomen and Pelvis: A Dosing Study with 1.5- and 3.0-T MRI Relaxometry. Radiology 2019; 294:108-116. [PMID: 31714191 DOI: 10.1148/radiol.2019190489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background The off-label use of ferumoxytol (FE), an intravenous iron preparation for iron deficiency anemia, as a contrast agent for MRI is increasing; therefore, it is critical to understand its pharmacokinetics. Purpose To evaluate the pharmacokinetics of FE in the abdomen and pelvis, as assessed with quantitative 1.5- and 3.0-T MRI relaxometry. Materials and Methods R2*, an MRI technique used to estimate tissue iron content in the abdomen and pelvis, was performed at 1.5 and 3.0 T in 12 healthy volunteers between April 2015 and January 2016. Volunteers were randomly assigned to receive an FE dose of 2 mg per kilogram of body weight (FE2mg) or 4 mg/kg (FE4mg). MRI was repeated at 1.5 and 3.0 T for each volunteer at five time points: days 1, 2, 4, 7, and 30. A radiologist experienced in MRI relaxometry measured R2* in organs of the mononuclear phagocyte system (MPS) (ie, liver, spleen, and bone marrow), non-MPS anatomy (kidney, pancreas, and muscle), inguinal lymph nodes (LNs), and blood pool. A paired Student t test was used to compare changes in tissue R2*. Results Volunteers (six female; mean age, 44.3 years ± 12.2 [standard deviation]) received either FE2 mg (n = 5) or FE4 mg (n = 6). Overall R2* trend analysis was temporally significant (P < .001). Time to peak R2* in the MPS occurred on day 1 for FE2mg and between days 1 and 4 for FE4mg (P < .001 to P < .002). Time to peak R2* in non-MPS anatomy, LNs, and blood pool occurred on day 1 for both doses (P < .001 to P < .09). Except for the spleen (at 1.5 T) and liver, MPS R2* remained elevated through day 30 for both doses (P = .02 to P = .03). Except for the kidney and pancreas, non-MPS, LN, and blood pool R2* returned to baseline levels between days 2 and 4 at FE2mg (P = .06 to P = .49) and between days 4 and 7 at FE4mg (P = .06 to P = .63). There was no difference in R2* change between non-MPS and LN R2* at any time (range, 1-71 sec-1 vs 0-50 sec-1; P = .06 to P = .97). Conclusion The pharmacokinetics of ferumoxytol in lymph nodes are distinct from those in mononuclear phagocyte system (MPS) organs, parallel non-MPS anatomy, and the blood pool. © RSNA, 2019 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Shane A Wells
- Form the Departments of Radiology (S.A.W., T.S., U.M., S.D.S., C.A.C., S.K., D.H., S.B.R.), Biostatistics and Medical Informatics (K.M.W.), Biomedical Engineering (S.B.R.), Medical Physics (S.B.R.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/366, Madison, WI 53792; Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland (T.S.); Department of Radiology, University of Yamanashi, Yamanashi, Japan (U.M.); and Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany (S.K.)
| | - Tilman Schubert
- Form the Departments of Radiology (S.A.W., T.S., U.M., S.D.S., C.A.C., S.K., D.H., S.B.R.), Biostatistics and Medical Informatics (K.M.W.), Biomedical Engineering (S.B.R.), Medical Physics (S.B.R.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/366, Madison, WI 53792; Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland (T.S.); Department of Radiology, University of Yamanashi, Yamanashi, Japan (U.M.); and Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany (S.K.)
| | - Utaroh Motosugi
- Form the Departments of Radiology (S.A.W., T.S., U.M., S.D.S., C.A.C., S.K., D.H., S.B.R.), Biostatistics and Medical Informatics (K.M.W.), Biomedical Engineering (S.B.R.), Medical Physics (S.B.R.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/366, Madison, WI 53792; Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland (T.S.); Department of Radiology, University of Yamanashi, Yamanashi, Japan (U.M.); and Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany (S.K.)
| | - Samir D Sharma
- Form the Departments of Radiology (S.A.W., T.S., U.M., S.D.S., C.A.C., S.K., D.H., S.B.R.), Biostatistics and Medical Informatics (K.M.W.), Biomedical Engineering (S.B.R.), Medical Physics (S.B.R.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/366, Madison, WI 53792; Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland (T.S.); Department of Radiology, University of Yamanashi, Yamanashi, Japan (U.M.); and Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany (S.K.)
| | - Camilo A Campo
- Form the Departments of Radiology (S.A.W., T.S., U.M., S.D.S., C.A.C., S.K., D.H., S.B.R.), Biostatistics and Medical Informatics (K.M.W.), Biomedical Engineering (S.B.R.), Medical Physics (S.B.R.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/366, Madison, WI 53792; Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland (T.S.); Department of Radiology, University of Yamanashi, Yamanashi, Japan (U.M.); and Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany (S.K.)
| | - Sonja Kinner
- Form the Departments of Radiology (S.A.W., T.S., U.M., S.D.S., C.A.C., S.K., D.H., S.B.R.), Biostatistics and Medical Informatics (K.M.W.), Biomedical Engineering (S.B.R.), Medical Physics (S.B.R.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/366, Madison, WI 53792; Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland (T.S.); Department of Radiology, University of Yamanashi, Yamanashi, Japan (U.M.); and Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany (S.K.)
| | - Kaitlin M Woo
- Form the Departments of Radiology (S.A.W., T.S., U.M., S.D.S., C.A.C., S.K., D.H., S.B.R.), Biostatistics and Medical Informatics (K.M.W.), Biomedical Engineering (S.B.R.), Medical Physics (S.B.R.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/366, Madison, WI 53792; Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland (T.S.); Department of Radiology, University of Yamanashi, Yamanashi, Japan (U.M.); and Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany (S.K.)
| | - Diego Hernando
- Form the Departments of Radiology (S.A.W., T.S., U.M., S.D.S., C.A.C., S.K., D.H., S.B.R.), Biostatistics and Medical Informatics (K.M.W.), Biomedical Engineering (S.B.R.), Medical Physics (S.B.R.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/366, Madison, WI 53792; Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland (T.S.); Department of Radiology, University of Yamanashi, Yamanashi, Japan (U.M.); and Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany (S.K.)
| | - Scott B Reeder
- Form the Departments of Radiology (S.A.W., T.S., U.M., S.D.S., C.A.C., S.K., D.H., S.B.R.), Biostatistics and Medical Informatics (K.M.W.), Biomedical Engineering (S.B.R.), Medical Physics (S.B.R.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/366, Madison, WI 53792; Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland (T.S.); Department of Radiology, University of Yamanashi, Yamanashi, Japan (U.M.); and Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany (S.K.)
| |
Collapse
|