1
|
Keller S, Bruce M, Averkiou MA. Ultrasound Imaging of Microbubble Activity during Sonoporation Pulse Sequences. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:833-845. [PMID: 30638695 PMCID: PMC6690385 DOI: 10.1016/j.ultrasmedbio.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 05/28/2023]
Abstract
Ultrasound-mediated drug delivery using the mechanical action of oscillating and/or collapsing microbubbles has been studied on many different experimental platforms, both in vitro and in vivo; however, the mechanisms remain to be elucidated. Many groups use sterile, enclosed chambers, such as Opticells and Clinicells, to optimize acoustic parameters in vitro needed for effective drug delivery in vivo, as well as for mechanistic investigation of sonoporation or the use of sound to permeate cell membranes. In these containers, cell monolayers are seeded on one side, and the remainder of the volume is filled with a solution containing microbubbles and a model drug. Ultrasound is then applied to study the effect of different parameters on model drug uptake in cell monolayers. Despite the simplicity of this system, the field has been unable to appropriately address what parameters and microbubble concentrations are most effective at enhancing drug uptake and minimizing cellular toxicity. In this work, a common in vitro sonoporation experimental setup was characterized through quantitative analysis of microbubble-dependent acoustic attenuation in combination with high-frame-rate and high-resolution imaging of bubble activity during sonoporation pulse sequences. The goal was to visualize the effect that ultrasound parameters have on microbubble activity. It was observed that under literature-derived sonoporation conditions (0.1-1 MPa, 20-1000 cycles and 10,000 to 10,000,000 microbubbles/mL), there is strong and non-linear acoustic attenuation, as well as bubble destruction, gas diffusion and bubble motion resulting in spatiotemporal pressure and concentration gradients. Ultimately, it was found that the acoustic conditions in common in vitro sonoporation setups are much more complex and confounding than often assumed.
Collapse
Affiliation(s)
- Sara Keller
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Matthew Bruce
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
2
|
Airan RD, Foss CA, Ellens NPK, Wang Y, Mease RC, Farahani K, Pomper MG. MR-Guided Delivery of Hydrophilic Molecular Imaging Agents Across the Blood-Brain Barrier Through Focused Ultrasound. Mol Imaging Biol 2017; 19:24-30. [PMID: 27481359 DOI: 10.1007/s11307-016-0985-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE A wide variety of hydrophilic imaging and therapeutic agents are unable to gain access to the central nervous system (CNS) due to the blood-brain barrier (BBB). In particular, unless a particular transporter exists that may transport the agent across the BBB, most agents that are larger than 500 Da or that are hydrophilic will be excluded by the BBB. Glutamate carboxypeptidase II (GCPII), also known as the prostate-specific membrane antigen (PSMA) in the periphery, has been implicated in various neuropsychiatric conditions. As all agents that target GCPII are hydrophilic and thereby excluded from the CNS, we used GCPII as a platform for demonstrating our MR-guided focused ultrasound (MRgFUS) technique for delivery of GCPII/PSMA-specific imaging agents to the brain. PROCEDURES Female rats underwent MRgFUS-mediated opening of the BBB. After opening of the BBB, either a radio- or fluorescently labeled ureido-based ligand for GCPII/PSMA was administered intravenously. Brain uptake was assessed for 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid ([18F]DCFPyL) and YC-27, two compounds known to bind GCPII/PSMA with high affinity, using positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging, respectively. Specificity of ligand binding to GCPII/PSMA in the brain was determined with co-administration of a molar excess of ZJ-43, a compound of the same chemical class but different structure from either [18F]DCFPyL or YC-27, which competes for GCPII/PSMA binding. RESULTS Dynamic PET imaging using [18F]DCFPyL demonstrated that target uptake reached a plateau by ∼1 h after radiotracer administration, with target/background ratios continuing to increase throughout the course of imaging, from a ratio of ∼4:1 at 45 min to ∼7:1 by 80 min. NIRF imaging likewise demonstrated delivery of YC-27 to the brain, with clear visualization of tracer in the brain at 24 h. Tissue uptake of both ligands was greatly diminished by ZJ-43 co-administration, establishing specificity of binding of each to GCPII/PSMA. On gross and histological examination, animals showed no evidence for hemorrhage or other deleterious consequences of MRgFUS. CONCLUSIONS MRgFUS provided safe opening of the BBB to enable specific delivery of two hydrophilic agents to target tissues within the brain. This platform might facilitate imaging and therapy using a variety of agents that have heretofore been excluded from the CNS.
Collapse
Affiliation(s)
- Raag D Airan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Catherine A Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nicholas P K Ellens
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yuchuan Wang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Keyvan Farahani
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
3
|
Hsiang YH, Song J, Price RJ. The partitioning of nanoparticles to endothelium or interstitium during ultrasound-microbubble-targeted delivery depends on peak-negative pressure. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2015; 17:345. [PMID: 26594129 PMCID: PMC4651175 DOI: 10.1007/s11051-015-3153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
Patients diagnosed with advanced peripheral arterial disease often face poor prognoses and have limited treatment options. For some patient populations, the therapeutic growth of collateral arteries (i.e. arteriogenesis) that bypass regions affected by vascular disease may become a viable treatment option. Our group and others are developing therapeutic approaches centered on the ability of ultrasound-activated microbubbles to permeabilize skeletal muscle capillaries and facilitate the targeted delivery of pro-arteriogenic growth factor-bearing nanoparticles. The development of such approaches would benefit significantly from a better understanding of how nanoparticle diameter and ultrasound peak-negative pressure affect both total nanoparticle delivery and the partitioning of nanoparticles to endothelial or interstitial compartments. Toward this goal, using Balb/C mice that had undergone unilateral femoral artery ligation, we intra-arterially co-injected nanoparticles (50 and 100 nm) with microbubbles, applied 1 MHz ultrasound to the gracilis adductor muscle at peak-negative pressures of 0.7, 0.55, 0.4, and 0.2 MPa, and analyzed nanoparticle delivery and distribution. As expected, total nanoparticle (50 and 100 nm) delivery increased with increasing peak-negative pressure, with 50 nm nanoparticles exhibiting greater tissue coverage than 100 nm nanoparticles. Of particular interest, increasing peak-negative pressure resulted in increased delivery to the interstitium for both nanoparticle sizes, but had little influence on nanoparticle delivery to the endothelium. Thus, we conclude that alterations to peak-negative pressure may be used to adjust the fraction of nanoparticles delivered to the interstitial compartment. This information will be useful when designing ultrasound protocols for delivering pro-arteriogenic nanoparticles to skeletal muscle.
Collapse
Affiliation(s)
- Y.-H. Hsiang
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA
| | - J. Song
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA
| | - R. J. Price
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Kilroy JP, Klibanov AL, Wamhoff BR, Bowles DK, Hossack JA. Localized in vivo model drug delivery with intravascular ultrasound and microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2458-67. [PMID: 25130449 PMCID: PMC4400670 DOI: 10.1016/j.ultrasmedbio.2014.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 05/19/2023]
Abstract
An intravascular ultrasound (IVUS) and microbubble drug delivery system was evaluated in both ex vivo and in vivo swine vessel models. Microbubbles with the fluorophore DiI embedded in the shell as a model drug were infused into ex vivo swine arteries at a physiologic flow rate (105 mL/min) while a 5-MHz IVUS transducer applied ultrasound. Ultrasound pulse sequences consisted of acoustic radiation force pulses to displace DiI-loaded microbubbles from the vessel lumen to the wall, followed by higher-intensity delivery pulses to release DiI into the vessel wall. Insonation with both the acoustic radiation force pulse and the delivery pulse increased DiI deposition 10-fold compared with deposition with the delivery pulse alone. Localized delivery of DiI was then demonstrated in an in vivo swine model. The theoretical transducer beam width predicted the measured angular extent of delivery to within 11%. These results indicate that low-frequency IVUS catheters are a viable method for achieving localized drug delivery with microbubbles.
Collapse
Affiliation(s)
- Joseph P Kilroy
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Alexander L Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Brian R Wamhoff
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA; Hemoshear, LLC, Charlottesville, Virginia, USA
| | - Douglas K Bowles
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - John A Hossack
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
5
|
Ultrasound image-guided therapy enhances antitumor effect of cisplatin. J Med Ultrason (2001) 2013; 41:11-21. [DOI: 10.1007/s10396-013-0475-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 06/03/2013] [Indexed: 12/11/2022]
|
6
|
Burke CW, Hsiang YHJ, Alexander E, Kilbanov AL, Price RJ. Covalently linking poly(lactic-co-glycolic acid) nanoparticles to microbubbles before intravenous injection improves their ultrasound-targeted delivery to skeletal muscle. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1227-35. [PMID: 21456081 PMCID: PMC3092637 DOI: 10.1002/smll.201001934] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/14/2010] [Indexed: 05/26/2023]
Abstract
Intravenously injected nanoparticles can be delivered to skeletal muscle through capillary pores created by the activation of microbubbles with ultrasound; however, strategies that utilize coinjections of free microbubbles and nanoparticles are limited by nanoparticle dilution in the bloodstream. Here, improvement in the delivery of fluorescently labeled ≈150 nm poly(lactic-co-glycolic acid) nanoparticles to skeletal muscle is attempted by covalently linking them to albumin-shelled microbubbles in a composite agent formulation. Studies are performed using an experimental model of peripheral arterial disease, wherein the right and left femoral arteries of BalbC mice are surgically ligated. Four days after arterial ligation, composite agents, coinjected microbubbles and nanoparticles, or nanoparticles alone are administered intravenously and 1 MHz pulsed ultrasound was applied to the left hindlimb. Nanoparticle delivery was assessed at 0, 1, 4, and 24 h post-treatment by fluorescence-mediated tomography. Within the coinjection group, both microbubbles and ultrasound are found to be required for nanoparticle delivery to skeletal muscle. Within the composite agent group, nanoparticle delivery is found to be enhanced 8- to 18-fold over 'no ultrasound' controls, depending on the time of measurement. A maximum of 7.2% of the initial nanoparticle dose per gram of tissue was delivered at 1 hr in the composite agent group, which was significantly greater than in the coinjection group (3.6%). It is concluded that covalently linking 150 nm-diameter poly(lactic-co-glycolic acid) nanoparticles to microbubbles before intravenous injection does improve their delivery to skeletal muscle.
Collapse
Affiliation(s)
- Caitlin W. Burke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Yu-Han J. Hsiang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Eben Alexander
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Alexander L. Kilbanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- The Cardiovascular Division, University of Virginia, Charlottesville, Virginia
| | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Departments of Radiology & Radiation Oncology, University of Virginia, Charlottesville, VA
| |
Collapse
|
7
|
Burke CW, Klibanov AL, Sheehan JP, Price RJ. Inhibition of glioma growth by microbubble activation in a subcutaneous model using low duty cycle ultrasound without significant heating. J Neurosurg 2011; 114:1654-61. [PMID: 21214331 DOI: 10.3171/2010.11.jns101201] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECT In this study, the authors sought determine whether microbubble (MB) destruction with pulsed low duty cycle ultrasound can be used to reduce brain tumor perfusion and growth through nonthermal microvascular ablation. METHODS Studies using C57BLJ6/Rag-1 mice inoculated subcutaneously with C6 glioma cells were approved by the institutional animal care and use committee. Microbubbles were injected intravenously, and 1 MHz ultrasound was applied with varying duty cycles to the tumor every 5 seconds for 60 minutes. During treatment, tumor heating was quantified. Following treatment, tumor growth, hemodynamics, necrosis, and apoptosis were measured. RESULTS Tumor blood flow was significantly reduced immediately after treatment, with posttreatment flow ranging from 36% (0.00002 duty cycle) to 4% (0.01 duty cycle) of pretreatment flow. Seven days after treatment, tumor necrosis and apoptosis were significantly increased in all treatment groups, while treatment with ultrasound duty cycles of 0.005 and 0.01 inhibited tumor growth by 63% and 75%, respectively, compared with untreated tumors. While a modest duty cycle-dependent increase in intratumor temperature was observed, it is unlikely that thermal tissue ablation occurred. CONCLUSIONS In a subcutaneous C6 glioma model, MB destruction with low-duty cycle 1-MHz ultrasound can be used to markedly inhibit growth, without substantial tumor tissue heating. These results may have a bearing on the development of transcranial high-intensity focused ultrasound treatments for brain tumors that are not amenable to thermal ablation.
Collapse
Affiliation(s)
- Caitlin W Burke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|