1
|
Partridge SC, Xu J. Cellular Characterization of Breast Cancer Using Microstructural Diffusion MRI. Radiology 2024; 313:e242268. [PMID: 39436293 PMCID: PMC11535873 DOI: 10.1148/radiol.242268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Savannah C. Partridge
- From the Department of Radiology, University of Washington, Fred Hutchinson Cancer Center, 1144 Eastlake Ave E, Seattle, WA 98109 (S.C.P.); and Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (J.X.)
| | - Junzhong Xu
- From the Department of Radiology, University of Washington, Fred Hutchinson Cancer Center, 1144 Eastlake Ave E, Seattle, WA 98109 (S.C.P.); and Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (J.X.)
| |
Collapse
|
2
|
Iima M, Kataoka M, Honda M, Le Bihan D. Diffusion-Weighted MRI for the Assessment of Molecular Prognostic Biomarkers in Breast Cancer. Korean J Radiol 2024; 25:623-633. [PMID: 38942456 PMCID: PMC11214919 DOI: 10.3348/kjr.2023.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 06/30/2024] Open
Abstract
This study systematically reviewed the role of diffusion-weighted imaging (DWI) in the assessment of molecular prognostic biomarkers in breast cancer, focusing on the correlation of apparent diffusion coefficient (ADC) with hormone receptor status and prognostic biomarkers. Our meta-analysis includes data from 52 studies examining ADC values in relation to estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki-67 status. The results indicated significant differences in ADC values among different receptor statuses, with ER-positive, PgR-positive, HER2-negative, and Ki-67-positive tumors having lower ADC values compared to their negative counterparts. This study also highlights the potential of advanced DWI techniques such as intravoxel incoherent motion and non-Gaussian DWI to provide additional insights beyond ADC. Despite these promising findings, the high heterogeneity among the studies underscores the need for standardized DWI protocols to improve their clinical utility in breast cancer management.
Collapse
Affiliation(s)
- Mami Iima
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maya Honda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Japan
| | - Denis Le Bihan
- NeuroSpin, Joliot Institute, Department of Fundamental Research, Commissariat à l'Energie Atomique (CEA)-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Pötsch N, Sodano C, Baltzer PAT. Performance of Diffusion-weighted Imaging-based Noncontrast MRI Protocols for Diagnosis of Breast Cancer: A Systematic Review and Meta-Analysis. Radiology 2024; 311:e232508. [PMID: 38771179 DOI: 10.1148/radiol.232508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Diffusion-weighted imaging (DWI) is increasingly recognized as a powerful diagnostic tool and tested alternative to contrast-enhanced (CE) breast MRI. Purpose To perform a systematic review and meta-analysis that assesses the diagnostic performance of DWI-based noncontrast MRI protocols (ncDWI) for the diagnosis of breast cancer. Materials and Methods A systematic literature search in PubMed for articles published from January 1985 to September 2023 was performed. Studies were excluded if they investigated malignant lesions or selected patients and/or lesions only, used DWI as an adjunct technique to CE MRI, or were technical studies. Statistical analysis included pooling of diagnostic accuracy and investigating between-study heterogeneity. Additional subgroup comparisons of ncDWI to CE MRI and standard mammography were performed. Results A total of 28 studies were included, with 4406 lesions (1676 malignant, 2730 benign) in 3787 patients. The pooled sensitivity and specificity of ncDWI were 86.5% (95% CI: 81.4, 90.4) and 83.5% (95% CI: 76.9, 88.6), and both measures presented with high between-study heterogeneity (I 2 = 81.6% and 91.6%, respectively; P < .001). CE MRI (18 studies) had higher sensitivity than ncDWI (95.1% [95% CI: 92.9, 96.7] vs 88.9% [95% CI: 82.4, 93.1], P = .004) at similar specificity (82.2% [95% CI: 75.0, 87.7] vs 82.0% [95% CI: 74.8, 87.5], P = .97). Compared with ncDWI, mammography (five studies) showed no evidence of a statistical difference for sensitivity (80.3% [95% CI: 56.3, 93.3] vs 56.7%; [95% CI: 41.9, 70.4], respectively; P = .09) or specificity (89.9% [95% CI: 85.5, 93.1] vs 90% [95% CI: 61.3, 98.1], respectively; P = .62), but ncDWI had a higher area under the summary receiver operating characteristic curve (0.93 [95% CI: 0.91, 0.95] vs 0.78 [95% CI: 0.74, 0.81], P < .001). Conclusion A direct comparison with CE MRI showed a modestly lower sensitivity at similar specificity for ncDWI, and higher diagnostic performance indexes for ncDWI than standard mammography. Heterogeneity was high, thus these results must be interpreted with caution. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Kataoka and Iima in this issue.
Collapse
Affiliation(s)
- Nina Pötsch
- From the Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna and General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Claudia Sodano
- From the Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna and General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Pascal A T Baltzer
- From the Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna and General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
4
|
Kataoka M, Iima M, Miyake KK, Honda M. Multiparametric Approach to Breast Cancer With Emphasis on Magnetic Resonance Imaging in the Era of Personalized Breast Cancer Treatment. Invest Radiol 2024; 59:26-37. [PMID: 37994113 DOI: 10.1097/rli.0000000000001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
ABSTRACT A multiparametric approach to breast cancer imaging offers the advantage of integrating the diverse contributions of various parameters. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is the most important MRI sequence for breast imaging. The vascularity and permeability of lesions can be estimated through the use of semiquantitative and quantitative parameters. The increased use of ultrafast DCE-MRI has facilitated the introduction of novel kinetic parameters. In addition to DCE-MRI, diffusion-weighted imaging provides information associated with tumor cell density, with advanced diffusion-weighted imaging techniques such as intravoxel incoherent motion, diffusion kurtosis imaging, and time-dependent diffusion MRI opening up new horizons in microscale tissue evaluation. Furthermore, T2-weighted imaging plays a key role in measuring the degree of tumor aggressiveness, which may be related to the tumor microenvironment. Magnetic resonance imaging is, however, not the only imaging modality providing semiquantitative and quantitative parameters from breast tumors. Breast positron emission tomography demonstrates superior spatial resolution to whole-body positron emission tomography and allows comparable delineation of breast cancer to MRI, as well as providing metabolic information, which often precedes vascular and morphological changes occurring in response to treatment. The integration of these imaging-derived factors is accomplished through multiparametric imaging. In this article, we explore the relationship among the key imaging parameters, breast cancer diagnosis, and histological characteristics, providing a technical and theoretical background for these parameters. Furthermore, we review the recent studies on the application of multiparametric imaging to breast cancer and the significance of the key imaging parameters.
Collapse
Affiliation(s)
- Masako Kataoka
- From the Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine Kyoto University, Kyoto, Japan (M.K., M.I., M.H.); Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan (M.I.); Department of Advanced Imaging in Medical Magnetic Resonance, Graduate School of Medicine Kyoto University, Kyoto, Japan (K.K.M); and Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Japan (M.H.)
| | | | | | | |
Collapse
|
5
|
Liu Z, Duan T, Zhang Y, Weng S, Xu H, Ren Y, Zhang Z, Han X. Radiogenomics: a key component of precision cancer medicine. Br J Cancer 2023; 129:741-753. [PMID: 37414827 PMCID: PMC10449908 DOI: 10.1038/s41416-023-02317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics, radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Tian Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Evaluation of apparent diffusion coefficient of two-dimensional BLADE turbo gradient- and spin-echo diffusion-weighted imaging with a breast phantom. Radiol Phys Technol 2023; 16:118-126. [PMID: 36596917 DOI: 10.1007/s12194-022-00694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
This study aimed to evaluate the reliability of apparent diffusion coefficient (ADC) values generated with two-dimensional turbo gradient- and spin-echo with BLADE trajectory diffusion-weighted imaging (TGSE-BLADE-DWI) sequence using a breast diffusion phantom. TGSE-BLADE-DWI and single-shot spin-echo echo-planar imaging (SS-EPI-DWI) were performed using a 3.0 T magnetic resonance imaging scanner. Concordance rates of ADC values and the signal-to-noise ratio (SNR) were compared between TGSE-BLADE-DWI and SS-EPI-DWI. TGSE-BLADE-DWI provided a higher concordance rate for ADC values than SS-EPI-DWI when b-values > 2000s/mm2 and a slice thickness of 1 mm were used. TGSE-BLADE-DWI showed less image distortion than SS-EPI-DWI. The SNR of TGSE-BLADE-DWI was higher than that of SS-EPI-DWI, except at a number of excitations of 7 and a slice thickness of 1 mm. In conclusion, TGSE-BLADE-DWI can offer a better SNR, less distortion, and more reliable ADC measurements than SS-EPI-DWI in a breast phantom.
Collapse
|
7
|
Iima M, Le Bihan D. The road to breast cancer screening with diffusion MRI. Front Oncol 2023; 13:993540. [PMID: 36895474 PMCID: PMC9989267 DOI: 10.3389/fonc.2023.993540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/10/2023] [Indexed: 02/23/2023] Open
Abstract
Breast cancer is the leading cause of cancer in women with a huge medical, social and economic impact. Mammography (MMG) has been the gold standard method until now because it is relatively inexpensive and widely available. However, MMG suffers from certain limitations, such as exposure to X-rays and difficulty of interpretation in dense breasts. Among other imaging methods, MRI has clearly the highest sensitivity and specificity, and breast MRI is the gold standard for the investigation and management of suspicious lesions revealed by MMG. Despite this performance, MRI, which does not rely on X-rays, is not used for screening except for a well-defined category of women at risk, because of its high cost and limited availability. In addition, the standard approach to breast MRI relies on Dynamic Contrast Enhanced (DCE) MRI with the injection of Gadolinium based contrast agents (GBCA), which have their own contraindications and can lead to deposit of gadolinium in tissues, including the brain, when examinations are repeated. On the other hand, diffusion MRI of breast, which provides information on tissue microstructure and tumor perfusion without the use of contrast agents, has been shown to offer higher specificity than DCE MRI with similar sensitivity, superior to MMG. Diffusion MRI thus appears to be a promising alternative approach to breast cancer screening, with the primary goal of eliminating with a very high probability the existence of a life-threatening lesion. To achieve this goal, it is first necessary to standardize the protocols for acquisition and analysis of diffusion MRI data, which have been found to vary largely in the literature. Second, the accessibility and cost-effectiveness of MRI examinations must be significantly improved, which may become possible with the development of dedicated low-field MRI units for breast cancer screening. In this article, we will first review the principles and current status of diffusion MRI, comparing its clinical performance with MMG and DCE MRI. We will then look at how breast diffusion MRI could be implemented and standardized to optimize accuracy of results. Finally, we will discuss how a dedicated, low-cost prototype of breast MRI system could be implemented and introduced to the healthcare market.
Collapse
Affiliation(s)
- Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Denis Le Bihan
- NeuroSpin, Joliot Institute, Department of Fundamental Research, Commissariat á l'Energie Atomique (CEA)-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Someya Y, Iima M, Imai H, Yoshizawa A, Kataoka M, Isoda H, Le Bihan D, Nakamoto Y. Investigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers. Sci Rep 2022; 12:6523. [PMID: 35444193 PMCID: PMC9021220 DOI: 10.1038/s41598-022-10081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated the associations of time-dependent DWI, non-Gaussian DWI, and CEST parameters with histological biomarkers in a breast cancer xenograft model. 22 xenograft mice (7 MCF-7 and 15 MDA-MB-231) were scanned at 4 diffusion times [Td = 2.5/5 ms with 11 b-values (0–600 s/mm2) and Td = 9/27.6 ms with 17 b-values (0–3000 s/mm2), respectively]. The apparent diffusion coefficient (ADC) was estimated using 2 b-values in different combinations (ADC0–600 using b = 0 and 600 s/mm2 and shifted ADC [sADC200–1500] using b = 200 and 1500 s/mm2) at each of those diffusion times. Then the change (Δ) in ADC/sADC between diffusion times was evaluated. Non-Gaussian diffusion and intravoxel incoherent motion (IVIM) parameters (ADC0, the virtual ADC at b = 0; K, Kurtosis from non-Gaussian diffusion; f, the IVIM perfusion fraction) were estimated. CEST images were acquired and the amide proton transfer signal intensity (APT SI) were measured. The ΔsADC9–27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{9\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC9ms200-1500 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500 and ΔADC2.5_sADC27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{ADC}}_{{2.5\, {\text{ms}}}}^{0{-}600}$$\end{document}ADC2.5ms0-600 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500) was significantly larger for MCF-7 groups, and ΔADC2.5_sADC27.6 was positively correlated with Ki67max and APT SI. ADC0 decreased significantly in MDA-MB-231 group and K increased significantly with Td in MCF-7 group. APT SI and cellular area had a moderately strong positive correlation in MDA-MB-231 and MCF-7 tumors combined, and there was a positive correlation in MDA-MB-231 tumors. There was a significant negative correlation between APT SI and the Ki-67-positive ratio in MDA-MB-231 tumors and when combined with MCF-7 tumors. The associations of ΔADC2.5_sADC27.6 and API SI with Ki-67 parameters indicate that the Td-dependent DW and CEST parameters are useful to predict the histological markers of breast cancers.
Collapse
Affiliation(s)
- Yuko Someya
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroyoshi Isoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Paris-Saclay University, 91191, Gif-sur-Yvette, France.,Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.,National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
9
|
Wennmann M, Thierjung H, Bauer F, Weru V, Hielscher T, Grözinger M, Gnirs R, Sauer S, Goldschmidt H, Weinhold N, Bonekamp D, Schlemmer HP, Weber TF, Delorme S, Rotkopf LT. Repeatability and Reproducibility of ADC Measurements and MRI Signal Intensity Measurements of Bone Marrow in Monoclonal Plasma Cell Disorders: A Prospective Bi-institutional Multiscanner, Multiprotocol Study. Invest Radiol 2022; 57:272-281. [PMID: 34839306 DOI: 10.1097/rli.0000000000000838] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVES Apparent diffusion coefficient (ADC) and signal intensity (SI) measurements play an increasing role in magnetic resonance imaging (MRI) of monoclonal plasma cell disorders. The purpose of this study was to assess interrater variability, repeatability, and reproducibility of ADC and SI measurements from bone marrow (BM) under variation of MRI protocols and scanners. PATIENTS AND METHODS Fifty-five patients with suspected or confirmed monoclonal plasma cell disorder were prospectively included in this institutional review board-approved study and underwent several measurements after the standard clinical whole-body MR scan, including repeated scan after repositioning, scan with a second MRI protocol, scan at a second 1.5 T scanner with a harmonized MRI protocol, and scan at a 3 T scanner. For T1-weighted, T2-weighted STIR, B800 images, and ADC maps, regions of interest were placed in the BM of the iliac crest and sacral bone, and in muscle tissue for image normalization. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. RESULTS Interrater variability and repeatability experiments showed a maximal relative bias of -0.077 and a maximal coefficient of variation of 16.2% for all sequences. Although the deviations at the second 1.5 T scanner with harmonized MRI protocol to the first 1.5 T scanner showed a maximal relative bias of 0.124 for all sequences, the variation of the MRI protocol and scan at the 3 T scanner led to large relative biases of up to -0.357 and -0.526, respectively. When comparing the 3 T scanner to the 1.5 T scanner, normalization to muscle reduced the bias of T1-weighted and T2-weighted sequences, but not of ADC maps. CONCLUSIONS The MRI scanners with identical field strength and harmonized MRI protocols can provide relatively stable quantitative measurements of BM ADC and SI. Deviations in MRI field strength and MRI protocol should be avoided when applying ADC cutoff values, which were established at other scanners or when performing multicentric imaging trials.
Collapse
Affiliation(s)
- Markus Wennmann
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | - Heidi Thierjung
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | | | - Vivienn Weru
- Division of Biostatistics, German Cancer Research Center (DKFZ)
| | | | - Martin Grözinger
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | - Regula Gnirs
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | - Sandra Sauer
- Department of Medicine V, Multiple Myeloma Section, University Hospital Heidelberg
| | | | - Niels Weinhold
- Department of Medicine V, Multiple Myeloma Section, University Hospital Heidelberg
| | - David Bonekamp
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | | | - Tim Frederik Weber
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Delorme
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | | |
Collapse
|
10
|
Kazama T, Takahara T, Hashimoto J. Breast Cancer Subtypes and Quantitative Magnetic Resonance Imaging: A Systemic Review. Life (Basel) 2022; 12:life12040490. [PMID: 35454981 PMCID: PMC9028183 DOI: 10.3390/life12040490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer detection. This systematic review investigated the role of quantitative MRI features in classifying molecular subtypes of breast cancer. We performed a literature search of articles published on the application of quantitative MRI features in invasive breast cancer molecular subtype classification in PubMed from 1 January 2002 to 30 September 2021. Of the 1275 studies identified, 106 studies with a total of 12,989 patients fulfilled the inclusion criteria. Bias was assessed based using the Quality Assessment of Diagnostic Studies. All studies were case-controlled and research-based. Most studies assessed quantitative MRI features using dynamic contrast-enhanced (DCE) kinetic features and apparent diffusion coefficient (ADC) values. We present a summary of the quantitative MRI features and their correlations with breast cancer subtypes. In DCE studies, conflicting results have been reported; therefore, we performed a meta-analysis. Significant differences in the time intensity curve patterns were observed between receptor statuses. In 10 studies, including a total of 1276 lesions, the pooled difference in proportions of type Ⅲ curves (wash-out) between oestrogen receptor-positive and -negative cancers was not significant (95% confidence interval (CI): [−0.10, 0.03]). In nine studies, including a total of 1070 lesions, the pooled difference in proportions of type 3 curves between human epidermal growth factor receptor 2-positive and -negative cancers was significant (95% CI: [0.01, 0.14]). In six studies including a total of 622 lesions, the pooled difference in proportions of type 3 curves between the high and low Ki-67 groups was significant (95% CI: [0.17, 0.44]). However, the type 3 curve itself is a nonspecific finding in breast cancer. Many studies have examined the relationship between mean ADC and breast cancer subtypes; however, the ADC values overlapped significantly between subtypes. The heterogeneity of ADC using kurtosis or difference, diffusion tensor imaging parameters, and relaxation time was reported recently with promising results; however, current evidence is limited, and further studies are required to explore these potential applications.
Collapse
Affiliation(s)
- Toshiki Kazama
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
- Correspondence: ; Tel.: +81-463-93-1121
| | - Taro Takahara
- Department of Biomedical Engineering, Tokai University School of Engineering, Hiratsuka 259-1207, Japan;
| | - Jun Hashimoto
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
| |
Collapse
|