1
|
Lennartz S, Zopfs D, Große Hokamp N. Dual-energy CT revisited: a focused review of clinical use cases. ROFO-FORTSCHR RONTG 2024; 196:794-806. [PMID: 38176436 DOI: 10.1055/a-2203-2945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Zopfs
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Zhu L, Dong H, Sun J, Wang L, Xing Y, Hu Y, Lu J, Yang J, Chu J, Yan C, Yuan F, Zhong J. Robustness of radiomics among photon-counting detector CT and dual-energy CT systems: a texture phantom study. Eur Radiol 2024:10.1007/s00330-024-10976-1. [PMID: 39048741 DOI: 10.1007/s00330-024-10976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES To evaluate the robustness of radiomics features among photon-counting detector CT (PCD-CT) and dual-energy CT (DECT) systems. METHODS A texture phantom consisting of twenty-eight materials was scanned with one PCD-CT and four DECT systems (dual-source, rapid kV-switching, dual-layer, and sequential scanning) at three dose levels twice. Thirty sets of virtual monochromatic images at 70 keV were reconstructed. Regions of interest were delineated for each material with a rigid registration. Ninety-three radiomics were extracted per PyRadiomics. The test-retest repeatability between repeated scans was assessed by Bland-Altman analysis. The intra-system reproducibility between dose levels, and inter-system reproducibility within the same dose level, were evaluated by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). Inter-system variability among five scanners was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). RESULTS The test-retest repeatability analysis presented that 97.1% of features were repeatable between scan-rescans. The mean ± standard deviation ICC and CCC were 0.945 ± 0.079 and 0.945 ± 0.079 for intra-system reproducibility, respectively, and 86.0% and 85.7% of features were with ICC > 0.90 and CCC > 0.90, respectively, between different dose levels. The mean ± standard deviation ICC and CCC were 0.157 ± 0.174 and 0.157 ± 0.174 for inter-system reproducibility, respectively, and none of the features were with ICC > 0.90 or CCC > 0.90 within the same dose level. The inter-system variability suggested that 6.5% and 12.8% of features were with CV < 10% and QCD < 10%, respectively, among five CT systems. CONCLUSION The radiomics features were non-reproducible with significant variability in values among different CT techniques. CLINICAL RELEVANCE STATEMENT Radiomics features are non-reproducible with significant variability in values among photon-counting detector CT and dual-energy CT systems, necessitating careful attention to improve the cross-system generalizability of radiomic features before implementation of radiomics analysis in clinical routine. KEY POINTS CT radiomics stability should be guaranteed before the implementation in the clinical routine. Radiomics robustness was on a low level among photon-counting detectors and dual-energy CT techniques. Limited inter-system robustness of radiomic features may impact the generalizability of models.
Collapse
Affiliation(s)
- Lan Zhu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Jingshen Chu
- Department of Science and Technology Development, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Yan
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
3
|
Bellin MF, Valente C, Bekdache O, Maxwell F, Balasa C, Savignac A, Meyrignac O. Update on Renal Cell Carcinoma Diagnosis with Novel Imaging Approaches. Cancers (Basel) 2024; 16:1926. [PMID: 38792005 PMCID: PMC11120239 DOI: 10.3390/cancers16101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights recent advances in renal cell carcinoma (RCC) imaging. It begins with dual-energy computed tomography (DECT), which has demonstrated a high diagnostic accuracy in the evaluation of renal masses. Several studies have suggested the potential benefits of iodine quantification, particularly for distinguishing low-attenuation, true enhancing solid masses from hyperdense cysts. By determining whether or not a renal mass is present, DECT could avoid the need for additional imaging studies, thereby reducing healthcare costs. DECT can also provide virtual unenhanced images, helping to reduce radiation exposure. The review then provides an update focusing on the advantages of multiparametric magnetic resonance (MR) imaging performance in the histological subtyping of RCC and in the differentiation of benign from malignant renal masses. A proposed standardized stepwise reading of images helps to identify clear cell RCC and papillary RCC with a high accuracy. Contrast-enhanced ultrasound may represent a promising diagnostic tool for the characterization of solid and cystic renal masses. Several combined pharmaceutical imaging strategies using both sestamibi and PSMA offer new opportunities in the diagnosis and staging of RCC, but their role in risk stratification needs to be evaluated. Although radiomics and tumor texture analysis are hampered by poor reproducibility and need standardization, they show promise in identifying new biomarkers for predicting tumor histology, clinical outcomes, overall survival, and the response to therapy. They have a wide range of potential applications but are still in the research phase. Artificial intelligence (AI) has shown encouraging results in tumor classification, grade, and prognosis. It is expected to play an important role in assessing the treatment response and advancing personalized medicine. The review then focuses on recently updated algorithms and guidelines. The Bosniak classification version 2019 incorporates MRI, precisely defines previously vague imaging terms, and allows a greater proportion of masses to be placed in lower-risk classes. Recent studies have reported an improved specificity of the higher-risk categories and better inter-reader agreement. The clear cell likelihood score, which adds standardization to the characterization of solid renal masses on MRI, has been validated in recent studies with high interobserver agreement. Finally, the review discusses the key imaging implications of the 2017 AUA guidelines for renal masses and localized renal cancer.
Collapse
Affiliation(s)
- Marie-France Bellin
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
- Faculté de Médecine, University of Paris-Saclay, 63 Rue Gabriel Péri, 94276 Le Kremlin-Bicêtre, France
- BioMaps, UMR1281 INSERM, CEA, CNRS, University of Paris-Saclay, 94805 Villejuif, France
| | - Catarina Valente
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
| | - Omar Bekdache
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
| | - Florian Maxwell
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
| | - Cristina Balasa
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
| | - Alexia Savignac
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
| | - Olivier Meyrignac
- Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre AP-HP, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; (C.V.); (O.B.); (F.M.); (A.S.); (O.M.)
- Faculté de Médecine, University of Paris-Saclay, 63 Rue Gabriel Péri, 94276 Le Kremlin-Bicêtre, France
- BioMaps, UMR1281 INSERM, CEA, CNRS, University of Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
4
|
Zhu L, Wang F, Wang H, Zhang J, Xie A, Pei J, Zhou J, Liu H. Liver fat volume fraction measurements based on multi-material decomposition algorithm in patients with nonalcoholic fatty liver disease: the influences of blood vessel, location, and iodine contrast. BMC Med Imaging 2024; 24:37. [PMID: 38326746 PMCID: PMC10848342 DOI: 10.1186/s12880-024-01215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND In recent years, spectral CT-derived liver fat quantification method named multi-material decomposition (MMD) is playing an increasingly important role as an imaging biomarker of hepatic steatosis. However, there are various measurement ways with various results among different researches, and the impact of measurement methods on the research results is unknown. The aim of this study is to evaluate the reproducibility of liver fat volume fraction (FVF) using MMD algorithm in nonalcoholic fatty liver disease (NAFLD) patients when taking blood vessel, location, and iodine contrast into account during measurement. METHODS This retrospective study was approved by the institutional ethics committee, and the requirement for informed consent was waived because of the retrospective nature of the study. 101 patients with NAFLD were enrolled in this study. Participants underwent non-contrast phase (NCP) and two-phase enhanced CT scanning (late arterial phase (LAP) and portal vein phase (PVP)) with spectral mode. Regions of interest (ROIs) were placed at right posterior lobe (RPL), right anterior lobe (RAL) and left lateral lobe (LLL) to obtain FVF values on liver fat images without and with the reference of enhanced CT images. The differences of FVF values measured under different conditions (ROI locations, with/without enhancement reference, NCP and enhanced phases) were compared. Friedman test was used to compare FVF values among three phases for each lobe, while the consistency of FVF values was assessed between each two phases using Bland-Altman analysis. RESULTS Significant difference was found between FVF values obtained without and with the reference of enhanced CT images. There was no significant difference about FVF values obtained from NCP images under the reference of enhanced CT images between any two lobes or among three lobes. The FVF value increased after the contrast injection, and there were significant differences in the FVF values among three scanning phases. Poor consistencies of FVF values between each two phases were found in each lobe by Bland-Altman analysis. CONCLUSION MMD algorithm quantifying hepatic fat was reproducible among different lobes, while was influenced by blood vessel and iodine contrast.
Collapse
Affiliation(s)
- Liuhong Zhu
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, Fujian, China
- Xiamen Radiological Control Center, Xiamen, Fujian, China
| | - Funan Wang
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, Fujian, China
| | - Heqing Wang
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, Fujian, China
| | - Jinhui Zhang
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
| | - Anjie Xie
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
| | - Jinkui Pei
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China.
- Department of Radiology, Zhongshan Hospital Fudan University, Fenglin Road No.180, Xuhui District, Shanghai, 200032, China.
| | - Hao Liu
- Department of Radiology, Zhongshan Hospital Fudan University, Fenglin Road No.180, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
5
|
Virarkar MK, Mileto A, Vulasala SSR, Ananthakrishnan L, Bhosale P. Dual-Energy Computed Tomography Applications in the Genitourinary Tract. Radiol Clin North Am 2023; 61:1051-1068. [PMID: 37758356 DOI: 10.1016/j.rcl.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
By virtue of material differentiation capabilities afforded through dedicated postprocessing algorithms, dual-energy CT (DECT) has been shown to provide benefit in the evaluation of various diseases. In this article, we review the diagnostic use of DECT in the assessment of genitourinary diseases, with emphasis on its role in renal stone characterization, incidental renal and adrenal lesion characterization, retroperitoneal trauma, reduction of radiation, and contrast dose and cost-effectiveness potential. We also discuss future perspectives of the DECT scanning mode, including the use of novel contrast injection strategies and photon-counting detector computed tomography.
Collapse
Affiliation(s)
- Mayur K Virarkar
- Department of Radiology, University of Florida College of Medicine, Clinical Center, C90, 2nd Floor, 655 West 8th Street, Jacksonville, FL 32209, USA
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, Mayo Building West, 2nd Floor, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sai Swarupa R Vulasala
- Department of radiology, University of Florida College of Medicine, Clinical Center, C90, 2nd Floor, 655 West 8th Street, Jacksonville, FL, 32209, USA.
| | - Lakshmi Ananthakrishnan
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Priya Bhosale
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1479, Houston, TX 77030, USA
| |
Collapse
|
6
|
Chung R, Dane B, Yeh BM, Morgan DE, Sahani DV, Kambadakone A. Dual-Energy Computed Tomography: Technological Considerations. Radiol Clin North Am 2023; 61:945-961. [PMID: 37758362 DOI: 10.1016/j.rcl.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Compared to conventional single-energy CT (SECT), dual-energy CT (DECT) provides additional information to better characterize imaged tissues. Approaches to DECT acquisition vary by vendor and include source-based and detector-based systems, each with its own advantages and disadvantages. Despite the different approaches to DECT acquisition, the most utilized DECT images include routine SECT equivalent, virtual monoenergetic, material density (eg, iodine map), and virtual non-contrast images. These images are generated either through reconstructions in the projection or image domains. Designing and implementing an optimal DECT workflow into routine clinical practice depends on radiologist and technologist input with special considerations including appropriate patient and protocol selection and workflow automation. In addition to better tissue characterization, DECT provides numerous advantages over SECT such as the characterization of incidental findings and dose reduction in radiation and iodinated contrast.
Collapse
Affiliation(s)
- Ryan Chung
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA 02114, USA.
| | - Bari Dane
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY 10016, USA
| | - Benjamin M Yeh
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, 505 Parnassus Avenue, M391, Box 0628, San Francisco, CA 94143-0628, USA
| | - Desiree E Morgan
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street, South JTN 456, Birmingham, AL 35249-6830, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, RR220, Seattle, WA 98112, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA 02114, USA
| |
Collapse
|
7
|
Liang H, Du S, Yan G, Zhou Y, Yang T, Zhang Z, Luo C, Liao H, Li Y. Dual-energy CT of the pancreas: comparison between virtual non-contrast images and true non-contrast images in the detection of pancreatic lesion. Abdom Radiol (NY) 2023; 48:2596-2603. [PMID: 37210407 DOI: 10.1007/s00261-023-03914-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE To evaluate the image quality and diagnostic performance for pancreatic lesion between true non-contrast (TNC) and virtual non-contrast (VNC) images obtained from the dual-energy computed tomography (DECT). METHODS One hundred six patients with pancreatic mass underwent contrast-enhanced DECT examinations were retrospectively included in this study. VNC images of the abdomen were generated from late arterial (aVNC) and portal (pVNC) phases. For quantitative analysis, the attenuation differences and reproducibility of abdominal organs were compared between TNC and aVNC/pVNC measurements. Qualitatively image quality was assessed by two radiologists using a five-point scale, and they independently compared the detection accuracy of pancreatic lesions between TNC and aVNC/pVNC images. The volume CT dose index (CTDIvol) and size-specific dose estimates (SSDE) were recorded to evaluate the potential dose reduction when using VNC reconstruction to replace the unenhanced phase. RESULTS A total of 78.38% (765/976) of the attenuation measurement pairs were reproducible between TNC and aVNC images, and 71.0% (693/976) between TNC and pVNC images. In triphasic examinations, a total of 108 pancreatic lesions were found in 106 patients, and no significant difference in detection accuracy was found between TNC and VNC images (p = 0.587-0.957). Qualitatively, image quality was rated diagnostic (score ≥ 3) in all the VNC images. Calculated CTDIvol and SSDE reduction of about 34% could be achieved by omitting the non-contrast phase. CONCLUSION VNC images of DECT provide diagnostic image quality and accurate pancreatic lesions detection, which are a promising alternative to unenhanced phase with a substantial reduction of radiation exposure in clinical routine.
Collapse
Affiliation(s)
- Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Silin Du
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Gaowu Yan
- Department of Radiology, Suining Central Hospital, Suining, 629000, China
| | - Yang Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tianyu Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhiwei Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Chenyi Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Hongfan Liao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
8
|
Guerrini S, Bagnacci G, Perrella A, Meglio ND, Sica C, Mazzei MA. Dual Energy CT in Oncology: Benefits for Both Patients and Radiologists From an Emerging Quantitative and Functional Diagnostic Technique. Semin Ultrasound CT MR 2023; 44:205-213. [PMID: 37245885 DOI: 10.1053/j.sult.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Dual-energy CT (DECT) imaging makes it possible to identify the characteristics of materials that cannot be recognized with conventional single-energy CT (SECT). In the postprocessing study phase, virtual monochromatic images and virtual-non-contrast (VNC) images, also permits reduction of dose exposure by eliminating the precontrast acquisition scan. Moreover, in virtual monochromatic images, the iodine contrast increases when the energy level decreases resulting in better visualization of hypervascular lesions and in a better tissue contrast between hypovascular lesions and the surrounding parenchyma; thus, allowing for reduction of required iodinate contrast material, especially important in patients with renal impairment. All these advantages are particularly important in oncology, providing the possibility of overcoming many SECT imaging limits and making CT examinations safer and more feasible in critical patients. This review explores the basis of DECT imaging and its utility in routine oncologic clinical practice, with particular attention to the benefits of this technique for both the patients and the radiologists.
Collapse
Affiliation(s)
- Susanna Guerrini
- Unit of Diagnostic Imaging, Department of Medical Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, Siena, Italy.
| | - Giulio Bagnacci
- Diagnostic Imaging Unit, Department of Diagnostic Imaging, Azienda USL-Toscana Sud-Est, Poggibonsi, Valdelsa, Italy
| | - Armando Perrella
- Diagnostic Imaging Unit, Department of Diagnostic Imaging, Azienda USL-Toscana Sud-Est, Grosseto, Italy
| | - Nunzia Di Meglio
- Unit of Diagnostic Imaging, Department of Medical Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Cristian Sica
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Medical Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Medical Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| |
Collapse
|
9
|
Zhong J, Pan Z, Chen Y, Wang L, Xia Y, Wang L, Li J, Lu W, Shi X, Feng J, Yan F, Zhang H, Yao W. Robustness of radiomics features of virtual unenhanced and virtual monoenergetic images in dual-energy CT among different imaging platforms and potential role of CT number variability. Insights Imaging 2023; 14:79. [PMID: 37166511 PMCID: PMC10175529 DOI: 10.1186/s13244-023-01426-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023] Open
Abstract
OBJECTIVES To evaluate robustness of dual-energy CT (DECT) radiomics features of virtual unenhanced (VUE) image and virtual monoenergetic image (VMI) among different imaging platforms. METHODS A phantom with sixteen clinical-relevant densities was scanned on ten DECT platforms with comparable scan parameters. Ninety-four radiomic features were extracted via Pyradiomics from VUE images and VMIs at energy level of 70 keV (VMI70keV). Test-retest repeatability was assessed by Bland-Altman analysis. Inter-platform reproducibility of VUE images and VMI70keV was evaluated by coefficient of variation (CV) and quartile coefficient of dispersion (QCD) among platforms, and by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC) between platform pairs. The correlation between variability of CT number radiomics reproducibility was estimated. RESULTS 92.02% and 92.87% of features were repeatable between scan-rescans for VUE images and VMI70keV, respectively. Among platforms, 11.30% and 28.39% features of VUE images, and 15.16% and 28.99% features of VMI70keV were with CV < 10% and QCD < 10%. The average percentages of radiomics features with ICC > 0.90 and CCC > 0.90 between platform pairs were 10.00% and 9.86% in VUE images and 11.23% and 11.23% in VMI70keV. The CT number inter-platform reproducibility using CV and QCD showed negative correlations with percentage of the first-order radiomics features with CV < 10% and QCD < 10%, in both VUE images and VMI70keV (r2 0.3870-0.6178, all p < 0.001). CONCLUSIONS The majority of DECT radiomics features were non-reproducible. The differences in CT number were considered as an indicator of inter-platform DECT radiomics variation. Critical relevance statement: The majority of radiomics features extracted from the VUE images and the VMI70keV were non-reproducible among platforms, while synchronizing energy levels of VMI to reduce the CT number value variability may be a potential way to mitigate radiomics instability.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zilai Pan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Jianxing Feng
- Haohua Technology Co., Ltd., Shanghai, 201100, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
10
|
Sartoretti T, Mergen V, Jungblut L, Alkadhi H, Euler A. Liver Iodine Quantification With Photon-Counting Detector CT: Accuracy in an Abdominal Phantom and Feasibility in Patients. Acad Radiol 2023; 30:461-469. [PMID: 35644755 DOI: 10.1016/j.acra.2022.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/25/2023]
Abstract
RATIONALE AND OBJECTIVES To compare the accuracy of iodine quantification in liver parenchyma and lesions between dual-source photon-counting detector CT (PCD-CT) and dual-source energy-integrating detector CT (EID-CT) in a phantom and to demonstrate the feasibility of iodine quantification with PCD-CT in liver parenchyma and lesions in patients. MATERIALS AND METHODS An anthropomorphic abdominal phantom with a liver insert containing parenchyma and lesions was imaged on a clinical PCD-CT at 120kV and in the dual-energy mode on an EID-CT with kV-combinations of 80/Sn150kV, 90/Sn150kV, and 100/Sn150kV. Three patient sizes were imaged at three different radiation doses (CTDIvol: 5, 10, 15mGy). Thirty patients with liver cysts, hemangiomas or metastases imaged with PCD-CT were retrospectively included. Iodine maps were reconstructed and iodine concentrations were measured in liver parenchyma and lesions. For the phantom, iodine error was quantified as the absolute difference to the vendor's specifications as reference. RESULTS Overall iodine error was 0.33 ± 0.29, 0.34 ± 0.32, 0.39 ± 0.37, 0.35 ± 0.39 mgI/mL for 80/Sn150kV, 90/Sn150kV, 100/Sn150kV of EID-CT, and PCD-CT, respectively, without significant differences between PCD-CT and EID-CT (p > 0.05). Radiation dose did not significantly influence error of PCD-CT (p > 0.05) nor EID-CT (p > 0.05). For both scanners, smaller patient sizes were associated with lower errors (p < 0.05). Iodine concentration and base material attenuation significantly influenced quantification for EID-CT (p < 0.05) but not PCD-CT (p > 0.05). In patients, iodine quantification was feasible in liver parenchyma, cysts, hemangiomas, and metastases. CONCLUSION Iodine quantification with PCD-CT is accurate in simulated liver parenchyma and lesions irrespective of radiation dose, iodine concentration, and base attenuation and is feasible in common liver lesions in patients.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-809, Zurich, Switzerland
| | - Victor Mergen
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-809, Zurich, Switzerland
| | - Lisa Jungblut
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-809, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-809, Zurich, Switzerland
| | - André Euler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-809, Zurich, Switzerland.
| |
Collapse
|
11
|
Cao J, Lennartz S, Pisuchpen N, Mroueh N, Kongboonvijit S, Parakh A, Sahani DV, Kambadakone A. Renal Lesion Characterization by Dual-Layer Dual-Energy CT: Comparison of Virtual and True Unenhanced Images. AJR Am J Roentgenol 2022; 219:614-623. [PMID: 35441533 DOI: 10.2214/ajr.21.27272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND. Prior studies have provided mixed results for the ability to replace true unenhanced (TUE) images with virtual unenhanced (VUE) images when characterizing renal lesions by dual-energy CT (DECT). Detector-based dual-layer DECT (dlDECT) systems may optimize performance of VUE images for this purpose. OBJECTIVE. The purpose of this article was to compare dual-phase dlDECT examinations evaluated using VUE and TUE images in differentiating cystic and solid renal masses. METHODS. This retrospective study included 110 patients (mean age, 64.3 ± 11.8 years; 46 women, 64 men) who underwent renal-mass protocol dlDECT between July 2018 and February 2022. TUE, VUE, and nephrographic phase image sets were reconstructed. Lesions were diagnosed as solid masses by histopathology or MRI. Lesions were diagnosed as cysts by composite criteria reflecting findings from MRI, ultrasound, and the TUE and nephrographic phase images of the dlDECT examinations. One radiologist measured lesions' attenuation on all dlDECT image sets. Lesion characterization was compared between use of VUE and TUE images, including when considering enhancement of 20 HU or greater to indicate presence of a solid mass. RESULTS. The analysis included 219 lesions (33 solid masses; 186 cysts [132 simple, 20 septate, 34 hyperattenuating]). TUE and VUE attenuation were significantly different for solid masses (33.4 ± 7.1 HU vs 35.4 ± 8.6 HU, p = .002), simple cysts (10.8 ± 5.6 HU vs 7.1 ± 8.1 HU, p < .001), and hyperattenuating cysts (56.3 ± 21.0 HU vs 47.6 ± 16.3 HU, p < .001), but not septate cysts (13.6 ± 8.1 HU vs 14.0 ± 6.8 HU, p = .79). Frequency of enhancement 20 HU or greater when using TUE and VUE images was 90.9% and 90.9% in solid masses, 0.0% and 9.1% in simple cysts, 15.0% and 10.0% in septate cysts, and 11.8% and 38.2% in hyperattenuating cysts. All solid lesions were concordant in terms of enhancement 20 HU or greater when using TUE and VUE images. Twelve simple cysts and nine hyperattenuating cysts showed enhancement of 20 HU or greater when using VUE but not TUE images. CONCLUSION. Use of VUE images reliably detected enhancement in solid masses. However, VUE images underestimated attenuation of simple and hyperattenuating cysts, leading to false-positive findings of enhancement by such lesions. CLINICAL IMPACT. The findings do not support replacement of TUE acquisitions with VUE images when characterizing renal lesions by dlDECT.
Collapse
Affiliation(s)
- Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
| | - Simon Lennartz
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
- Institute for Diagnostic and Interventional Radiology, University Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nisanard Pisuchpen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nayla Mroueh
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
| | - Sasiprang Kongboonvijit
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anushri Parakh
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
| | | | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA 02114-2696
| |
Collapse
|
12
|
Virtual non-contrast reconstructions improve differentiation between vascular enhancement and calcifications in stereotactic planning CT scans of cystic intracranial tumors. Eur J Radiol 2022; 157:110583. [DOI: 10.1016/j.ejrad.2022.110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
|
13
|
Cao J, Lennartz S, Pisuchpen N, Parakh A, Kambadakone A. Attenuation values on virtual unenhanced images obtained with detector-based dual-energy computed tomography: observations on single- and split-bolus contrast protocols. Abdom Radiol (NY) 2022; 47:3019-3027. [PMID: 34687325 DOI: 10.1007/s00261-021-03273-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To compare virtual unenhanced (VUE) attenuation values and their agreement with true unenhanced (TUE) images in patients who underwent dual-layer detector-based dual-energy computed tomography (dlDECT) with single- vs. split-bolus contrast media protocol. METHODS In this HIPAA-compliant, IRB-approved retrospective analysis, a total of 105 patients who underwent nephrographic phase (NP) dlDECT between 07/2018 and 11/2019 were included: 55 patients received single bolus and 50 patients split-bolus examinations. Both scan protocols comprised a TUE and 120-kVp NP acquisition from which VUE images were reconstructed. A radiologist performed ROI-based attenuation measurements of liver parenchyma, main portal vein, aorta, spleen, renal parenchyma, and pelvis on TUE and VUE images. Agreement between TUE and VUE images was determined and compared for both protocols and each anatomic region. RESULTS VUE attenuation was significantly higher than TUE attenuation in both cohorts in the liver, portal vein, spleen, and renal parenchyma (p < 0.05), while it was similar in the abdominal aorta in both cohorts (p = 0.05, 0.7522, respectively). VUE attenuation was significantly higher than TUE attenuation in the renal pelvis of the split-bolus cohort (p < 0.05). When comparing VUE images between single- and split-bolus protocols, the renal parenchyma yielded a significantly higher VUE attenuation in the single-bolus cohort (single bolus: 38.8 ± 3.3 HU vs. split bolus: 36.8 ± 3.6 HU; p < 0.05), whereas the split-bolus cohort revealed markedly higher VUE attenuation in the renal pelvis (single bolus: 2.3 ± 10.8 HU vs. split bolus: 92.3 ± 76.8; p < 0.05). Mean intra-patient differences between TUE and VUE images were comparable between single- and split-bolus cohorts (p-range 0.09-0.35) except for the renal parenchyma and pelvis: in the first, the single-bolus cohort yielded a higher VUE attenuation, while in the second, attenuation was significantly higher in the split-bolus cohort (p < 0.05). CONCLUSION VUE attenuation overestimated TUE attenuation and differed between split- and single-bolus protocols for the renal parenchyma and pelvis, while all other tissues showed comparable VUE attenuation.
Collapse
Affiliation(s)
- Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Simon Lennartz
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Nisanard Pisuchpen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anushri Parakh
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA.
| |
Collapse
|
14
|
Molwitz I, Campbell GM, Yamamura J, Knopp T, Toedter K, Fischer R, Wang ZJ, Busch A, Ozga AK, Zhang S, Lindner T, Sevecke F, Grosser M, Adam G, Szwargulski P. Fat Quantification in Dual-Layer Detector Spectral Computed Tomography: Experimental Development and First In-Patient Validation. Invest Radiol 2022; 57:463-469. [PMID: 35148536 PMCID: PMC9172900 DOI: 10.1097/rli.0000000000000858] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Fat quantification by dual-energy computed tomography (DECT) provides contrast-independent objective results, for example, on hepatic steatosis or muscle quality as parameters of prognostic relevance. To date, fat quantification has only been developed and used for source-based DECT techniques as fast kVp-switching CT or dual-source CT, which require a prospective selection of the dual-energy imaging mode.It was the purpose of this study to develop a material decomposition algorithm for fat quantification in phantoms and validate it in vivo for patient liver and skeletal muscle using a dual-layer detector-based spectral CT (dlsCT), which automatically generates spectral information with every scan. MATERIALS AND METHODS For this feasibility study, phantoms were created with 0%, 5%, 10%, 25%, and 40% fat and 0, 4.9, and 7.0 mg/mL iodine, respectively. Phantom scans were performed with the IQon spectral CT (Philips, the Netherlands) at 120 kV and 140 kV and 3 T magnetic resonance (MR) (Philips, the Netherlands) chemical-shift relaxometry (MRR) and MR spectroscopy (MRS). Based on maps of the photoelectric effect and Compton scattering, 3-material decomposition was done for fat, iodine, and phantom material in the image space.After written consent, 10 patients (mean age, 55 ± 18 years; 6 men) in need of a CT staging were prospectively included. All patients received contrast-enhanced abdominal dlsCT scans at 120 kV and MR imaging scans for MRR. As reference tissue for the liver and the skeletal muscle, retrospectively available non-contrast-enhanced spectral CT data sets were used. Agreement between dlsCT and MR was evaluated for the phantoms, 3 hepatic and 2 muscular regions of interest per patient by intraclass correlation coefficients (ICCs) and Bland-Altman analyses. RESULTS The ICC was excellent in the phantoms for both 120 kV and 140 kV (dlsCT vs MRR 0.98 [95% confidence interval (CI), 0.94-0.99]; dlsCT vs MRS 0.96 [95% CI, 0.87-0.99]) and in the skeletal muscle (0.96 [95% CI, 0.89-0.98]). For log-transformed liver fat values, the ICC was moderate (0.75 [95% CI, 0.48-0.88]). Bland-Altman analysis yielded a mean difference of -0.7% (95% CI, -4.5 to 3.1) for the liver and of 0.5% (95% CI, -4.3 to 5.3) for the skeletal muscle. Interobserver and intraobserver agreement were excellent (>0.9). CONCLUSIONS Fat quantification was developed for dlsCT and agreement with MR techniques demonstrated for patient liver and muscle. Hepatic steatosis and myosteatosis can be detected in dlsCT scans from clinical routine, which retrospectively provide spectral information independent of the imaging mode.
Collapse
Affiliation(s)
- Isabel Molwitz
- From the Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf
| | | | - Jin Yamamura
- From the Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf
| | - Tobias Knopp
- Institute for Biomedical Imaging, Technical University Hamburg, Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf
| | - Klaus Toedter
- Institute of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Fischer
- From the Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf
- Hematology and Oncology Department, UCSF Benioff Children’s Hospital Oakland, Oakland, CA
| | - Zhiyue Jerry Wang
- Department of Radiology, Children's Health, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Alina Busch
- Center for Oncology, 2nd Medical Clinic and Polyclinic
| | - Ann-Kathrin Ozga
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuo Zhang
- Clinical Science, Philips GmbH Market DACH
| | - Thomas Lindner
- From the Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf
| | - Florian Sevecke
- Institute for Biomedical Imaging, Technical University Hamburg, Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf
| | - Mirco Grosser
- Institute for Biomedical Imaging, Technical University Hamburg, Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf
| | - Gerhard Adam
- From the Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf
| | - Patryk Szwargulski
- Institute for Biomedical Imaging, Technical University Hamburg, Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf
| |
Collapse
|
15
|
Lennartz S, Hokamp NG, Kambadakone A. Dual-Energy CT of the Abdomen: Radiology In Training. Radiology 2022; 305:19-27. [PMID: 35727149 DOI: 10.1148/radiol.212914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A 61-year-old man with an esophageal cancer diagnosis underwent staging dual-energy CT of the chest and abdomen in the portal venous phase after contrast media administration. Aside from the primary tumor and suspicious local lymph nodes, CT revealed hypoattenuating ambiguous liver lesions, an incidental right adrenal nodule, and a right renal lesion with soft-tissue attenuation. In addition, advanced atherosclerosis of the abdominal aorta and its major branches was noted. This article provides a case-based review of dual-energy CT technologies and their applications in the abdomen. The clinical utility of virtual monoenergetic images, virtual unenhanced images, and iodine maps is discussed.
Collapse
Affiliation(s)
- Simon Lennartz
- From the Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937 Cologne, Germany (S.L., N.G.H.); and Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, Mass (A.K.)
| | - Nils Große Hokamp
- From the Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937 Cologne, Germany (S.L., N.G.H.); and Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, Mass (A.K.)
| | - Avinash Kambadakone
- From the Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937 Cologne, Germany (S.L., N.G.H.); and Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, Mass (A.K.)
| |
Collapse
|