1
|
Devkota L, Bhavane R, Badea CT, Tanifum EA, Annapragada AV, Ghaghada KB. Nanoparticle Contrast Agents for Photon-Counting Computed Tomography: Recent Developments and Future Opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70004. [PMID: 39948059 PMCID: PMC11874078 DOI: 10.1002/wnan.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 03/05/2025]
Abstract
The clinical availability of photon-counting computed tomography (PCCT) has ushered in a new era of CT imaging. Spectral imaging coupled with superior contrast resolution, and ultrahigh spatial resolution (200 μm) offered by PCCT has the potential to revolutionize value-driven imaging. The potential of multicolor PCCT has generated excitement, and renewed interest, in novel contrast agent development for comprehensive disease interrogation, prediction and monitoring of treatment outcomes. Nanoparticles provide a versatile and powerful platform for the development of next generation contrast agents for spectral PCCT. In this article, we review recent developments and use of nanoparticle contrast agents for PCCT. We also discuss future research and translational opportunities for nanoparticle-based CT contrast agents enabled by the advent of PCCT and describe key considerations for their clinical translation.
Collapse
Affiliation(s)
- Laxman Devkota
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Rohan Bhavane
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Eric A. Tanifum
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Ananth V. Annapragada
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
2
|
Fahrni G, Boccalini S, Lacombe H, de Oliveira F, Houmeau A, Francart F, Villien M, Rotzinger DC, Robert A, Douek P, Si-Mohamed SA. Ultra-high-resolution 40 keV virtual monoenergetic imaging using spectral photon-counting CT in high-risk patients for coronary stenoses. Eur Radiol 2024:10.1007/s00330-024-11237-x. [PMID: 39661149 DOI: 10.1007/s00330-024-11237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES To assess the image quality of ultra-high-resolution (UHR) virtual monoenergetic images (VMIs) at 40 keV compared to 70 keV, using spectral photon-counting CT (SPCCT) and dual-layer dual-energy CT (DECT) for coronary computed tomography angiography (CCTA). METHODS AND MATERIALS In this prospective IRB-approved study, 26 high-risk patients were included. CCTA was performed both with an SPCCT in UHR mode and with one of two DECT scanners (iQOn or CT7500) within 3 days. 40 keV and 70 keV VMIs were reconstructed for both modalities. Stenoses, blooming artefacts, and image quality were compared between all four reconstructions. RESULTS Twenty-six patients (4 women [15%]) and 28 coronary stenoses (mean stenosis of 56% ± 16%) were included. 40 keV SPCCT gave an overall higher quality score (5 [5, 5]) than 70 keV SPCCT (5 [4, 5], 40 keV DECT (4 [3, 4]) and 70 keV SPCCT (4 [4, 5]), p < 0.001). Less variability in stenosis measurement was found with SPCCT between 40 keV and 70 keV (bias: -1% ± 3%, LoA: 6%) compared with DECT (-6% ± 8%, LoA 16%). 40 keV SPCCT vs 40 keV DECT showed a -3% ± 6% bias, whereas 40 keV SPCCT vs 70 keV DECT showed a -8% ± 6% bias. From 70 keV to 40 keV, blooming artefacts did not increase with SPCCT (mean +2% ± 5%, p = 0.136) whereas they increased with DECT (mean +7% ± 6%, p = 0.005). CONCLUSION UHR 40 keV SPCCT VMIs outperformed 40 keV and 70 keV DECT VMIs for assessing coronary artery stenoses, with no impairment compared to 70 keV SPCCT VMIs. KEY POINTS Question Use of low virtual mono-energetic images at 40 keV using spectral dual-energy and photon-counting CT systems is not yet established for diagnosing coronary artery stenosis. Findings UHR 40 keV SPCCT enhances diagnostic accuracy in coronary artery assessment. Clinical relevance By combining spectral sensitivity with lower virtual mono-energetic imaging and ultra-high spatial resolution, SPCCT enhances coronary artery assessment, potentially leading to more accurate diagnoses and better patient outcomes in cardiovascular imaging.
Collapse
Affiliation(s)
- Guillaume Fahrni
- Department of Diagnostic and Interventional Radiology, Cardiothoracic and Vascular Division, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
- Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Sara Boccalini
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
- Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Hugo Lacombe
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
- Philips Healthcare, Suresnes, France
| | - Fabien de Oliveira
- Department of Radiology, CHU Nîmes, University Montpellier, Medical Imaging Group Nîmes, Nîmes, France
| | - Angèle Houmeau
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
| | - Florie Francart
- Department of Radiology, CHU Nîmes, University Montpellier, Medical Imaging Group Nîmes, Nîmes, France
| | | | - David C Rotzinger
- Department of Diagnostic and Interventional Radiology, Cardiothoracic and Vascular Division, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antoine Robert
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
| | - Philippe Douek
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France
- Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Salim A Si-Mohamed
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France.
- Department of Cardiovascular and Thoracic Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France.
| |
Collapse
|
3
|
Kravchenko D, Layer YC, Vecsey-Nagy M, Tremamunno G, Varga-Szemes A, Schlett CL, Bamberg F, Emrich T, Hagar MT. [Photon-counting detector computed tomography : Paradigm shift in cardiac CT imaging]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:928-934. [PMID: 39400752 DOI: 10.1007/s00117-024-01380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The introduction of photon-counting detector computed tomography (PCD-CT) heralds a new generation of cardiac imaging. OBJECTIVES This review discusses the current scientific literature to determine the incremental value of PCD-CT in cardiac imaging. METHODS Discussion of currently available literature regarding cardiac PCD-CT from a radiological perspective. RESULTS Since its market introduction in 2021, numerous studies have explored the advantages of this new technology in the field of cardiac imaging, including improved image quality through superior spatial resolution, a higher contrast-to-noise ratio, reduced artifacts, and lower radiation dose. CONCLUSION While preliminary studies have been promising, it remains to be seen how the advantages of PCD-CT will affect clinical guidelines for cardiac CT.
Collapse
Affiliation(s)
- Dmitrij Kravchenko
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Deutschland
- Quantitative Imaging Laboratory Bonn (QILaB), Bonn, Deutschland
| | - Yannik Christian Layer
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Deutschland
| | - Milan Vecsey-Nagy
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
- Heart and Vascular Center, Semmelweis University, Budapest, Ungarn
| | - Giuseppe Tremamunno
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Radiology Unit - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italien
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg im Breisgau, Deutschland
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg im Breisgau, Deutschland
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA.
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Universitatsmedizin der Johannes Gutenberg-Universitat Mainz, 55131, Mainz, Deutschland.
- Partner site Rhine-Main, German Centre for Cardiovascular Research, Mainz, Deutschland.
| | - Muhammad Taha Hagar
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg im Breisgau, Deutschland
| |
Collapse
|
4
|
Kravchenko D, Gnasso C, Schoepf UJ, Vecsey-Nagy M, Tremamunno G, O'Doherty J, Zhang A, Luetkens JA, Kuetting D, Attenberger U, Schmidt B, Varga-Szemes A, Emrich T. Gadolinium-based coronary CT angiography on a clinical photon-counting-detector system: a dynamic circulating phantom study. Eur Radiol Exp 2024; 8:118. [PMID: 39422839 PMCID: PMC11489376 DOI: 10.1186/s41747-024-00501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Coronary computed tomography angiography (CCTA) offers non-invasive diagnostics of the coronary arteries. Vessel evaluation requires the administration of intravenous contrast. The purpose of this study was to evaluate the utility of gadolinium-based contrast agent (GBCA) as an alternative to iodinated contrast for CCTA on a first-generation clinical dual-source photon-counting-detector (PCD)-CT system. METHODS A dynamic circulating phantom containing a three-dimensional-printed model of the thoracic aorta and the coronary arteries were used to evaluate injection protocols using gadopentetate dimeglumine at 50%, 100%, 150%, and 200% of the maximum approved clinical dose (0.3 mmol/kg). Virtual monoenergetic image (VMI) reconstructions ranging from 40 keV to 100 keV with 5 keV increments were generated on a PCD-CT. Contrast-to-noise ratio (CNR) was calculated from attenuations measured in the aorta and coronary arteries and noise measured in the background tissue. Attenuation of at least 350 HU was deemed as diagnostic. RESULTS The highest coronary attenuation (441 ± 23 HU, mean ± standard deviation) and CNR (29.5 ± 1.5) was achieved at 40 keV and at the highest GBCA dose (200%). There was a systematic decline of attenuation and CNR with higher keV reconstructions and lower GBCA doses. Only reconstructions at 40 and 45 keV at 200% and 40 keV at 150% GBCA dose demonstrated sufficient attenuation above 350 HU. CONCLUSION Current PCD-CT protocols and settings are unsuitable for the use of GBCA for CCTA at clinically approved doses. Future advances to the PCD-CT system including a 4-threshold mode, as well as multi-material decomposition may add new opportunities for k-edge imaging of GBCA. RELEVANCE STATEMENT Patients allergic to iodine-based contrast media and the future of multicontrast CT examinations would benefit greatly from alternative contrast media, but the utility of GBCA for coronary photon-counting-dector-CT angiography remains limited without further optimization of protocols and scanner settings. KEY POINTS GBCA-enhanced coronary PCD-CT angiography is not feasible at clinically approved doses. GBCAs have potential applications for the visualization of larger vessels, such as the aorta, on PCD-CT angiography. Higher GBCA doses and lower keV reconstructions achieved higher attenuation values and CNR.
Collapse
Affiliation(s)
- Dmitrij Kravchenko
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Laboratory Bonn (QILaB), Bonn, Germany
| | - Chiara Gnasso
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Milan Vecsey-Nagy
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Giuseppe Tremamunno
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Radiology Unit-Sant'Andrea University Hospital, Rome, Italy
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Siemens Medical Solutions USA Inc, Malvern, PA, USA
| | - Andrew Zhang
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Laboratory Bonn (QILaB), Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Laboratory Bonn (QILaB), Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | | | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
5
|
Hoeijmakers EJI, Stammen L, Wildberger JE, Eijsvoogel NG, Hersbach JM, Pernot JCJG, Flohr TG, Martens B, Jeukens CRLPN. PCD-CT enables contrast media reduction in abdominal imaging compared to an individualized kV-adapted contrast media injection protocol on EID-CT. Eur J Radiol 2024; 179:111680. [PMID: 39133989 DOI: 10.1016/j.ejrad.2024.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVES This study aims to demonstrate reduced iodine contrast media (CM) in routine abdominal CT scans in portal venous phase (PVP) using a photon-counting detector CT (PCD-CT) compared to total body weight (TBW) and kV-adapted CM injection protocols on a state-of-the-art energy-integrating detector CT (EID-CT) while maintaining sufficient image quality (IQ). MATERIALS AND METHODS Consecutive contrast-enhanced abdominal PVP CT scans from an EID-CT (Nov 2022-March 2024) and a PCD-CT (Sep 2023-Dec 2023) were compared. CM parameters (total iodine load (TIL), iodine delivery rate (IDR) and dosing factor (DF)) were reported. An individualized acquisition and CM injection protocol based on TBW and kV was applied for the EID-CT and a TBW adapted CM injection protocol was used for the PCD-CT. Objective IQ was evaluated with mean attenuation (Hounsfield Units, HU), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)). Subjective IQ was assessed via a 5-point Likert scale by 2 expert readers based on diagnostic confidence. RESULTS Based on 91 EID-CT scans and 102 PCD-CT scans a TIL reduction of 20.1 % was observed for PCD-CT. PCD-CT demonstrated significantly higher SNR (9.9 ± 1.7 vs. 9.1 ± 1.8, p < 0.001) and CNR (5.1 ± 1.7 vs. 4.3 ± 1.3, p < 0.001) compared to EID-CT. Subjective IQ assessment showed that all scans had sufficient diagnostic IQ. CONCLUSIONS PCD-CT allows for CM reduction while providing higher SNR and CNR compared to EID-CT, using clinical individualized scan and CM injection protocols.
Collapse
Affiliation(s)
- Eva J I Hoeijmakers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands.
| | - Lion Stammen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands
| | - Nienke G Eijsvoogel
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands
| | - Johanna M Hersbach
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands
| | - Joey C J G Pernot
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands
| | - Thomas G Flohr
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands; Siemens Healthineers, Siemensstrasse 1, 91301 Forcheim, Germany
| | - Bibi Martens
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands; GROW-School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Cécile R L P N Jeukens
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands
| |
Collapse
|
6
|
McDermott MC, Sartoretti T, Stammen L, Martens B, Jost G, Pietsch H, Gutjahr R, Schmidt B, Flohr TG, Alkadhi H, Wildberger JE. Countering Calcium Blooming With Personalized Contrast Media Injection Protocols: The 1-2-3 Rule for Photon-Counting Detector CCTA. Invest Radiol 2024; 59:684-690. [PMID: 38742928 PMCID: PMC11460796 DOI: 10.1097/rli.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/10/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Photon-counting detector computed tomography (PCD-CT) enables spectral data acquisition of CT angiographies allowing for reconstruction of virtual monoenergetic images (VMIs) in routine practice. Specifically, it has potential to reduce the blooming artifacts associated with densely calcified plaques. However, calcium blooming and iodine attenuation are inversely affected by energy level (keV) of the VMIs, creating a challenge for contrast media (CM) injection protocol optimization. A pragmatic and simple rule for calcium-dependent CM injection protocols is investigated and proposed for VMI-based coronary CT angiography with PCD-CT. MATERIALS AND METHODS A physiological circulation phantom with coronary vessels including calcified lesions (maximum CT value >700 HU) with a 50% diameter stenosis was injected into at iodine delivery rates (IDRs) of 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 g I/s. Images were acquired using a first-generation dual-source PCD-CT and reconstructed at various VMI levels (between 45 and 190 keV). Iodine attenuation in the coronaries was measured at each IDR for each keV, and blooming artifacts from the calcified lesions were assessed including stenosis grading error (as % overestimation vs true lumen). The IDR to achieve 300 HU at each VMI level was then calculated and compared with stenosis grading accuracy to establish a general rule for CM injection protocols. RESULTS Plaque blooming artifacts and intraluminal iodine attenuation decreased with increasing keV. Fixed windowing (representing absolute worst case) resulted in stenosis overestimation from 77% ± 4% at 45 keV to 5% ± 2% at 190 keV, whereas optimized windowing resulted in overestimation from 29% ± 3% at 45 keV to 4% ± 1% at 190 keV. The required IDR to achieve 300 HU showed a strong linear correlation to VMI energy ( R2 = 0.98). Comparison of this linear plot versus stenosis grading error and blooming artifact demonstrated that multipliers of 1, 2, and 3 times the reference IDR for theoretical clinical regimes of no, moderate, and severe calcification density, respectively, can be proposed as a general rule. CONCLUSIONS This study provides a proof-of-concept in an anthropomorphic phantom for a simple pragmatic adaptation of CM injection protocols in coronary CT angiography with PCD-CT. The 1-2-3 rule demonstrates the potential for reducing the effects of calcium blooming artifacts on overall image quality.
Collapse
|
7
|
Tafti S, Abadia A, Fung G, Ramirez-Giraldo JC, O' Doherty J. Comparison of Hounsfield Unit variability between two same model photon counting CT detector systems. A phantom study applied to lung CT. Phys Med 2024; 126:104828. [PMID: 39342772 DOI: 10.1016/j.ejmp.2024.104828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Accurate quantification of lung density, in Hounsfield Units (HU), is of high importance to monitor progression of diseases such as emphysema using chest CT imaging. Reproducibility of HU quantification on independent photon counting detector CT (PCD-CT) systems with a focus on lung imaging have not yet been evaluated. We thus aimed to evaluate HU reproducibility on 2 independent PCD-CT systems using a repeatable phantom setup with identical acquisition and image reconstruction settings. A COPDGene phantom comprising densities of air, water and lung was scanned on 2 independent PCCT systems using 3 different radiation exposures, 2 medium-sharpness reconstruction kernels (Br40 and Qr36), with and without iterative reconstruction (levels 0 vs 3). Our results demonstrate that acquisitions performed with full dose (3.2 mGy), half dose (1.6 mGy), and one-eighth dose (0.4 mGy) had minimal influence on HU accuracy (<6 HU) when using Br40 and Qr36 kernels. The level of iterative reconstruction also has a minimal impact (<6 HU) with the same kernels. Between the 2 PCD-CT systems evaluated, reproducible HU quantification was achieved for changes to CTDIvol, iterative reconstruction level and reconstruction kernel.
Collapse
Affiliation(s)
- Sina Tafti
- Siemens Medical Solutions, Malvern, PA, United States
| | - Andres Abadia
- Siemens Medical Solutions, Malvern, PA, United States
| | - George Fung
- Siemens Medical Solutions, Malvern, PA, United States
| | | | | |
Collapse
|
8
|
Caruso D, De Santis D, Tremamunno G, Santangeli C, Polidori T, Bona GG, Zerunian M, Del Gaudio A, Pugliese L, Laghi A. Deep learning reconstruction algorithm and high-concentration contrast medium: feasibility of a double-low protocol in coronary computed tomography angiography. Eur Radiol 2024:10.1007/s00330-024-11059-x. [PMID: 39299952 DOI: 10.1007/s00330-024-11059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE To evaluate radiation dose and image quality of a double-low CCTA protocol reconstructed utilizing high-strength deep learning image reconstructions (DLIR-H) compared to standard adaptive statistical iterative reconstruction (ASiR-V) protocol in non-obese patients. MATERIALS AND METHODS From June to October 2022, consecutive patients, undergoing clinically indicated CCTA, with BMI < 30 kg/m2 were prospectively included and randomly assigned into three groups: group A (100 kVp, ASiR-V 50%, iodine delivery rate [IDR] = 1.8 g/s), group B (80 kVp, DLIR-H, IDR = 1.4 g/s), and group C (80 kVp, DLIR-H, IDR = 1.2 g/s). High-concentration contrast medium was administered. Image quality analysis was evaluated by two radiologists. Radiation and contrast dose, and objective and subjective image quality were compared across the three groups. RESULTS The final population consisted of 255 patients (64 ± 10 years, 161 men), 85 per group. Group B yielded 42% radiation dose reduction (2.36 ± 0.9 mSv) compared to group A (4.07 ± 1.2 mSv; p < 0.001) and achieved a higher signal-to-noise ratio (30.5 ± 11.5), contrast-to-noise-ratio (27.8 ± 11), and subjective image quality (Likert scale score: 4, interquartile range: 3-4) compared to group A and group C (all p ≤ 0.001). Contrast medium dose in group C (44.8 ± 4.4 mL) was lower than group A (57.7 ± 6.2 mL) and B (50.4 ± 4.3 mL), all the comparisons were statistically different (all p < 0.001). CONCLUSION DLIR-H combined with 80-kVp CCTA with an IDR 1.4 significantly reduces radiation and contrast medium exposure while improving image quality compared to conventional 100-kVp with 1.8 IDR protocol in non-obese patients. CLINICAL RELEVANCE STATEMENT Low radiation and low contrast medium dose coronary CT angiography protocol is feasible with high-strength deep learning reconstruction and high-concentration contrast medium without compromising image quality. KEY POINTS Minimizing the radiation and contrast medium dose while maintaining CT image quality is highly desirable. High-strength deep learning iterative reconstruction protocol yielded 42% radiation dose reduction compared to conventional protocol. "Double-low" coronary CTA is feasible with high-strength deep learning reconstruction without compromising image quality in non-obese patients.
Collapse
Affiliation(s)
- Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Domenico De Santis
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Tremamunno
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Curzio Santangeli
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Tiziano Polidori
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanna G Bona
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Zerunian
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonella Del Gaudio
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Pugliese
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Held J, Haschka D, Lacaita PG, Feuchtner GM, Klotz W, Stofferin H, Duftner C, Weiss G, Klauser AS. Review: The Role of Dual-Energy Computed Tomography in Detecting Monosodium Urate Deposits in Vascular Tissues. Curr Rheumatol Rep 2024; 26:302-310. [PMID: 38739298 PMCID: PMC11224090 DOI: 10.1007/s11926-024-01151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE OF REVIEW To highlight novel findings in the detection of monosodium urate deposits in vessels using dual energy computed tomography, and to discuss the potential clinical implications for gout and hyperuricemia patients. RECENT FINDINGS Gout is an independent risk factor for cardiovascular disease. However, classical risk calculators do not take into account these hazards, and parameters to identify patients at risk are lacking. Monosodium urate measured by dual energy computed tomography is a well-established technology for the detection and quantification of monosodium urate deposits in peripheral joints and tendons. Recent findings also suggest its applicability to identify vascular urate deposits. Dual energy computed tomography is a promising tool for detection of cardiovascular monosodium urate deposits in gout patients, to better delineate individuals at increased risk for cardiovascular disease.
Collapse
Affiliation(s)
- Julia Held
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria.
| | - Pietro G Lacaita
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Gudrun M Feuchtner
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Werner Klotz
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria
| | - Hannes Stofferin
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology, Medical University Innsbruck, Innsbruck, Austria
| | - Christina Duftner
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria
| | - Andrea S Klauser
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Cau R, Saba L, Balestrieri A, Meloni A, Mannelli L, La Grutta L, Bossone E, Mantini C, Politi C, Suri JS, Cavaliere C, Punzo B, Maffei E, Cademartiri F. Photon-Counting Computed Tomography in Atherosclerotic Plaque Characterization. Diagnostics (Basel) 2024; 14:1065. [PMID: 38893593 PMCID: PMC11172199 DOI: 10.3390/diagnostics14111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Atherosclerotic plaque buildup in the coronary and carotid arteries is pivotal in the onset of acute myocardial infarctions or cerebrovascular events, leading to heightened levels of illness and death. Atherosclerosis is a complex and multistep disease, beginning with the deposition of low-density lipoproteins in the arterial intima and culminating in plaque rupture. Modern technology favors non-invasive imaging techniques to assess atherosclerotic plaque and offer insights beyond mere artery stenosis. Among these, computed tomography stands out for its widespread clinical adoption and is prized for its speed and accessibility. Nonetheless, some limitations persist. The introduction of photon-counting computed tomography (PCCT), with its multi-energy capabilities, enhanced spatial resolution, and superior soft tissue contrast with minimal electronic noise, brings significant advantages to carotid and coronary artery imaging, enabling a more comprehensive examination of atherosclerotic plaque composition. This narrative review aims to provide a comprehensive overview of the main concepts related to PCCT. Additionally, we aim to explore the existing literature on the clinical application of PCCT in assessing atherosclerotic plaque. Finally, we will examine the advantages and limitations of this recently introduced technology.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Antonella Meloni
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy; (A.M.); (F.C.)
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Lorenzo Mannelli
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Eduardo Bossone
- Cardiology Unit, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, “G.d’Annunzio” University, 66100 Chieti, Italy;
| | - Carola Politi
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA;
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Bruna Punzo
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Erica Maffei
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Filippo Cademartiri
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy; (A.M.); (F.C.)
| |
Collapse
|
11
|
Lacaita PG, Luger A, Troger F, Widmann G, Feuchtner GM. Photon-Counting Detector Computed Tomography (PCD-CT): A New Era for Cardiovascular Imaging? Current Status and Future Outlooks. J Cardiovasc Dev Dis 2024; 11:127. [PMID: 38667745 PMCID: PMC11050624 DOI: 10.3390/jcdd11040127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Photon-counting detector computed tomography (PCD-CT) represents a revolutionary new generation of computed tomography (CT) for the imaging of patients with cardiovascular diseases. Since its commercial market introduction in 2021, numerous studies have identified advantages of this new technology in the field of cardiovascular imaging, including improved image quality due to an enhanced contrast-to-noise ratio, superior spatial resolution, reduced artifacts, and a reduced radiation dose. The aim of this narrative review was to discuss the current scientific literature, and to find answers to the question of whether PCD-CT has yet led to a true step-change and significant progress in cardiovascular imaging.
Collapse
Affiliation(s)
| | | | | | | | - Gudrun M. Feuchtner
- Department Radiology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria; (P.G.L.); (A.L.); (F.T.); (G.W.)
| |
Collapse
|
12
|
Wu H, Wang J, Zhou M, Wang Y, Cui C, Zhou C, Chen X, Wang Z. Application of bolus tracking: The effect of ROI positions on the images quality of cervicocerebral CT angiography. Heliyon 2024; 10:e29260. [PMID: 38617933 PMCID: PMC11015132 DOI: 10.1016/j.heliyon.2024.e29260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Background Cervicocerebral CT angiography (CTA) using the bolus tracking technique has been widely used for the assessment of cerebrovascular diseases. Regions of interest (ROI) can be placed in the descending aorta, ascending aorta, and the aortic arch. However, no study has compared the arteries and veins display when when the region of interest (ROI) is placed at different sites. In this study, we showed the impact of ROI positions on the image quality of cervicocerebral CTA. Methods Two hundred and seventy patients who underwent cervicocerebral CTA with bolus tracking technique were randomly divided into three groups based on the position of the ROI placement: ascending aorta (Group 1, n = 90), aortic arch (Group 2, n = 90), and descending aorta (Group 3, n = 90). The scanning parameters and contrast agent injection protocols were consistent across all groups. Three observers independently assessed the objective image quality, while two observers jointly assessed the subjective image quality using a grade scale: poor (grade 1), average (grade 2), good (grade 3), and excellent (grade 4). The differences in intravascular CT values, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), AVCR (arterial venous contrast ratio), and subjective image quality scores were compared among the three groups. Results The CT values of the intracranial veins (superior sagittal sinus, ethmoid sinus and great cerebral vein) in group 1 were significantly lower than those in group 3 (p < 0.001). However, no significant differences were observed in CT values, SNR and CNR in the internal carotid artery and middle cerebral artery among the three groups. The proportion of images with grade 4 was significantly higher in group 1 than group 2 and 3 (41.1% vs 15.6% and 13.3%, p < 0.001). The proportion of images with grade 1 was significantly lower in group 1 than group 2 and 3 (1.1% vs 6.6% and 17.8%, p < 0.001). Conclusion The ROI positions for cervicocerebral CTA did not affect the arterial image quality, but venous structures imaging was affected when the ROI was placed in the ascending aorta.
Collapse
Affiliation(s)
- Huiming Wu
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong road, Nanjing, 210029, China
| | - Jianhua Wang
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong road, Nanjing, 210029, China
| | - Maodong Zhou
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong road, Nanjing, 210029, China
| | - Yajie Wang
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong road, Nanjing, 210029, China
| | - Can Cui
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong road, Nanjing, 210029, China
| | - Changsheng Zhou
- Department of Radiology, Jinling Hospital Nanjing University, 305 Zhongshan East road, Nanjing, 210029, China
| | - Xiao Chen
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong road, Nanjing, 210029, China
| | - Zhongqiu Wang
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong road, Nanjing, 210029, China
| |
Collapse
|
13
|
van der Bie J, Bos D, Dijkshoorn ML, Booij R, Budde RPJ, van Straten M. Thin slice photon-counting CT coronary angiography compared to conventional CT: Objective image quality and clinical radiation dose assessment. Med Phys 2024; 51:2924-2932. [PMID: 38358113 DOI: 10.1002/mp.16992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Photon-counting CT (PCCT) is the next-generation CT scanner that enables improved spatial resolution and spectral imaging. For full spectral processing, higher tube voltages compared to conventional CT are necessary to achieve the required spectral separation. This generated interest in the potential influence of thin slice high tube voltage PCCT on overall image quality and consequently on radiation dose. PURPOSE This study first evaluated tube voltages and radiation doses applied in patients who underwent coronary CT angiography with PCCT and energy-integrating detector CT (EID-CT). Next, image quality of PCCT and EID-CT was objectively evaluated in a phantom study simulating different patient sizes at these tube voltages and radiation doses. METHODS We conducted a retrospective analysis of clinical doses of patients scanned on a conventional and PCCT system. Average patient water equivalent diameters for different tube voltages were extracted from the dose reports for both EID-CT and PCCT. A conical phantom made of polyethylene with multiple diameters (26/31/36 cm) representing different patient sizes and containing an iodine insert was scanned with a EID-CT scanner using tube voltages and phantom diameters that match the patient scans and characteristics. Next, phantom scans were made with PCCT at a fixed tube voltage of 120 kV and with CTDIVOL values and phantom diameters identical to the EID-CT scans. Clinical image reconstructions at 0.6 mm slice thickness for conventional CT were compared to PCCT images with 0.4 mm slice thickness. Image quality was quantified using the detectability index (d'), which estimated the visibility of a 3 mm diameter contrast-enhanced coronary artery by considering noise, contrast, resolution, and human visual perception. Alongside d', noise, contrast and resolution were also individually assessed. In addition, the influence of various kernels (Bv40/Bv44/Bv48/Bv56), quantum iterative reconstruction strengths (QIR, 3/4) and monoenergetic levels (40/45/50/55 keV) for PCCT on d' was investigated. RESULTS In this study, 143 patients were included: 47 were scanned on PCCT (120 kV) and the remaining on EID-CT (74 small-sized at 70 kV, 18 medium-sized at 80 kV and four large-sized at 90 kV). EID-CT showed 7%-17% higher d' than PCCT with Bv40 kernel and strength four for small/medium patients. Lower monoenergetic images (40 keV) helped mitigate the difference to 1%-6%. For large patients, PCCT's detectability was up to 31% higher than EID-CT. PCCT has thinner slices but similar noise levels for similar reconstruction parameters. The noise increased with lower keV levels in PCCT (≈30% increase), but higher QIR strengths reduced noise. PCCT's iodine contrast was stable across patient sizes, while EID-CT had 33% less contrast in large patients than in small-sized patients. CONCLUSION At 120 kV, thin slice PCCT enables CCTA in phantom scans representing large patients without raising radiation dose or affecting vessel detectability. However, higher doses are needed for small and medium-sized patients to obtain a similar image quality as in EID-CT. The alternative of using lower mono-energetic levels requires further evaluation in clinical practice.
Collapse
Affiliation(s)
- Judith van der Bie
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marcel L Dijkshoorn
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ronald Booij
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marcel van Straten
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Aquino GJ, Mastrodicasa D, Alabed S, Abohashem S, Wen L, Gill RR, Bardo DME, Abbara S, Hanneman K. Radiology: Cardiothoracic Imaging Highlights 2023. Radiol Cardiothorac Imaging 2024; 6:e240020. [PMID: 38602468 PMCID: PMC11056755 DOI: 10.1148/ryct.240020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
Radiology: Cardiothoracic Imaging publishes novel research and technical developments in cardiac, thoracic, and vascular imaging. The journal published many innovative studies during 2023 and achieved an impact factor for the first time since its inaugural issue in 2019, with an impact factor of 7.0. The current review article, led by the Radiology: Cardiothoracic Imaging trainee editorial board, highlights the most impactful articles published in the journal between November 2022 and October 2023. The review encompasses various aspects of coronary CT, photon-counting detector CT, PET/MRI, cardiac MRI, congenital heart disease, vascular imaging, thoracic imaging, artificial intelligence, and health services research. Key highlights include the potential for photon-counting detector CT to reduce contrast media volumes, utility of combined PET/MRI in the evaluation of cardiac sarcoidosis, the prognostic value of left atrial late gadolinium enhancement at MRI in predicting incident atrial fibrillation, the utility of an artificial intelligence tool to optimize detection of incidental pulmonary embolism, and standardization of medical terminology for cardiac CT. Ongoing research and future directions include evaluation of novel PET tracers for assessment of myocardial fibrosis, deployment of AI tools in clinical cardiovascular imaging workflows, and growing awareness of the need to improve environmental sustainability in imaging. Keywords: Coronary CT, Photon-counting Detector CT, PET/MRI, Cardiac MRI, Congenital Heart Disease, Vascular Imaging, Thoracic Imaging, Artificial Intelligence, Health Services Research © RSNA, 2024.
Collapse
Affiliation(s)
| | | | - Samer Alabed
- From the Department of Radiology, SUNY Upstate Medical University,
750 E Adams St, Syracuse, NY, 13210 (G.J.A); Department of Radiology, University
of Washington School of Medicine, UW Medical Center Montlake, Seattle, Wash
(D.M.); Department of Radiology, OncoRad/Tumor Imaging Metrics Core (TIMC),
University of Washington School of Medicine, Seattle, Wash (D.M.); Division of
Clinical Medicine, School of Medicine and Population Health, University of
Sheffield, Sheffield, United Kingdom (S. Alabed); National Institute for Health
and Care Research, Sheffield Biomedical Research Centre, Sheffield, United
Kingdom (S. Alabed); Department of Radiology, Cardiovascular Imaging Research
Center, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
(S. Abohashem); Department of Radiology, Key Laboratory of Birth Defects and
Related Diseases of Women and Children, Ministry of Education, West China Second
University Hospital, Sichuan University, Sichuan, China (L.W.); Department of
Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,
Mass (R.R.G.); Department of Medical Imaging, Ann & Robert H. Lurie
Children’s Hospital of Chicago, Chicago, Ill (D.M.E.B.); Department of
Radiology, UT Southwestern Medical Center, Dallas, Tex (S. Abbara); Department
of Medical Imaging, University Medical Imaging Toronto, University of Toronto,
Toronto, Ontario, Canada (K.H.); and Peter Munk Cardiac Centre, Toronto General
Hospital, University of Toronto, Toronto, Ontario, Canada (K.H.)
| | - Shady Abohashem
- From the Department of Radiology, SUNY Upstate Medical University,
750 E Adams St, Syracuse, NY, 13210 (G.J.A); Department of Radiology, University
of Washington School of Medicine, UW Medical Center Montlake, Seattle, Wash
(D.M.); Department of Radiology, OncoRad/Tumor Imaging Metrics Core (TIMC),
University of Washington School of Medicine, Seattle, Wash (D.M.); Division of
Clinical Medicine, School of Medicine and Population Health, University of
Sheffield, Sheffield, United Kingdom (S. Alabed); National Institute for Health
and Care Research, Sheffield Biomedical Research Centre, Sheffield, United
Kingdom (S. Alabed); Department of Radiology, Cardiovascular Imaging Research
Center, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
(S. Abohashem); Department of Radiology, Key Laboratory of Birth Defects and
Related Diseases of Women and Children, Ministry of Education, West China Second
University Hospital, Sichuan University, Sichuan, China (L.W.); Department of
Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,
Mass (R.R.G.); Department of Medical Imaging, Ann & Robert H. Lurie
Children’s Hospital of Chicago, Chicago, Ill (D.M.E.B.); Department of
Radiology, UT Southwestern Medical Center, Dallas, Tex (S. Abbara); Department
of Medical Imaging, University Medical Imaging Toronto, University of Toronto,
Toronto, Ontario, Canada (K.H.); and Peter Munk Cardiac Centre, Toronto General
Hospital, University of Toronto, Toronto, Ontario, Canada (K.H.)
| | - Lingyi Wen
- From the Department of Radiology, SUNY Upstate Medical University,
750 E Adams St, Syracuse, NY, 13210 (G.J.A); Department of Radiology, University
of Washington School of Medicine, UW Medical Center Montlake, Seattle, Wash
(D.M.); Department of Radiology, OncoRad/Tumor Imaging Metrics Core (TIMC),
University of Washington School of Medicine, Seattle, Wash (D.M.); Division of
Clinical Medicine, School of Medicine and Population Health, University of
Sheffield, Sheffield, United Kingdom (S. Alabed); National Institute for Health
and Care Research, Sheffield Biomedical Research Centre, Sheffield, United
Kingdom (S. Alabed); Department of Radiology, Cardiovascular Imaging Research
Center, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
(S. Abohashem); Department of Radiology, Key Laboratory of Birth Defects and
Related Diseases of Women and Children, Ministry of Education, West China Second
University Hospital, Sichuan University, Sichuan, China (L.W.); Department of
Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,
Mass (R.R.G.); Department of Medical Imaging, Ann & Robert H. Lurie
Children’s Hospital of Chicago, Chicago, Ill (D.M.E.B.); Department of
Radiology, UT Southwestern Medical Center, Dallas, Tex (S. Abbara); Department
of Medical Imaging, University Medical Imaging Toronto, University of Toronto,
Toronto, Ontario, Canada (K.H.); and Peter Munk Cardiac Centre, Toronto General
Hospital, University of Toronto, Toronto, Ontario, Canada (K.H.)
| | - Ritu R. Gill
- From the Department of Radiology, SUNY Upstate Medical University,
750 E Adams St, Syracuse, NY, 13210 (G.J.A); Department of Radiology, University
of Washington School of Medicine, UW Medical Center Montlake, Seattle, Wash
(D.M.); Department of Radiology, OncoRad/Tumor Imaging Metrics Core (TIMC),
University of Washington School of Medicine, Seattle, Wash (D.M.); Division of
Clinical Medicine, School of Medicine and Population Health, University of
Sheffield, Sheffield, United Kingdom (S. Alabed); National Institute for Health
and Care Research, Sheffield Biomedical Research Centre, Sheffield, United
Kingdom (S. Alabed); Department of Radiology, Cardiovascular Imaging Research
Center, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
(S. Abohashem); Department of Radiology, Key Laboratory of Birth Defects and
Related Diseases of Women and Children, Ministry of Education, West China Second
University Hospital, Sichuan University, Sichuan, China (L.W.); Department of
Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,
Mass (R.R.G.); Department of Medical Imaging, Ann & Robert H. Lurie
Children’s Hospital of Chicago, Chicago, Ill (D.M.E.B.); Department of
Radiology, UT Southwestern Medical Center, Dallas, Tex (S. Abbara); Department
of Medical Imaging, University Medical Imaging Toronto, University of Toronto,
Toronto, Ontario, Canada (K.H.); and Peter Munk Cardiac Centre, Toronto General
Hospital, University of Toronto, Toronto, Ontario, Canada (K.H.)
| | - Dianna M. E. Bardo
- From the Department of Radiology, SUNY Upstate Medical University,
750 E Adams St, Syracuse, NY, 13210 (G.J.A); Department of Radiology, University
of Washington School of Medicine, UW Medical Center Montlake, Seattle, Wash
(D.M.); Department of Radiology, OncoRad/Tumor Imaging Metrics Core (TIMC),
University of Washington School of Medicine, Seattle, Wash (D.M.); Division of
Clinical Medicine, School of Medicine and Population Health, University of
Sheffield, Sheffield, United Kingdom (S. Alabed); National Institute for Health
and Care Research, Sheffield Biomedical Research Centre, Sheffield, United
Kingdom (S. Alabed); Department of Radiology, Cardiovascular Imaging Research
Center, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
(S. Abohashem); Department of Radiology, Key Laboratory of Birth Defects and
Related Diseases of Women and Children, Ministry of Education, West China Second
University Hospital, Sichuan University, Sichuan, China (L.W.); Department of
Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,
Mass (R.R.G.); Department of Medical Imaging, Ann & Robert H. Lurie
Children’s Hospital of Chicago, Chicago, Ill (D.M.E.B.); Department of
Radiology, UT Southwestern Medical Center, Dallas, Tex (S. Abbara); Department
of Medical Imaging, University Medical Imaging Toronto, University of Toronto,
Toronto, Ontario, Canada (K.H.); and Peter Munk Cardiac Centre, Toronto General
Hospital, University of Toronto, Toronto, Ontario, Canada (K.H.)
| | - Suhny Abbara
- From the Department of Radiology, SUNY Upstate Medical University,
750 E Adams St, Syracuse, NY, 13210 (G.J.A); Department of Radiology, University
of Washington School of Medicine, UW Medical Center Montlake, Seattle, Wash
(D.M.); Department of Radiology, OncoRad/Tumor Imaging Metrics Core (TIMC),
University of Washington School of Medicine, Seattle, Wash (D.M.); Division of
Clinical Medicine, School of Medicine and Population Health, University of
Sheffield, Sheffield, United Kingdom (S. Alabed); National Institute for Health
and Care Research, Sheffield Biomedical Research Centre, Sheffield, United
Kingdom (S. Alabed); Department of Radiology, Cardiovascular Imaging Research
Center, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
(S. Abohashem); Department of Radiology, Key Laboratory of Birth Defects and
Related Diseases of Women and Children, Ministry of Education, West China Second
University Hospital, Sichuan University, Sichuan, China (L.W.); Department of
Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,
Mass (R.R.G.); Department of Medical Imaging, Ann & Robert H. Lurie
Children’s Hospital of Chicago, Chicago, Ill (D.M.E.B.); Department of
Radiology, UT Southwestern Medical Center, Dallas, Tex (S. Abbara); Department
of Medical Imaging, University Medical Imaging Toronto, University of Toronto,
Toronto, Ontario, Canada (K.H.); and Peter Munk Cardiac Centre, Toronto General
Hospital, University of Toronto, Toronto, Ontario, Canada (K.H.)
| | - Kate Hanneman
- From the Department of Radiology, SUNY Upstate Medical University,
750 E Adams St, Syracuse, NY, 13210 (G.J.A); Department of Radiology, University
of Washington School of Medicine, UW Medical Center Montlake, Seattle, Wash
(D.M.); Department of Radiology, OncoRad/Tumor Imaging Metrics Core (TIMC),
University of Washington School of Medicine, Seattle, Wash (D.M.); Division of
Clinical Medicine, School of Medicine and Population Health, University of
Sheffield, Sheffield, United Kingdom (S. Alabed); National Institute for Health
and Care Research, Sheffield Biomedical Research Centre, Sheffield, United
Kingdom (S. Alabed); Department of Radiology, Cardiovascular Imaging Research
Center, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
(S. Abohashem); Department of Radiology, Key Laboratory of Birth Defects and
Related Diseases of Women and Children, Ministry of Education, West China Second
University Hospital, Sichuan University, Sichuan, China (L.W.); Department of
Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,
Mass (R.R.G.); Department of Medical Imaging, Ann & Robert H. Lurie
Children’s Hospital of Chicago, Chicago, Ill (D.M.E.B.); Department of
Radiology, UT Southwestern Medical Center, Dallas, Tex (S. Abbara); Department
of Medical Imaging, University Medical Imaging Toronto, University of Toronto,
Toronto, Ontario, Canada (K.H.); and Peter Munk Cardiac Centre, Toronto General
Hospital, University of Toronto, Toronto, Ontario, Canada (K.H.)
| |
Collapse
|
15
|
Layer YC, Isaak A, Mesropyan N, Kupczyk PA, Luetkens JA, Dell T, Attenberger UI, Kuetting D. Image quality of abdominal photon-counting CT with reduced contrast media dose: Evaluation of reduced contrast media protocols during the COVID19 pandemic supply shortage. Heliyon 2024; 10:e28142. [PMID: 38533048 PMCID: PMC10963370 DOI: 10.1016/j.heliyon.2024.e28142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Rationale and objectives Aim of this study was to assess the impact of contrast media dose (CMD) reduction on diagnostic quality of photon-counting detector CT (PCD-CT) and energy-integrating detector CT (EID-CT). Methods CT scans of the abdominal region with differing CMD acquired in portal venous phase on a PCD-CT were included and compared to EID-CT scans. Diagnostic quality and contrast intensity were rated. Additionally, readers had to assign the scans to reduced or regular CMD. Regions-of-interest (ROIs) were placed in defined segments of portal vein, inferior vena cava, liver, spleen, kidneys, abdominal aorta and muscular tissue. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Results Overall 158 CT scans performed on a PCD-CT and 68 examinations on an EID-CT were analyzed. Overall diagnostic quality showed no significant differences for PCD-CT with standard CMD which scored a median 5 (IQR:5-5) and PCD-CT with 70% CMD scoring 5 (4-5). (For PCD-CT, 71.69% of the examinations with reduced CMD were assigned to regular CMD by the readers, for EID-CT 9.09%. Averaged for all measurements SNR for 50% CMD was reduced by 19% in PCD-CT (EID-CT 34%) and CNR by 48% (EID-CT 56%). Virtual monoenergetic images (VMI)50keV for PCD-CT images acquired with 50% CMD showed an increase in SNR by 72% and CNR by 153%. Conclusions Diagnostic interpretability of PCD-CT examinations with reduction of up to 50% CMD is maintained. PCD-CT deducted scans especially with 70% CMD were often not recognized as CMD reduced scans. Compared to EID-CT less decline in SNR and CNR is observed for CMD reduced PCD-CT images. Employing VMI50keV for CMD-reduced PCD-CT images compensated for the effects.
Collapse
Affiliation(s)
- Yannik C. Layer
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Narine Mesropyan
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Patrick A. Kupczyk
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julian A. Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Tatjana Dell
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike I. Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
16
|
Zsarnoczay E, Pinos D, Schoepf UJ, Fink N, O'Doherty J, Gnasso C, Griffith J, Vecsey-Nagy M, Suranyi P, Maurovich-Horvat P, Emrich T, Varga-Szemes A. Intra-individual comparison of coronary CT angiography-based FFR between energy-integrating and photon-counting detector CT systems. Int J Cardiol 2024; 399:131684. [PMID: 38151162 DOI: 10.1016/j.ijcard.2023.131684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Coronary computed tomography angiography (CCTA)-based fractional flow reserve (CT-FFR) allows for noninvasive determination of the functional severity of anatomic lesions in patients with coronary artery disease. The aim of this study was to intra-individually compare CT-FFR between photon-counting detector (PCD) and conventional energy-integrating detector (EID) CT systems. METHODS In this single-center prospective study, subjects who underwent clinically indicated CCTA on an EID-CT system were recruited for a research CCTA on PCD-CT within 30 days. Image reconstruction settings were matched as closely as possible between EID-CT (Bv36 kernel, iterative reconstruction strength level 3, slice thickness 0.5 mm) and PCD-CT (Bv36 kernel, quantum iterative reconstruction level 3, virtual monoenergetic level 55 keV, slice thickness 0.6 mm). CT-FFR was measured semi-automatically using a prototype on-site machine learning algorithm by two readers. CT-FFR analysis was performed per-patient and per-vessel, and a CT-FFR ≤ 0.75 was considered hemodynamically significant. RESULTS A total of 22 patients (63.3 ± 9.2 years; 7 women) were included. Median time between EID-CT and PCD-CT was 5.5 days. Comparison of CT-FFR values showed no significant difference and strong agreement between EID-CT and PCD-CT in the per-vessel analysis (0.88 [0.74-0.94] vs. 0.87 [0.76-0.93], P = 0.096, mean bias 0.02, limits of agreement [LoA] -0.14/0.19, r = 0.83, ICC = 0.92), and in the per-patient analysis (0.81 [0.60-0.86] vs. 0.76 [0.64-0.86], P = 0.768, mean bias 0.02, LoA -0.15/0.19, r = 0.90, ICC = 0.93). All included patients were classified into the same category (CT-FFR > 0.75 vs ≤0.75) with both CT systems. CONCLUSIONS CT-FFR evaluation is feasible with PCD-CT and it shows a strong agreement with EID-CT-based evaluation when images are similarly reconstructed.
Collapse
Affiliation(s)
- Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; MTA-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Daniel Pinos
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| | - Nicola Fink
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; Siemens Medical Solutions USA Inc, Malvern, USA
| | - Chiara Gnasso
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Joseph Griffith
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| | - Milán Vecsey-Nagy
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Pal Suranyi
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany.
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
17
|
Wolf EV, Halfmann MC, Varga-Szemes A, Fink N, Kloeckner R, Bockius S, Allmendinger T, Hagenauer J, Koehler T, Kreitner KF, Schoepf UJ, Münzel T, Düber C, Gori T, Yang Y, Hell MM, Emrich T. Photon-Counting Detector CT Virtual Monoenergetic Images for Coronary Artery Stenosis Quantification: Phantom and In Vivo Evaluation. AJR Am J Roentgenol 2024; 222:e2330481. [PMID: 38197760 DOI: 10.2214/ajr.23.30481] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND. Calcium blooming causes stenosis overestimation on coronary CTA. OBJECTIVE. The purpose of this article was to evaluate the impact of virtual monoenergetic imaging (VMI) reconstruction level on coronary artery stenosis quantification using photon-counting detector (PCD) CT. METHODS. A phantom containing two custom-made vessels (representing 25% and 50% stenosis) underwent PCD CT acquisitions without and with simulated cardiac motion. A retrospective analysis was performed of 33 patients (seven women, 26 men; mean age, 71.3 ± 9.0 [SD] years; 64 coronary artery stenoses) who underwent coronary CTA by PCD CT followed by invasive coronary angiography (ICA). Scans were reconstructed at nine VMI energy levels (40-140 keV). Percentage diameter stenosis (PDS) was measured, and bias was determined from the ground-truth stenosis percentage in the phantom and ICA-derived quantitative coronary angiography measurements in patients. Extent of blooming artifact was measured in the phantom and in calcified and mixed plaques in patients. RESULTS. In the phantom, PDS decreased for 25% stenosis from 59.9% (40 keV) to 13.4% (140 keV) and for 50% stenosis from 81.6% (40 keV) to 42.3% (140 keV). PDS showed lowest bias for 25% stenosis at 90 keV (bias, 1.4%) and for 50% stenosis at 100 keV (bias, -0.4%). Blooming artifacts decreased for 25% stenosis from 61.5% (40 keV) to 35.4% (140 keV) and for 50% stenosis from 82.7% (40 keV) to 52.1% (140 keV). In patients, PDS for calcified plaque decreased from 70.8% (40 keV) to 57.3% (140 keV), for mixed plaque decreased from 69.8% (40 keV) to 56.3% (140 keV), and for noncalcified plaque was 46.6% at 40 keV and 54.6% at 140 keV. PDS showed lowest bias for calcified plaque at 100 keV (bias, 17.2%), for mixed plaque at 140 keV (bias, 5.0%), and for noncalcified plaque at 40 keV (bias, -0.5%). Blooming artifacts decreased for calcified plaque from 78.4% (40 keV) to 48.6% (140 keV) and for mixed plaque from 73.1% (40 keV) to 44.7% (140 keV). CONCLUSION. For calcified and mixed plaque, stenosis severity measurements and blooming artifacts decreased at increasing VMI reconstruction levels. CLINICAL IMPACT. PCD CT with VMI reconstruction helps overcome current limitations in stenosis quantification on coronary CTA.
Collapse
Affiliation(s)
- Elias V Wolf
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
| | - Moritz C Halfmann
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
| | - Nicola Fink
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
- Department of Radiology, University Hospital, LMU Munich, München, Germany
| | - Roman Kloeckner
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany
| | - Stefanie Bockius
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | | | | | | | - Karl-Friedrich Kreitner
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
| | - Thomas Münzel
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christoph Düber
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Tommaso Gori
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Yang Yang
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Michaela M Hell
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Tilman Emrich
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
18
|
Rippel K, Luitjens J, Habeeballah O, Scheurig-Muenkler C, Bette S, Braun F, Kroencke TJ, Schwarz F, Decker JA. Evaluation of ECG-Gated, High-Pitch Thoracoabdominal Angiographies With Dual-Source Photon-Counting Detector Computed Tomography. J Endovasc Ther 2024:15266028241230943. [PMID: 38380529 DOI: 10.1177/15266028241230943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
PURPOSE The aim of this study was to evaluate the radiation dose, image quality, and the potential of virtual monoenergetic imaging (VMI) reconstructions of high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta on a dual-source photon-counting detector-CT (PCD-CT) in comparison with an energy-integrating detector-CT (EID-CT), with a special focus on low-contrast attenuation. METHODS Consecutive patients being referred for an electrocardiogram (ECG)-gated, high-pitch CTA of the thoracoabdominal aorta prior to transcatheter aortic valve replacement (TAVR), and examined on the PCD-CT, were included in this prospective single-center study. For comparison, a retrospective patient group with ECG-gated, high-pitch CTA examinations of the thoracoabdominal aorta on EID-CT with a comparable scan protocol was matched for gender, body mass index, height, and age. Virtual monoenergetic imaging reconstructions from 40 to 120 keV were performed. Enhancement and noise were measured in 7 vascular segments and the surrounding air as mean and standard deviation of CT values. The radiation dose was noted and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Finally, a subgroup analysis was performed, comparing VMI reconstructions from 40 keV to 70 keV in patients with at least a 50% decrease in contrast attenuation between the ascending aorta and femoral arteries. RESULTS Fifty patients (mean age 77.0±14.5 years; 31 women) were included. The radiation dose was significantly lower on the PCD-CT (4.2±1.4 vs. 7.2±2.2 mGy; p<0.001). With increasing keV, vascular noise, SNR, and CNR decreased. Intravascular attenuation was significantly higher on VMI at levels from 40 to 65, compared with levels of 120 keV (p<0.01 and p<0.005, respectively). On the PCD-CT, SNR was significantly higher in keV levels 40 and 70 (all p<0.001), and CNR was higher at keV levels 40 and 45 (each p<0.001), compared with scans on the EID-CT. At VMI ≤60 keV, image noise was also significantly higher than that in the control group. The subgroup analysis showed a drastically improved diagnostic performance of the low-keV images in patients with low-contrast attenuation. CONCLUSION The ECG-gated CTA of the thoracoabdominal aorta in high-pitch mode on PCD-CT have significantly lower radiation dose and higher objective image quality than EID-CT. In addition, low-keV VMI can salvage suboptimal contrast studies, further reducing radiation dose by eliminating the need for repeat scans. CLINICAL IMPACT ECG-gated CT-angiographies of the thoracoabdominal aorta can be acquired with a lower radtiation dose and a better image quality by using a dual-source photon-countinge detector CT. Furthermore, the inherent spectral data offers the possiblity to improve undiagnostic images and thus saves the patient from further radiation and contrast application.
Collapse
Affiliation(s)
- K Rippel
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - J Luitjens
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - O Habeeballah
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - C Scheurig-Muenkler
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Stefanie Bette
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Franziska Braun
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - T J Kroencke
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, Augsburg, Germany
| | - F Schwarz
- DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
| | - J A Decker
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| |
Collapse
|
19
|
Rajiah PS, Alkadhi H, Van Mieghem NM, Budde RPJ. Utility of Photon Counting CT in Transcatheter Structural Heart Disease Interventions. Semin Roentgenol 2024; 59:32-43. [PMID: 38388095 DOI: 10.1053/j.ro.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 02/24/2024]
Affiliation(s)
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicolas M Van Mieghem
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ricardo P J Budde
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
20
|
Cundari G, Deilmann P, Mergen V, Ciric K, Eberhard M, Jungblut L, Alkadhi H, Higashigaito K. Saving Contrast Media in Coronary CT Angiography with Photon-Counting Detector CT. Acad Radiol 2024; 31:212-220. [PMID: 37532596 DOI: 10.1016/j.acra.2023.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/10/2023] [Accepted: 06/24/2023] [Indexed: 08/04/2023]
Abstract
RATIONALE AND OBJECTIVES To determine the optimal virtual monoenergetic image (VMI) energy level and the potential of contrast-media (CM) reduction for coronary computed tomography angiography (CCTA) with photon-counting detector CT (PCD-CT). MATERIALS AND METHODS In this institutional review board-approved study, patients who underwent CCTA with dual-source PCD-CT with an identical scan protocol and radiation dose were included. In group 1, CCTA was performed with our standard CM protocol (volume: 72-85.2 mL, 370 mg iodine/mL). VMIs were reconstructed from 40 to 60 keV at 5 keV increments. Objective image quality (IQ) (vascular attenuation, image noise, and contrast-to-noise ratio [CNR]) was measured. Two blinded, independent readers rated subjective IQ (overall IQ, subjective image contrast, and subjective noise using a five-point discrete visual scale). Results of group 1 served to determine the best VMI level for CCTA. In group 2, CM volume was reduced by 20%, and in group 3 by another 20%. RESULTS A total of 100 patients were enrolled (45 females, mean age 54 ± 13 years). Inter-reader agreement was good-to-excellent for all comparisons (κ > 0.6). In group 1, the best VMI level regarding objective and subjective IQ was 45 keV, which was selected as the reference for groups 2 and 3. For group 2, mean vascular attenuation was 890 Hounsfield units (HU) and mean CNR was 26, with no differences compared to group 1, 45 keV for both objective and subjective IQ. For group 3, mean vascular attenuation was 676 HU and mean CNR was 21, and all patients were rated as diagnostic except one (severe motion artifacts). CONCLUSION Increased IQ of PCD-CT can be used for considerable CM volume reduction while still maintaining a diagnostic IQ of CCTA.
Collapse
Affiliation(s)
- Giulia Cundari
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland (G.C., P.D., V.M., K.C., M.E., L.J., H.A., K.H.); Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Rome, Italy (G.C.)
| | - Philipp Deilmann
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland (G.C., P.D., V.M., K.C., M.E., L.J., H.A., K.H.)
| | - Victor Mergen
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland (G.C., P.D., V.M., K.C., M.E., L.J., H.A., K.H.)
| | - Kristina Ciric
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland (G.C., P.D., V.M., K.C., M.E., L.J., H.A., K.H.)
| | - Matthias Eberhard
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland (G.C., P.D., V.M., K.C., M.E., L.J., H.A., K.H.); Department of Radiology, Spital Interlaken, Spitäler fmi AG, Unterseen, Switzerland (M.E.)
| | - Lisa Jungblut
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland (G.C., P.D., V.M., K.C., M.E., L.J., H.A., K.H.)
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland (G.C., P.D., V.M., K.C., M.E., L.J., H.A., K.H.)
| | - Kai Higashigaito
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland (G.C., P.D., V.M., K.C., M.E., L.J., H.A., K.H.).
| |
Collapse
|
21
|
Zanon C, Cademartiri F, Toniolo A, Bini C, Clemente A, Colacchio EC, Cabrelle G, Mastro F, Antonello M, Quaia E, Pepe A. Advantages of Photon-Counting Detector CT in Aortic Imaging. Tomography 2023; 10:1-13. [PMID: 38276249 PMCID: PMC10821336 DOI: 10.3390/tomography10010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Photon-counting Computed Tomography (PCCT) is a promising imaging technique. Using detectors that count the number and energy of photons in multiple bins, PCCT offers several advantages over conventional CT, including a higher image quality, reduced contrast agent volume, radiation doses, and artifacts. Although PCCT is well established for cardiac imaging in assessing coronary artery disease, its application in aortic imaging remains limited. This review summarizes the available literature and provides an overview of the current use of PCCT for the diagnosis of aortic imaging, focusing mainly on endoleaks detection and characterization after endovascular aneurysm repair (EVAR), contrast dose volume, and radiation exposure reduction, particularly in patients with chronic kidney disease and in those requiring follow-up CT.
Collapse
Affiliation(s)
- Chiara Zanon
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | | | - Costanza Bini
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Elda Chiara Colacchio
- Vascular and Endovascular Surgery Section, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Giulio Cabrelle
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Florinda Mastro
- Division of Cardiac Surgery, University of Padua, 35128 Padua, Italy
| | - Michele Antonello
- Vascular and Endovascular Surgery Section, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Emilio Quaia
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Alessia Pepe
- Department of Radiology, University of Padua, 35128 Padua, Italy
| |
Collapse
|
22
|
Horst KK, Yu L, McCollough CH, Esquivel A, Thorne JE, Rajiah PS, Baffour F, Hull NC, Weber NM, Thacker PG, Thomas KB, Binkovitz LA, Guerin JB, Fletcher JG. Potential benefits of photon counting detector computed tomography in pediatric imaging. Br J Radiol 2023; 96:20230189. [PMID: 37750939 PMCID: PMC10646626 DOI: 10.1259/bjr.20230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Photon counting detector (PCD) CT represents the newest advance in CT technology, with improved radiation dose efficiency, increased spatial resolution, inherent spectral imaging capabilities, and the ability to eliminate electronic noise. Its design fundamentally differs from conventional energy integrating detector CT because photons are directly converted to electrical signal in a single step. Rather than converting X-rays to visible light and having an output signal that is a summation of energies, PCD directly counts each photon and records its individual energy information. The current commercially available PCD-CT utilizes a dual-source CT geometry, which allows 66 ms cardiac temporal resolution and high-pitch (up to 3.2) scanning. This can greatly benefit pediatric patients by facilitating high quality fast scanning to allow sedation-free imaging. The energy-resolving nature of the utilized PCDs allows "always-on" dual-energy imaging capabilities, such as the creation of virtual monoenergetic, virtual non-contrast, virtual non-calcium, and other material-specific images. These features may be combined with high-resolution imaging, made possible by the decreased size of individual detector elements and the absence of interelement septa. This work reviews the foundational concepts associated with PCD-CT and presents examples to highlight the benefits of PCD-CT in the pediatric population.
Collapse
Affiliation(s)
- Kelly K. Horst
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Andrea Esquivel
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | | | - Francis Baffour
- Department of Radiology, Mayo Clinic, Rochester, United States
| | - Nathan C. Hull
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Paul G. Thacker
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Kristen B. Thomas
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Larry A. Binkovitz
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Julie B. Guerin
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | |
Collapse
|
23
|
Flohr T, Schmidt B, Ulzheimer S, Alkadhi H. Cardiac imaging with photon counting CT. Br J Radiol 2023; 96:20230407. [PMID: 37750856 PMCID: PMC10646663 DOI: 10.1259/bjr.20230407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023] Open
Abstract
CT of the heart, in particular ECG-controlled coronary CT angiography (cCTA), has become clinical routine due to rapid technical progress with ever new generations of CT equipment. Recently, CT scanners with photon-counting detectors (PCD) have been introduced which have the potential to address some of the remaining challenges for cardiac CT, such as limited spatial resolution and lack of high-quality spectral data. In this review article, we briefly discuss the technical principles of photon-counting detector CT, and we give an overview on how the improved spatial resolution of photon-counting detector CT and the routine availability of spectral data can benefit cardiac applications. We focus on coronary artery calcium scoring, cCTA, and on the evaluation of the myocardium.
Collapse
Affiliation(s)
- Thomas Flohr
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Bernhard Schmidt
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Stefan Ulzheimer
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Pannenbecker P, Huflage H, Grunz JP, Gruschwitz P, Patzer TS, Weng AM, Heidenreich JF, Bley TA, Petritsch B. Photon-counting CT for diagnosis of acute pulmonary embolism: potential for contrast medium and radiation dose reduction. Eur Radiol 2023; 33:7830-7839. [PMID: 37311805 PMCID: PMC10598187 DOI: 10.1007/s00330-023-09777-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the image quality of an ultra-low contrast medium and radiation dose CT pulmonary angiography (CTPA) protocol for the diagnosis of acute pulmonary embolism using a clinical photon-counting detector (PCD) CT system and compare its performance to a dual-energy-(DE)-CTPA protocol on a conventional energy-integrating detector (EID) CT system. METHODS Sixty-four patients either underwent CTPA with the novel scan protocol on the PCD-CT scanner (32 patients, 25 mL, CTDIvol 2.5 mGy·cm) or conventional DE-CTPA on a third-generation dual-source EID-CT (32 patients, 50 mL, CTDIvol 5.1 mGy·cm). Pulmonary artery CT attenuation, signal-to-noise ratio, and contrast-to-noise-ratio were assessed as objective criteria of image quality, while subjective ratings of four radiologists were compared at 60 keV using virtual monoenergetic imaging and polychromatic standard reconstructions. Interrater reliability was determined by means of the intraclass correlation coefficient (ICC). Effective dose was compared between patient cohorts. RESULTS Subjective image quality was deemed superior by all four reviewers for 60-keV PCD scans (excellent or good ratings in 93.8% of PCD vs. 84.4% of 60 keV EID scans, ICC = 0.72). No examinations on either system were considered "non-diagnostic." Objective image quality parameters were significantly higher in the EID group (mostly p < 0.001), both in the polychromatic reconstructions and at 60 keV. The ED (1.4 vs. 3.3 mSv) was significantly lower in the PCD cohort (p < 0.001). CONCLUSIONS PCD-CTPA allows for considerable reduction of contrast medium and radiation dose in the diagnosis of acute pulmonary embolism, while maintaining good to excellent image quality compared to conventional EID-CTPA. CLINICAL RELEVANCE STATEMENT Clinical PCD-CT allows for spectral assessment of pulmonary vasculature with high scan speed, which is beneficial in patients with suspected pulmonary embolism, frequently presenting with dyspnea. Simultaneously PCD-CT enables substantial reduction of contrast medium and radiation dose. KEY POINTS • The clinical photon-counting detector CT scanner used in this study allows for high-pitch multi-energy acquisitions. • Photon-counting computed tomography allows for considerable reduction of contrast medium and radiation dose in the diagnosis of acute pulmonary embolism. • Subjective image quality was rated best for 60-keV photon-counting scans.
Collapse
Affiliation(s)
- Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany.
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Theresa S Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Andreas M Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Julius F Heidenreich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080, Würzburg, Germany
| |
Collapse
|
25
|
Böttcher B, Zsarnoczay E, Varga-Szemes A, Schoepf UJ, Meinel FG, van Assen M, De Cecco CN. Dual-Energy Computed Tomography in Cardiac Imaging. Radiol Clin North Am 2023; 61:995-1009. [PMID: 37758366 DOI: 10.1016/j.rcl.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual-energy computed tomography (DECT) acquires images using two energy spectra and offers a variation of reconstruction techniques for improved cardiac imaging. Virtual monoenergetic images decrease artifacts improving coronary plaque and stent visualization. Further, contrast attenuation is increased allowing significant reduction of contrast dose. Virtual non-contrast reconstructions enable coronary artery calcium scoring from contrast-enhanced scans. DECT provides advanced plaque imaging with detailed analysis of plaque components, indicating plaque stability. Extracellular volume assessment using DECT offers noninvasive detection of myocardial fibrosis. This review aims to outline the current cardiac applications of DECT, summarize recent literature, and discuss their findings.
Collapse
Affiliation(s)
- Benjamin Böttcher
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road NE, Suite D112, Atlanta, GA 30322, USA; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Strasse 6, 18057 Rostock, Germany
| | - Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA; MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA
| | - Uwe Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA
| | - Felix G Meinel
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Strasse 6, 18057 Rostock, Germany
| | - Marly van Assen
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road NE, Suite D112, Atlanta, GA 30322, USA
| | - Carlo N De Cecco
- Division of Cardiothoracic Imaging and Imaging Informatics, Department of Radiology and Imaging Sciences, Emory University Hospital, Emory Healthcare, Inc. 1365 Clifton Road NE, Suite - AT503, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Wolf EV, Müller L, Schoepf UJ, Fink N, Griffith JP, Zsarnoczay E, Baruah D, Suranyi P, Kabakus IM, Halfmann MC, Emrich T, Varga-Szemes A, O'Doherty J. Photon-counting detector CT-based virtual monoenergetic reconstructions: repeatability and reproducibility of radiomics features of an organic phantom and human myocardium. Eur Radiol Exp 2023; 7:59. [PMID: 37875769 PMCID: PMC10597903 DOI: 10.1186/s41747-023-00371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Photon-counting detector computed tomography (PCD-CT) may influence imaging characteristics for various clinical conditions due to higher signal and contrast-to-noise ratio in virtual monoenergetic images (VMI). Radiomics analysis relies on quantification of image characteristics. We evaluated the impact of different VMI reconstructions on radiomic features in in vitro and in vivo PCD-CT datasets. METHODS An organic phantom consisting of twelve samples (four oranges, four onions, and four apples) was scanned five times. Twenty-three patients who had undergone coronary computed tomography angiography on a first generation PCD-CT system with the same image acquisitions were analyzed. VMIs were reconstructed at 6 keV levels (40, 55, 70, 90, 120, and 190 keV). The phantoms and the patients' left ventricular myocardium (LVM) were segmented for all reconstructions. Ninety-three original radiomic features were extracted. Repeatability and reproducibility were evaluated through intraclass correlations coefficient (ICC) and post hoc paired samples ANOVA t test. RESULTS There was excellent repeatability for radiomic features in phantom scans (all ICC = 1.00). Among all VMIs, 36/93 radiomic features (38.7%) in apples, 28/93 (30.1%) in oranges, and 33/93 (35.5%) in onions were not significantly different. For LVM, the percentage of stable features was high between VMIs ≥ 90 keV (90 versus 120 keV, 77.4%; 90 versus 190 keV, 83.9%; 120 versus 190 keV, 89.3%), while comparison to lower VMI levels led to fewer reproducible features (40 versus 55 keV, 8.6%). CONCLUSIONS VMI levels influence the stability of radiomic features in an organic phantom and patients' LVM; stability decreases considerably below 90 keV. RELEVANCE STATEMENT Spectral reconstructions significantly influence radiomic features in vitro and in vivo, necessitating standardization and careful attention to these reconstruction parameters before clinical implementation. KEY POINTS • Radiomic features have an excellent repeatability within the same PCD-CT acquisition and reconstruction. • Differences in VMI lead to decreased reproducibility for radiomic features. • VMI ≥ 90 keV increased the reproducibility of the radiomic features.
Collapse
Affiliation(s)
- Elias V Wolf
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Lukas Müller
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Nicola Fink
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Joseph P Griffith
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Dhiraj Baruah
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Pal Suranyi
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Ismael M Kabakus
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Moritz C Halfmann
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| | - Tilman Emrich
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany.
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Siemens Medical Solutions USA Inc, Malvern, PA, USA
| |
Collapse
|
27
|
Graafen D, Müller L, Halfmann MC, Stoehr F, Foerster F, Düber C, Yang Y, Emrich T, Kloeckner R. Soft Reconstruction Kernels Improve HCC Imaging on a Photon-Counting Detector CT. Acad Radiol 2023; 30 Suppl 1:S143-S154. [PMID: 37095047 DOI: 10.1016/j.acra.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
RATIONALE AND OBJECTIVES Hepatocellular carcinoma (HCC) is the only tumor entity that allows non-invasive diagnosis based on imaging without further histological proof. Therefore, excellent image quality is of utmost importance for HCC diagnosis. Novel photon-counting detector (PCD) CT improves image quality via noise reduction and higher spatial resolution, inherently providing spectral information. The aim of this study was to investigate these improvements for HCC imaging with triple-phase liver PCD-CT in a phantom and patient population study focusing on identification of the optimal reconstruction kernel. MATERIALS AND METHODS Phantom experiments were performed to analyze objective quality characteristics of the regular body and quantitative reconstruction kernels, each with four sharpness levels (36-40-44-48). For 24 patients with viable HCC lesions on PCD-CT, virtual monoenergetic images at 50 keV were reconstructed using these kernels. Quantitative image analysis included contrast-to-noise ratio (CNR) and edge sharpness. Three raters performed qualitative analyses evaluating noise, contrast, lesion conspicuity, and overall image quality. RESULTS In all contrast phases, the CNR was highest using the kernels with a sharpness level of 36 (all p < 0.05), with no significant influence on lesion sharpness. Softer reconstruction kernels were also rated better regarding noise and image quality (all p < 0.05). No significant differences were found in image contrast and lesion conspicuity. Comparing body and quantitative kernels with equal sharpness levels, there was no difference in image quality criteria, neither regarding in vitro nor in vivo analysis. CONCLUSION Soft reconstruction kernels yield the best overall quality for the evaluation of HCC in PCD-CT. As the image quality of quantitative kernels with potential for spectral post-processing is not restricted compared to regular body kernels, they should be preferred.
Collapse
Affiliation(s)
- D Graafen
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.).
| | - L Müller
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.)
| | - M C Halfmann
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.); German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany (M.C.H., T.E.)
| | - F Stoehr
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.)
| | - F Foerster
- Department of Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (F.F.)
| | - C Düber
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.)
| | - Y Yang
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.)
| | - T Emrich
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.); German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany (M.C.H., T.E.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E.)
| | - R Kloeckner
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.)
| |
Collapse
|
28
|
Rajiah PS, Dunning CAS, Rajendran K, Tandon Y, Ahmed Z, Larson N, Collins JD, Thorne J, Williamson E, Fletcher JG, McCollough C, Leng S. High-Pitch Multienergy Coronary CT Angiography in Dual-Source Photon-Counting Detector CT Scanner at Low Iodinated Contrast Dose. Invest Radiol 2023; 58:681-690. [PMID: 36822655 PMCID: PMC10591289 DOI: 10.1097/rli.0000000000000961] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the high-helical pitch, multienergy (ME) scanning mode of a clinical dual-source photon-counting detector (PCD) computed tomography (CT) and the benefit of virtual monoenergetic images (VMIs) for low-contrast-dose coronary CT angiography (CTA). MATERIALS AND METHODS High-pitch (3.2) ME coronary CTA was performed in PCD-CT in 27 patients using low contrast dose (30 mL of iohexol 350 mg/mL) and in 26 patients at routine contrast dose (60 mL). Low-energy-threshold 120 kV images (also known as T3D images) and 50 kiloelectron volts (50 keV) and 100 kiloelectron volts (100 keV) VMIs were reconstructed using a 1024 × 1024 matrix and 0.6-mm slices. The CT numbers, noise, and contrast-to-noise ratio (CNR) were measured in the ascending aorta (AA), left main coronary artery (LMCA), and distal left anterior descending (LAD) artery. Confidence in grading luminal stenosis with calcific plaque, noncalcific plaque, and stent was evaluated by 2 independent readers on a 0-100 scale (0 the lowest), and a CAD-RADS score was assigned. Image contrast enhancement, sharpness, noise, artifacts, and overall image quality were rated using a 5-point ordinal scale (1 the lowest). RESULTS The radiation doses (CTDI) in low- and routine-contrast cohorts were 2.5 ± 0.6 mGy and 3.1 ± 1.7 mGy, respectively ( P = 0.12). At all measured locations, the mean CT number was >300 HU in 120 kV (LMCA 382.9 ± 76.2, distal LAD 341.0 ± 53.9, AA 399.5 ± 76.1) and 50 keV images (LMCA 667.5 ± 139.9, distal LAD 578.1 ± 121.5, AA 700.8 ± 142.5) in the low-contrast cohort, with a 96% increase in CT numbers for 50 keV over 120 kV. The CT numbers were significantly higher ( P < 0.0001) in 50 keV than 120 kV and 100 keV VMI. The CNR was also significantly ( P < 0.0001) higher in 50 keV than 120 kV and 100 keV images in all vessels. Confidence in the assessment of luminal stenosis in the presence of calcific plaque was significantly higher ( P = 0.001) with the addition of 100 keV VMI (median score, 100) than using 50 keV alone (median score, 70) and 120 kV (median score, 70) for reader 1, but no significant differences were seen for reader 2 who had same median scores of 100 for all image types. The confidence in the assessment of luminal stenosis within a stent improved with the use of 100 keV images for both readers (reader 1: median scores for 50 + 100 keV = 100, 50 keV = 82.5, 120 kV = 82.5; reader 2: 50 + 100 keV = 100, 50 keV = 90, 120 kV = 90). There were no significant differences in confidence scores for assessment of luminal stenosis from noncalcific plaques for both readers. The reader-averaged qualitative scores for vascular enhancement and overall image quality were significantly higher for 50 keV VMI than for 120 kV images in both low- and routine-contrast dose cohorts. The image sharpness was nonsignificantly higher at 50 keV VMI than 120 kV images, and the artifact score was comparable for 50 keV VMI and 120 kV images. The noise was higher in 50 keV VMI than in 120 kV images. CONCLUSIONS High-pitch ME PCD-CT mode produced diagnostic quality coronary CTA images at low radiation and iodinated contrast doses. The availability of ME VMIs significantly improved the CNR, overall image quality, and confidence in assessment of luminal stenosis in the presence of calcific plaques and stents, and resulted in change of CAD-RADS categories in 9 patients.
Collapse
Affiliation(s)
| | - Chelsea A. S. Dunning
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Yasmeen Tandon
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Zaki Ahmed
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Nicholas Larson
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Jeremy D. Collins
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Jamison Thorne
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Eric Williamson
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Joel G. Fletcher
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Cynthia McCollough
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| |
Collapse
|
29
|
Meloni A, Cademartiri F, Positano V, Celi S, Berti S, Clemente A, La Grutta L, Saba L, Bossone E, Cavaliere C, Punzo B, Maffei E. Cardiovascular Applications of Photon-Counting CT Technology: A Revolutionary New Diagnostic Step. J Cardiovasc Dev Dis 2023; 10:363. [PMID: 37754792 PMCID: PMC10531582 DOI: 10.3390/jcdd10090363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Photon-counting computed tomography (PCCT) is an emerging technology that can potentially transform clinical CT imaging. After a brief description of the PCCT technology, this review summarizes its main advantages over conventional CT: improved spatial resolution, improved signal and contrast behavior, reduced electronic noise and artifacts, decreased radiation dose, and multi-energy capability with improved material discrimination. Moreover, by providing an overview of the existing literature, this review highlights how the PCCT benefits have been harnessed to enhance and broaden the diagnostic capabilities of CT for cardiovascular applications, including the detection of coronary artery calcifications, evaluation of coronary plaque extent and composition, evaluation of coronary stents, and assessment of myocardial tissue characteristics and perfusion.
Collapse
Affiliation(s)
- Antonella Meloni
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
- Unità Operativa Complessa di Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| | - Vicenzo Positano
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
- Unità Operativa Complessa di Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato, CA, Italy;
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SynLab-SDN, 80131 Naples, Italy; (C.C.); (B.P.)
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SynLab-SDN, 80131 Naples, Italy; (C.C.); (B.P.)
| | - Erica Maffei
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| |
Collapse
|
30
|
Graafen D, Stoehr F, Halfmann MC, Emrich T, Foerster F, Yang Y, Düber C, Müller L, Kloeckner R. Quantum iterative reconstruction on a photon-counting detector CT improves the quality of hepatocellular carcinoma imaging. Cancer Imaging 2023; 23:69. [PMID: 37480062 PMCID: PMC10362630 DOI: 10.1186/s40644-023-00592-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Excellent image quality is crucial for workup of hepatocellular carcinoma (HCC) in patients with liver cirrhosis because a signature tumor signal allows for non-invasive diagnosis without histologic proof. Photon-counting detector computed tomography (PCD-CT) can enhance abdominal image quality, especially in combination with a novel iterative reconstruction algorithm, quantum iterative reconstruction (QIR). The purpose of this study was to analyze the impact of different QIR levels on PCD-CT imaging of HCC in both phantom and patient scans. METHODS Virtual monoenergetic images at 50 keV were reconstructed using filtered back projection and all available QIR levels (QIR 1-4). Objective image quality properties were investigated in phantom experiments. The study also included 44 patients with triple-phase liver PCD-CT scans of viable HCC lesions. Quantitative image analysis involved assessing the noise, contrast, and contrast-to-noise ratio of the lesions. Qualitative image analysis was performed by three raters evaluating noise, artifacts, lesion conspicuity, and overall image quality using a 5-point Likert scale. RESULTS Noise power spectra in the phantom experiments showed increasing noise suppression with higher QIR levels without affecting the modulation transfer function. This pattern was confirmed in the in vivo scans, in which the lowest noise levels were found in QIR-4 reconstructions, with around a 50% reduction in median noise level compared with the filtered back projection images. As contrast does not change with QIR, QIR-4 also yielded the highest contrast-to-noise ratios. With increasing QIR levels, rater scores were significantly better for all qualitative image criteria (all p < .05). CONCLUSIONS Without compromising image sharpness, the best image quality of iodine contrast optimized low-keV virtual monoenergetic images can be achieved using the highest QIR level to suppress noise. Using these settings as standard reconstruction for HCC in PCD-CT imaging might improve diagnostic accuracy and confidence.
Collapse
Affiliation(s)
- Dirk Graafen
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Fabian Stoehr
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Moritz C Halfmann
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany
| | - Tilman Emrich
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Friedrich Foerster
- Department of Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yang Yang
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christoph Düber
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lukas Müller
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roman Kloeckner
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Present Address: Institute of Interventional Radiology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
31
|
Abstract
ABSTRACT Noninvasive vascular imaging with computed tomography (CT) has become the clinical mainstay for many indications and body regions. The recent introduction of photon-counting detector (PCD)-CT into clinical routine has further broadened the spectrum of vascular applications. Technical improvements of PCD-CT, such as the decreased noise levels, improved contrast-to-noise ratio, and full spectral multienergy data information from every acquisition, have the potential to further impact on clinical decision making and ultimately on outcome of vascular patients. Early experience with the new PCD-CT technology demonstrates these improvements in various aspects. This review summarizes the main advantages of PCD-CT for vascular imaging a discussion of the PureLumen and PureCalcium algorithms.
Collapse
Affiliation(s)
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Jost G, McDermott M, Gutjahr R, Nowak T, Schmidt B, Pietsch H. New Contrast Media for K-Edge Imaging With Photon-Counting Detector CT. Invest Radiol 2023; 58:515-522. [PMID: 37068840 PMCID: PMC10259215 DOI: 10.1097/rli.0000000000000978] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
ABSTRACT The recent technological developments in photon-counting detector computed tomography (PCD-CT) and the introduction of the first commercially available clinical PCD-CT unit open up new exciting opportunities for contrast media research. With PCD-CT, the efficacy of available iodine-based contrast media improves, allowing for a reduction of iodine dosage or, on the other hand, an improvement of image quality in low contrast indications. Virtual monoenergetic image reconstructions are routinely available and enable the virtual monoenergetic image energy to be adapted to the diagnostic task.A key property of PCD-CT is the ability of spectral separation in combination with improved material decomposition. Thus, the discrimination of contrast media from intrinsic or pathological tissues and the discrimination of 2 or more contrasting elements that characterize different tissues are attractive fields for contrast media research. For these approaches, K-edge imaging in combination with high atomic number elements such as the lanthanides, tungsten, tantalum, or bismuth plays a central role.The purpose of this article is to present an overview of innovative contrast media concepts that use high atomic number elements. The emphasis is on improving contrast enhancement for cardiovascular plaque imaging, stent visualization, and exploring new approaches using 2 contrasting elements. Along with the published research, new experimental findings with a contrast medium that incorporates tungsten are included.Both the literature review and the new experimental data demonstrate the great potential and feasibility for new contrast media to significantly increase diagnostic performance and to enable new clinical fields and indications in combination with PCD-CT.
Collapse
Affiliation(s)
- Gregor Jost
- From the MR and CT Contrast Media Research, Bayer AG, Berlin, Germany
| | - Michael McDermott
- From the MR and CT Contrast Media Research, Bayer AG, Berlin, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ralf Gutjahr
- Computed Tomography, Siemens Healthineers, Forchheim, Germany
| | - Tristan Nowak
- Computed Tomography, Siemens Healthineers, Forchheim, Germany
| | | | - Hubertus Pietsch
- From the MR and CT Contrast Media Research, Bayer AG, Berlin, Germany
| |
Collapse
|
33
|
Si-Mohamed SA, Boccalini S, Villien M, Yagil Y, Erhard K, Boussel L, Douek PC. First Experience With a Whole-Body Spectral Photon-Counting CT Clinical Prototype. Invest Radiol 2023; 58:459-471. [PMID: 36822663 PMCID: PMC10259214 DOI: 10.1097/rli.0000000000000965] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
ABSTRACT Spectral photon-counting computed tomography (SPCCT) technology holds great promise for becoming the next generation of computed tomography (CT) systems. Its technical characteristics have many advantages over conventional CT imaging. For example, SPCCT provides better spatial resolution, greater dose efficiency for ultra-low-dose and low-dose protocols, and tissue contrast superior to that of conventional CT. In addition, SPCCT takes advantage of several known approaches in the field of spectral CT imaging, such as virtual monochromatic imaging and material decomposition imaging. In addition, SPCCT takes advantage of a new approach in this field, known as K-edge imaging, which allows specific and quantitative imaging of a heavy atom-based contrast agent. Hence, the high potential of SPCCT systems supports their ongoing investigation in clinical research settings. In this review, we propose an overview of our clinical research experience of a whole-body SPCCT clinical prototype, to give an insight into the potential benefits for clinical human imaging on image quality, diagnostic confidence, and new approaches in spectral CT imaging.
Collapse
Affiliation(s)
- Salim A. Si-Mohamed
- From the University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Sara Boccalini
- From the University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | | | | | | | - Loic Boussel
- From the University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Philippe C. Douek
- From the University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
34
|
Layer YC, Kravchenko D, Dell T, Kütting D. [CT technology: photon-counting detector computed tomography]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023:10.1007/s00117-023-01166-z. [PMID: 37289254 DOI: 10.1007/s00117-023-01166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Photon-counting detector computed tomography (PCD-CT) is a CT technology that overcomes many limitations of conventional detectors. Direct conversion of photons hitting the detector into electrical signals combined with more sensitive and accurate photon detection simultaneously allows spectral evaluation and also potential reduction in radiation exposure to the patient. The combination of energy thresholds and elimination of detector septa allows for a reduction of electronic noise, an increase of spatial resolution, and an improvement of dose efficiency. ACHIEVEMENTS Recent research has confirmed significantly reduced image noise, reduced radiation dose, increased spatial resolution, improved iodine signal, and a reduction in artifacts. Spectral imaging potentiates these effects and also allows retrospective calculation of virtual monoenergetic images, virtual noncontrast images or iodine maps. Thus, the photon-counting technique offers the possibility of using various contrast agents, with the prospect of single-scan multiphase imaging or visualization of specific metabolic processes. Therefore, further research and complementary approval processes are necessary for clinical application. Likewise, further research is needed to develop and validate optimal settings and reconstructions for a wide variety of situations, as well as to test new application possibilities. CONCLUSIONS The only photon-counting detector CT device available on the market to date received clinical approval in 2021. It remains to be seen which other applications will become possible through improvements in hardware and software. This technology has already demonstrated an impressive superiority compared with the current standard of CT imaging, especially regarding high-resolution imaging of detailed structures and examinations with high radiation exposure.
Collapse
Affiliation(s)
- Yannik Christian Layer
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| | - Dmitrij Kravchenko
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| | - Tatjana Dell
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| | - Daniel Kütting
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| |
Collapse
|
35
|
Mastrodicasa D, Aquino GJ, Ordovas KG, Vargas D, Fleischmann D, Abbara S, Hanneman K. Radiology: Cardiothoracic Imaging Highlights 2022. Radiol Cardiothorac Imaging 2023; 5:e230042. [PMID: 37404783 PMCID: PMC10316293 DOI: 10.1148/ryct.230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 05/08/2023] [Indexed: 07/06/2023]
Abstract
Since its inaugural issue in 2019, Radiology: Cardiothoracic Imaging has disseminated the latest scientific advances and technical developments in cardiac, vascular, and thoracic imaging. In this review, we highlight select articles published in this journal between October 2021 and October 2022. The scope of the review encompasses various aspects of coronary artery and congenital heart diseases, vascular diseases, thoracic imaging, and health services research. Key highlights include changes in the revised Coronary Artery Disease Reporting and Data System 2.0, the value of coronary CT angiography in informing prognosis and guiding treatment decisions, cardiac MRI findings after COVID-19 vaccination or infection, high-risk features at CT angiography to identify patients with aortic dissection at risk for late adverse events, and CT-guided fiducial marker placement for preoperative planning for pulmonary nodules. Ongoing research and future directions include photon-counting CT and artificial intelligence applications in cardiovascular imaging. Keywords: Pediatrics, CT Angiography, CT-Perfusion, CT-Spectral Imaging, MR Angiography, PET/CT, Transcatheter Aortic Valve Implantation/Replacement (TAVI/TAVR), Cardiac, Pulmonary, Vascular, Aorta, Coronary Arteries © RSNA, 2023.
Collapse
|
36
|
Cademartiri F, Meloni A, Pistoia L, Degiorgi G, Clemente A, Gori CD, Positano V, Celi S, Berti S, Emdin M, Panetta D, Menichetti L, Punzo B, Cavaliere C, Bossone E, Saba L, Cau R, Grutta LL, Maffei E. Dual-Source Photon-Counting Computed Tomography-Part I: Clinical Overview of Cardiac CT and Coronary CT Angiography Applications. J Clin Med 2023; 12:jcm12113627. [PMID: 37297822 DOI: 10.3390/jcm12113627] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The photon-counting detector (PCD) is a new computed tomography detector technology (photon-counting computed tomography, PCCT) that provides substantial benefits for cardiac and coronary artery imaging. Compared with conventional CT, PCCT has multi-energy capability, increased spatial resolution and soft tissue contrast with near-null electronic noise, reduced radiation exposure, and optimization of the use of contrast agents. This new technology promises to overcome several limitations of traditional cardiac and coronary CT angiography (CCT/CCTA) including reduction in blooming artifacts in heavy calcified coronary plaques or beam-hardening artifacts in patients with coronary stents, and a more precise assessment of the degree of stenosis and plaque characteristic thanks to its better spatial resolution. Another potential application of PCCT is the use of a double-contrast agent to characterize myocardial tissue. In this current overview of the existing PCCT literature, we describe the strengths, limitations, recent applications, and promising developments of employing PCCT technology in CCT.
Collapse
Affiliation(s)
| | - Antonella Meloni
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Giulia Degiorgi
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Vincenzo Positano
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Department of Bioengineering, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Sergio Berti
- Cardiology Unit, Ospedale del Cuore, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Michele Emdin
- Department of Cardiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Daniele Panetta
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Bruna Punzo
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy
| | - Luca Saba
- Department of Radiology, University Hospital, 09042 Monserrato, Italy
| | - Riccardo Cau
- Department of Radiology, University Hospital, 09042 Monserrato, Italy
| | - Ludovico La Grutta
- Department of Radiology, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| |
Collapse
|
37
|
van der Bie J, Sharma SP, van Straten M, Bos D, Hirsch A, Dijkshoorn ML, Adrichem R, van Mieghem NMDA, Budde RPJ. Photon-counting Detector CT in Patients Pre- and Post-Transcatheter Aortic Valve Replacement. Radiol Cardiothorac Imaging 2023; 5:e220318. [PMID: 37124634 PMCID: PMC10141309 DOI: 10.1148/ryct.220318] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023]
Abstract
Photon-counting detector CT (PCD CT) has increasingly garnered interest in cardiothoracic imaging due to its high spatial resolution and ability to perform spectral imaging. CT plays an important role in the planning and postprocedural assessment of transcatheter aortic valve replacement (TAVR). Limitations of current CT technology resulting in blooming and metal artifacts may be addressed with PCD CT. This case series demonstrates the potential advantages of PCD CT in patients prior to and post-TAVR. In TAVR planning, PCD CT allowed for a detailed depiction of the aortic valve, aortic root, coronary arteries, and potential vascular access routes. The high-spatial-resolution reconstructions enabled assessment of hypoattenuating leaflet thickening and periprosthetic leakage for prosthetic valves. This study shows promising initial results, but further research is needed to determine the clinical impact of PCD CT in patients prior to and post-TAVR. Keywords: Transcatheter Aortic Valve Replacement, Cardiac, Coronary Arteries, Heart, Valves, Photon-counting Detector CT © RSNA, 2023 An earlier incorrect version appeared online. This article was corrected on October 27, 2023.
Collapse
Affiliation(s)
| | | | - Marcel van Straten
- From the Departments of Radiology & Nuclear Medicine
(J.v.d.B., S.P.S., M.v.S., D.B., A.H., M.L.D., R.P.J.B.), Cardiology (S.P.S.,
A.H., R.A., N.M.D.A.v.M.), and Epidemiology (D.B.), Erasmus MC, University
Medical Center Rotterdam, PO Box 2040, Dr. Molewaterplein 40, 3015 GD Rotterdam,
the Netherlands
| | - Daniel Bos
- From the Departments of Radiology & Nuclear Medicine
(J.v.d.B., S.P.S., M.v.S., D.B., A.H., M.L.D., R.P.J.B.), Cardiology (S.P.S.,
A.H., R.A., N.M.D.A.v.M.), and Epidemiology (D.B.), Erasmus MC, University
Medical Center Rotterdam, PO Box 2040, Dr. Molewaterplein 40, 3015 GD Rotterdam,
the Netherlands
| | - Alexander Hirsch
- From the Departments of Radiology & Nuclear Medicine
(J.v.d.B., S.P.S., M.v.S., D.B., A.H., M.L.D., R.P.J.B.), Cardiology (S.P.S.,
A.H., R.A., N.M.D.A.v.M.), and Epidemiology (D.B.), Erasmus MC, University
Medical Center Rotterdam, PO Box 2040, Dr. Molewaterplein 40, 3015 GD Rotterdam,
the Netherlands
| | - Marcel L. Dijkshoorn
- From the Departments of Radiology & Nuclear Medicine
(J.v.d.B., S.P.S., M.v.S., D.B., A.H., M.L.D., R.P.J.B.), Cardiology (S.P.S.,
A.H., R.A., N.M.D.A.v.M.), and Epidemiology (D.B.), Erasmus MC, University
Medical Center Rotterdam, PO Box 2040, Dr. Molewaterplein 40, 3015 GD Rotterdam,
the Netherlands
| | - Rik Adrichem
- From the Departments of Radiology & Nuclear Medicine
(J.v.d.B., S.P.S., M.v.S., D.B., A.H., M.L.D., R.P.J.B.), Cardiology (S.P.S.,
A.H., R.A., N.M.D.A.v.M.), and Epidemiology (D.B.), Erasmus MC, University
Medical Center Rotterdam, PO Box 2040, Dr. Molewaterplein 40, 3015 GD Rotterdam,
the Netherlands
| | - Nicolas M. D. A. van Mieghem
- From the Departments of Radiology & Nuclear Medicine
(J.v.d.B., S.P.S., M.v.S., D.B., A.H., M.L.D., R.P.J.B.), Cardiology (S.P.S.,
A.H., R.A., N.M.D.A.v.M.), and Epidemiology (D.B.), Erasmus MC, University
Medical Center Rotterdam, PO Box 2040, Dr. Molewaterplein 40, 3015 GD Rotterdam,
the Netherlands
| | - Ricardo P. J. Budde
- From the Departments of Radiology & Nuclear Medicine
(J.v.d.B., S.P.S., M.v.S., D.B., A.H., M.L.D., R.P.J.B.), Cardiology (S.P.S.,
A.H., R.A., N.M.D.A.v.M.), and Epidemiology (D.B.), Erasmus MC, University
Medical Center Rotterdam, PO Box 2040, Dr. Molewaterplein 40, 3015 GD Rotterdam,
the Netherlands
| |
Collapse
|
38
|
Zsarnoczay E, Fink N, Schoepf UJ, O'Doherty J, Allmendinger T, Hagenauer J, Wolf EV, Griffith JP, Maurovich-Horvat P, Varga-Szemes A, Emrich T. Ultra-high resolution photon-counting coronary CT angiography improves coronary stenosis quantification over a wide range of heart rates - A dynamic phantom study. Eur J Radiol 2023; 161:110746. [PMID: 36821957 DOI: 10.1016/j.ejrad.2023.110746] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE To investigate the effect of using photon-counting detector (PCD)-CT with ultra-high resolution (UHR) on stenosis quantification accuracy and blooming artifacts from low to high heart rates in a dynamic motion phantom. METHOD Two vessel phantoms (diameter: 4 mm) containing solid calcified lesions (25%, 50% stenoses), filled with different concentrations of iodine, inside an anthropomorphic thorax phantom attached to a coronary motion simulator were used. Scanning was performed on a PCD-CT system using an ECG-gated mode at UHR and standard resolution (SR) (0.2, 0.6 mm slice thickness, respectively). Images were reconstructed at 60, 80 and 100 beats per minute (bpm) (UHR: Bv56 kernel, quantum iterative reconstruction (QIR) level 3; SR: 55 keV, Bv40 kernel, QIR3). Percent diameter stenosis (PDS) and blooming artifacts were measured by two readers. RESULTS PDS measurements derived from UHR were more accurate than SR for both lesions at every heart rate (p ≤ 0.005 for all, e.g. 50% lesion SR vs. UHR: at 60 bpm 57.1% [55.2-59.2] vs. 50.0% [48.5-51.2], at 100 bpm 61.0% [58.6-64.3] vs. 52.4% [51.3-54.3]). Overall mean difference across heart rates and lesions compared to the nominal stenoses was 9.2% (Limit of Agreement (LoA), 2.4%/16.0%) for SR vs. 2.4% (LoA, -2.8%/7.5%) for UHR. Blooming artifacts decreased with UHR compared to SR for both lesions at every heart rate (p < 0.001 for all, e.g. 50% lesion SR vs. UHR: at 60 bpm 63.8% [60.6-69.5] vs. 52.5% [50.0-57.5], at 100 bpm 70.2% [64.8-78.1] vs. 56.1% [51.2-60.8]). CONCLUSIONS This motion phantom study demonstrates improved stenosis quantification accuracy and reduced blooming artifacts with UHR-PCD-CT compared to SR, independent of heart rate.
Collapse
Affiliation(s)
- Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University, Korányi Sándor utca 2, Budapest 1083, Hungary.
| | - Nicola Fink
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, Munich 81377, Germany.
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States.
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Siemens Medical Solutions USA Inc, 40 Liberty Boulevard, Malvern, PA 19355, United States.
| | | | - Junia Hagenauer
- Siemens Healthcare GmbH, Siemensstraße 1, Forchheim 91301, Germany; Faculty of Medicine, Friedrich Alexander University of Erlangen-Nuremberg, Krankenhausstraße 12, Erlangen 91054, Germany.
| | - Elias V Wolf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, Mainz 55131, Germany.
| | - Joseph P Griffith
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States.
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University, Korányi Sándor utca 2, Budapest 1083, Hungary.
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States.
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, Mainz 55131, Germany.
| |
Collapse
|
39
|
Photon Counting Detector CT-Based Virtual Noniodine Reconstruction Algorithm for In Vitro and In Vivo Coronary Artery Calcium Scoring: Impact of Virtual Monoenergetic and Quantum Iterative Reconstructions. Invest Radiol 2023:00004424-990000000-00091. [PMID: 36822677 DOI: 10.1097/rli.0000000000000959] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the impact of virtual monoenergetic imaging (VMI) and quantum iterative reconstruction (QIR) on the accuracy of coronary artery calcium scoring (CACS) using a virtual noniodine (VNI) reconstruction algorithm on a first-generation, clinical, photon counting detector computed tomography system. MATERIALS AND METHODS Coronary artery calcium scoring was evaluated in an anthropomorphic chest phantom simulating 3 different patient sizes by using 2 extension rings (small: 300 × 200 mm, medium: 350 × 250 mm, large: 400 × 300 mm) and in patients (n = 61; final analyses only in patients with coronary calcifications [n = 34; 65.4 ± 10.0 years; 73.5% male]), who underwent nonenhanced and contrast-enhanced, electrocardiogram-gated, cardiac computed tomography on a photon counting detector system. Phantom and patient data were reconstructed using a VNI reconstruction algorithm at different VMI (55-80 keV) and QIR (strength 1-4) levels (CACSVNI). True noncontrast (TNC) scans at 70 keV and QIR "off" were used as reference for phantom and patient studies (CACSTNC). RESULTS In vitro and in vivo CACSVNI showed strong correlation (r > 0.9, P < 0.001 for all) and excellent agreement (intraclass correlation coefficient > 0.9 for all) with CACSTNC at all investigated VMI and QIR levels. Phantom and patient CACSVNI significantly increased with decreasing keV levels (in vitro: from 475.2 ± 26.3 at 80 keV up to 652.5 ± 42.2 at 55 keV; in vivo: from 142.5 [7.4/737.7] at 80 keV up to 248.1 [31.2/1144] at 55 keV; P < 0.001 for all), resulting in an overestimation of CACSVNI at 55 keV compared with CACSTNC at 70 keV in some cases (in vitro: 625.8 ± 24.4; in vivo: 225.4 [35.1/959.7]). In vitro CACS increased with rising QIR at low keV. In vivo scores were significantly higher at QIR 1 compared with QIR 4 only at 60 and 80 keV (60 keV: 220.3 [29.6-1060] vs 219.5 [23.7/1048]; 80 keV: 152.0 [12.0/735.6] vs 142.5 [7.4/737.7]; P < 0.001). CACSVNI was closest to CACSTNC at 60 keV, QIR 2 (+0.1%) in the small; 55 keV, QIR 1 (±0%) in the medium; 55 keV, QIR 4 (-0.1%) in the large phantom; and at 60 keV, QIR 1 (-2.3%) in patients. CONCLUSIONS Virtual monoenergetic imaging reconstructions have a significant impact on CACSVNI. The effects of different QIR levels are less consistent and seem to depend on several individual conditions, which should be further investigated.
Collapse
|
40
|
A New Algorithm for Automatically Calculating Noise, Spatial Resolution, and Contrast Image Quality Metrics: Proof-of-Concept and Agreement With Subjective Scores in Phantom and Clinical Abdominal CT. Invest Radiol 2023:00004424-990000000-00084. [PMID: 36719964 DOI: 10.1097/rli.0000000000000954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The aims of this study were to develop a proof-of-concept computer algorithm to automatically determine noise, spatial resolution, and contrast-related image quality (IQ) metrics in abdominal portal venous phase computed tomography (CT) imaging and to assess agreement between resulting objective IQ metrics and subjective radiologist IQ ratings. MATERIALS AND METHODS An algorithm was developed to calculate noise, spatial resolution, and contrast IQ parameters. The algorithm was subsequently used on 2 datasets of anthropomorphic phantom CT scans, acquired on 2 different scanners (n = 57 each), and on 1 dataset of patient abdominal CT scans (n = 510). These datasets include a range of high to low IQ: in the phantom dataset, this was achieved through varying scanner settings (tube voltage, tube current, reconstruction algorithm); in the patient dataset, lower IQ images were obtained by reconstructing 30 consecutive portal venous phase scans as if they had been acquired at lower mAs. Five noise, 1 spatial, and 13 contrast parameters were computed for the phantom datasets; for the patient dataset, 5 noise, 1 spatial, and 18 contrast parameters were computed. Subjective IQ rating was done using a 5-point Likert scale: 2 radiologists rated a single phantom dataset each, and another 2 radiologists rated the patient dataset in consensus. General agreement between IQ metrics and subjective IQ scores was assessed using Pearson correlation analysis. Likert scores were grouped into 2 categories, "insufficient" (scores 1-2) and "sufficient" (scores 3-5), and differences in computed IQ metrics between these categories were assessed using the Mann-Whitney U test. RESULTS The algorithm was able to automatically calculate all IQ metrics for 100% of the included scans. Significant correlations with subjective radiologist ratings were found for 4 of 5 noise (R2 range = 0.55-0.70), 1 of 1 spatial resolution (R2 = 0.21 and 0.26), and 10 of 13 contrast (R2 range = 0.11-0.73) parameters in the phantom datasets and for 4 of 5 noise (R2 range = 0.019-0.096), 1 of 1 spatial resolution (R2 = 0.11), and 16 of 18 contrast (R2 range = 0.008-0.116) parameters in the patient dataset. Computed metrics that significantly differed between "insufficient" and "sufficient" categories were 4 of 5 noise, 1 of 1 spatial resolution, 9 and 10 of 13 contrast parameters for phantom the datasets and 3 of 5 noise, 1 of 1 spatial resolution, and 10 of 18 contrast parameters for the patient dataset. CONCLUSION The developed algorithm was able to successfully calculate objective noise, spatial resolution, and contrast IQ metrics of both phantom and clinical abdominal CT scans. Furthermore, multiple calculated IQ metrics of all 3 categories were in agreement with subjective radiologist IQ ratings and significantly differed between "insufficient" and "sufficient" IQ scans. These results demonstrate the feasibility and potential of algorithm-determined objective IQ. Such an algorithm should be applicable to any scan and may help in optimization and quality control through automatic IQ assessment in daily clinical practice.
Collapse
|