1
|
Selby NM, Francis ST. Assessment of Acute Kidney Injury using MRI. J Magn Reson Imaging 2025; 61:25-41. [PMID: 38334370 PMCID: PMC11645494 DOI: 10.1002/jmri.29281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
There has been growing interest in using quantitative magnetic resonance imaging (MRI) to describe and understand the pathophysiology of acute kidney injury (AKI). The ability to assess kidney blood flow, perfusion, oxygenation, and changes in tissue microstructure at repeated timepoints is hugely appealing, as this offers new possibilities to describe nature and severity of AKI, track the time-course to recovery or progression to chronic kidney disease (CKD), and may ultimately provide a method to noninvasively assess response to new therapies. This could have significant clinical implications considering that AKI is common (affecting more than 13 million people globally every year), harmful (associated with short and long-term morbidity and mortality), and currently lacks specific treatments. However, this is also a challenging area to study. After the kidney has been affected by an initial insult that leads to AKI, complex coexisting processes ensue, which may recover or can progress to CKD. There are various preclinical models of AKI (from which most of our current understanding derives), and these differ from each other but more importantly from clinical AKI. These aspects are fundamental to interpreting the results of the different AKI studies in which renal MRI has been used, which encompass different settings of AKI and a variety of MRI measures acquired at different timepoints. This review aims to provide a comprehensive description and interpretation of current studies (both preclinical and clinical) in which MRI has been used to assess AKI, and discuss future directions in the field. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nicholas M Selby
- Centre for Kidney Research and Innovation, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Wang Y, Wang B, Qin J, Yan H, Chen H, Guo J, Wu PY, Wang X. Use of multiparametric MRI to noninvasively assess iodinated contrast-induced acute kidney injury. Magn Reson Imaging 2024; 114:110248. [PMID: 39357626 DOI: 10.1016/j.mri.2024.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE To gauge the utility of multiparametric MRI in characterizing pathologic changes after iodinated contrast-induced acute kidney injury (CI-AKI) in rats. METHODS We randomly grouped 24 rats injected with 8 g iodine/kg of body weight (n = 6 each) and 6 rats injected with saline as controls. All rats underwent T1, T2 mapping and diffusion kurtosis imaging (DKI) after contrast injection at 0 (control), 1, 3, 7, 13 days. T1, T2, and mean kurtosis (MK) values were performed in renal outer/inner stripes of outer medulla (OSOM and ISOM) and cortex (CO), and their diagnosis performance for CI-AKI also been evaluated. Serum creatinine (SCr), insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor metalloproteinase 2 (TIMP-2), aquaporin-1 (AQP1), α-smooth muscle actin (α-SMA), and histologic indices were examined. RESULTS Compared with controls, urinary concentrations of both TIMP-2 and IGFBP7 were obviously elevated from Day 1 to Day 13 (all p < 0.05). T2 values were significantly higher than control group for Days 1 and 3, and T1 and MK increased were more remarkable at all time points (Days 1-13) in CI-AKI (all p < 0.05) than control group. Changes in T1 and MK strongly correlated with renal injury scores of all anatomical compartments and with expression levels of AQP1 and moderately correlated with α-SMA. Changes in T2 values correlating moderately with renal scores of CO, ISOM and OSOM and AQP1. The MK obtained the highest area under the receiver operating characteristic (ROC) curve of 0.846 with a sensitivity of 70.8 % and specificity of 88.9 %. CONCLUSIONS Combined use of multiparametric MRI could be a valid noninvasive method for comprehensive monitoring of CI-AKI. Among these parameters, MK may achieve the best diagnostic performance for CI-AKI.
Collapse
Affiliation(s)
- Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Key Laboratory of Intelligent Imaging, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China, 030001; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Jiangbo Qin
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Haili Yan
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Haoyuan Chen
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Jinxia Guo
- GE Healthcare, MR Research China, Beijing 100000, China.
| | - Pu-Yeh Wu
- GE Healthcare, MR Research China, Beijing 100000, China
| | - Xiaochun Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Key Laboratory of Intelligent Imaging, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China, 030001; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| |
Collapse
|
3
|
Li H, Daniel AJ, Buchanan CE, Nery F, Morris DM, Li S, Huang Y, Sousa JA, Sourbron S, Mendichovszky IA, Thomas DL, Priest AN, Francis ST. Improvements in Between-Vendor MRI Harmonization of Renal T 2 Mapping using Stimulated Echo Compensation. J Magn Reson Imaging 2024; 60:2144-2155. [PMID: 38380700 DOI: 10.1002/jmri.29282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND T2 mapping is valuable to evaluate pathophysiology in kidney disease. However, variations in T2 relaxation time measurements across MR scanners and vendors may occur requiring additional correction. PURPOSE To harmonize renal T2 measurements between MR vendor platforms, and use an extended-phase-graph-based fitting method ("StimFit") to correct stimulated echoes and reduce between-vendor variations. STUDY TYPE Prospective. SUBJECTS 8 healthy "travelling" volunteers (37.5% female, 32 ± 6 years) imaged on four MRI systems across three vendors at four sites, 10 healthy volunteers (50% female, 32 ± 8 years) scanned multiple times on a given MR scanner for repeatability evaluation. ISMRM/NIST system phantom scanned for evaluation of T2 accuracy. FIELD STRENGTH/SEQUENCE 3T, multiecho spin-echo sequence. ASSESSMENT T2 images fit using conventional monoexponential fitting and "StimFit." Mean absolute percentage error (MAPE) of phantom measurements with reference T2 values. Average cortex and medulla T2 values compared between MR vendors, with masks obtained from T2-weighted images and T1 maps. Full-width-at-half-maximum (FWHM) T2 distributions to evaluate local homogeneity of measurements. STATISTICAL TESTS Coefficient of variation (CV), linear mixed-effects model, analysis of variance, student's t-tests, Bland-Altman plots, P-value <0.05 considered statistically significant. RESULTS In the ISMRM/NIST phantom, "StimFit" reduced the MAPE from 4.9%, 9.1%, 24.4%, and 18.1% for the four sites (three vendors) to 3.3%, 3.0%, 6.6%, and 4.1%, respectively. In vivo, there was a significant difference in kidney T2 measurements between vendors using a monoexponential fit, but not with "StimFit" (P = 0.86 and 0.92, cortex and medulla, respectively). The intervendor CVs of T2 measures were reduced from 8.0% to 2.6% (cortex) and 7.1% to 2.8% (medulla) with StimFit, resulting in no significant differences for the CVs of intravendor repeat acquisitions (P = 0.13 and 0.05). "StimFit" significantly reduced the FWHM of T2 distributions in the cortex and whole kidney. DATA CONCLUSION Stimulated-echo correction reduces renal T2 variation across MR vendor platforms. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Hao Li
- The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Alexander J Daniel
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | | | - Fábio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - David M Morris
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Shaohang Li
- The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Yuan Huang
- Department of Radiology, University of Cambridge, Cambridge, UK
- EPSRC Cambridge Mathematics of Information in Healthcare Hub, University of Cambridge, Cambridge, UK
| | - João A Sousa
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Iosif A Mendichovszky
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David L Thomas
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrew N Priest
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK
| |
Collapse
|
4
|
Xing Z, Pan L, Yu A, Zhang J, Dong C, Chen J, Xing W, He X, Zhang Z. Value of ultra-high b-value diffusion-weighted imaging for the evaluation of renal ischemia-reperfusion injury. Magn Reson Imaging 2024; 111:1-8. [PMID: 38574980 DOI: 10.1016/j.mri.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
To explore the feasibility of ultra-high b-value diffusion-weighted imaging (ubDWI) in assessment of renal IRI. Thirty-five rabbits were randomized into a control group (n = 7) and a renal IRI group (n = 28). The rabbits in the renal IRI group underwent left renal artery clamping for 60 min. Rabbits underwent axial ubDWI before and at 1, 12, 24, and 48 h after IRI. Apparent diffusion coefficient (ADCst) were calculated from ubDWI with two b-values (b = 0, 1000 s/mm2). Triexponential fits were applied to calculate the pure diffusion coefficients (D), perfusion-related diffusion coefficient (D⁎), and ultra-high ADC (ADCuh). The interobserver reproducibility were evaluated. The repeated measurement analysis of variance and Spearman correlation analysis was used for statistical analysis. The ADCst, D, and ADCuh values showed good reproducibility. The ADCst, D, and D⁎ values of renal Cortex (CO) and outer medulla (OM) significantly decreased after IRI (all P < 0.05). The ADCuh values significantly increased from pre-IRI to 1 h after IRI (P < 0.05) and significantly declined at 24 h and 48 h after IRI (all P < 0.05). ADCuh was strongly positively correlated with AQP-1 in the renal CO and OM (ρ = 0.643, P < 0.001; ρ = 0.662, P < 0.001, respectively). ubDWI can be used to non-invasively evaluate early renal IRI, ADCuh may be adopted to reflect AQP-1 expression.
Collapse
Affiliation(s)
- Zhaoyu Xing
- Department of Urology, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Liang Pan
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Anding Yu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jinggang Zhang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Congsong Dong
- Department of Radiology, Affiliated Hospital 6 of Nantong University (Yancheng Third People's Hospital), Yancheng, China
| | - Jie Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Zhiping Zhang
- Department of Radiology, Affiliated Hospital 6 of Nantong University (Yancheng Third People's Hospital), Yancheng, China.
| |
Collapse
|
5
|
Li H, Priest AN, Horvat-Menih I, Huang Y, Li S, Stewart GD, Mendichovszky IA, Francis ST, Gallagher FA. Fast and High-Resolution T 2 Mapping Based on Echo Merging Plus k-t Undersampling with Reduced Refocusing Flip Angles (TEMPURA) as Methods for Human Renal MRI. Magn Reson Med 2024; 92:1138-1148. [PMID: 38730565 DOI: 10.1002/mrm.30115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE To develop a highly accelerated multi-echo spin-echo method, TEMPURA, for reducing the acquisition time and/or increasing spatial resolution for kidney T2 mapping. METHODS TEMPURA merges several adjacent echoes into one k-space by either combining independent echoes or sharing one echo between k-spaces. The combined k-space is reconstructed based on compressed sensing theory. Reduced flip angles are used for the refocusing pulses, and the extended phase graph algorithm is used to correct the effects of indirect echoes. Two sequences were developed: a fast breath-hold sequence; and a high-resolution sequence. The performance was evaluated prospectively on a phantom, 16 healthy subjects, and two patients with different types of renal tumors. RESULTS The fast TEMPURA method reduced the acquisition time from 3-5 min to one breath-hold (18 s). Phantom measurements showed that fast TEMPURA had a mean absolute percentage error (MAPE) of 8.2%, which was comparable to a standardized respiratory-triggered sequence (7.4%), but much lower than a sequence accelerated by purely k-t undersampling (21.8%). High-resolution TEMPURA reduced the in-plane voxel size from 3 × 3 to 1 × 1 mm2, resulting in improved visualization of the detailed anatomical structure. In vivo T2 measurements demonstrated good agreement (fast: MAPE = 1.3%-2.5%; high-resolution: MAPE = 2.8%-3.3%) and high correlation coefficients (fast: R = 0.85-0.98; high-resolution: 0.82-0.96) with the standardized method, outperforming k-t undersampling alone (MAPE = 3.3-4.5%, R = 0.57-0.59). CONCLUSION TEMPURA provides fast and high-resolution renal T2 measurements. It has the potential to improve clinical throughput and delineate intratumoral heterogeneity and tissue habitats at unprecedented spatial resolution.
Collapse
Affiliation(s)
- Hao Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Andrew N Priest
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | | | - Yuan Huang
- Department of Radiology, University of Cambridge, Cambridge, UK
- EPSRC Cambridge Mathematics of Information in Healthcare Hub, University of Cambridge, Cambridge, UK
| | - Shaohang Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Grant D Stewart
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Iosif A Mendichovszky
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
6
|
Chen J, Wang Q, Li S, Han R, Wang C, Cheng S, Yang B, Diao L, Yang T, Sun D, Zhang D, Dong Y, Wang T. Does Two-Step Infusion Improve the Pharmacokinetics/Pharmacodynamics Target Attainment of Meropenem in Critically Ill Patients? J Pharm Sci 2024; 113:2904-2914. [PMID: 38996917 DOI: 10.1016/j.xphs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The optimal method for administering meropenem remains controversial. This study was conducted to explore the optimal two-step infusion strategy (TIT), and to investigate whether TIT is superior to intermittent infusion therapy (IIT) and prolonged infusion therapy (PIT). A physiologically based pharmacokinetics model for critically ill patients was established and evaluated. The validated model was utilized to evaluate the pharmacokinetics/pharmacodynamics (PK/PD) target attainment of meropenem. The PK/PD target attainment of different TITs varied greatly, and the total infusion duration and the first-step dose greatly affected these values. The optimal TIT was 0.25 g (30 min) + 0.75 g (150 min) at MICs of ≤2 mg/L, and 0.25 g (45 min) + 0.75 g (255 min) at MICs of 4-8 mg/L. The PK/PD target attainment of optimal TIT, PIT, and IIT were 100 % at MICs of ≤1 mg/L. When MIC increased to 2-8 mg/L, the PK/PD target attainment of optimal TIT was similar to that of PIT and higher than IIT. In conclusion, TIT did not significantly improve the PK/PD target attainment of meropenem compared with PIT. IIT is adequate at MICs of ≤1 mg/L, and PIT may be the optimal meropenem infusion method in critically ill patients with MICs of 2-8 mg/L.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruiying Han
- Department of Pharmacy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiqi Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Baogui Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lizhuo Diao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tingting Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Dan Sun
- Department of Pharmacy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Di Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
7
|
Zaheer J, Shanmugiah J, Kim S, Kim H, Ko IO, Byun BH, Cheong MA, Lee SS, Kim JS. 99mTc-DMSA and 99mTc-DTPA identified renal dysfunction due to microplastic polyethylene in murine model. CHEMOSPHERE 2024; 364:143108. [PMID: 39151586 DOI: 10.1016/j.chemosphere.2024.143108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
In the previous study (Im et al., 2022), we revealed microplastic (MP) was accumulated and cleared through the kidneys via PET imaging. Here, we aimed to identify the renal dysfunction due to polyethylene (PE) MP in the kidney tissue. Mice were exposed to 100 ppm (∼equivalent to 0.1 mg/mL)/100 μL of PE for 12 weeks (n = 10). PE uptake in the kidney tissues was confirmed using confocal microscopy. QuantSeq analysis was performed to determine gene expression. Renal function assessment was performed using 99mTc-Diethylene triamine penta acetic acid or 99mTc-Dimercaptosuccinic acid. Measurement of creatinine, BUN, and albumin levels in serum and urine samples was also estimated. [18F]-FDG was also acquired. PE increased expression of Myc, CD44, Programmed Death-Ligand 1 (PD-L1), and Hypoxia-Inducible Factor (HIF)-1α, which indicates a potential link to an increased risk of early-onset cancer. An increase in glucose metabolism of [18F]-FDG were observed. We assessed renal failure using 99mTc-Diethylene triamine penta acetic acid and 99mTc-Dimercaptosuccinic acid scintigraphy to determine the renal function. Renal failure was confirmed using serum and urine creatinine, serum blood urea nitrogen levels, serum albumin levels, and urine albumin levels in PE exposed mice, relative to the control. In sum, PE exposure induced renal dysfunction in a murine model.
Collapse
Affiliation(s)
- Javeria Zaheer
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, 01812, Republic of Korea
| | - Joycie Shanmugiah
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, 01812, Republic of Korea
| | - Seungyoun Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, 01812, Republic of Korea
| | - Hyeongi Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - In Ok Ko
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Byung Hyun Byun
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Myeong A Cheong
- Department of Internal Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Seung-Sook Lee
- Department of Pathology, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Jin Su Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, 01812, Republic of Korea.
| |
Collapse
|
8
|
Mukherjee S, Bhaduri S, Harwood R, Murray P, Wilm B, Bearon R, Poptani H. Multiparametric MRI based assessment of kidney injury in a mouse model of ischemia reperfusion injury. Sci Rep 2024; 14:19922. [PMID: 39198525 PMCID: PMC11358484 DOI: 10.1038/s41598-024-70401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Kidney diseases pose a global healthcare burden, with millions requiring renal replacement therapy. Ischemia/reperfusion injury (IRI) is a common pathology of acute kidney injury, causing hypoxia and subsequent inflammation-induced kidney damage. Accurate detection of acute kidney injury due to IRI is crucial for timely intervention. We used longitudinal, multi-parametric magnetic resonance imaging (MRI) employing arterial spin labelling (ASL), diffusion weighted imaging (DWI), and dynamic contrast enhanced (DCE)-MRI to assess IRI induced changes in both the injured and healthy contralateral kidney, in a unilateral IRI mouse model (n = 9). Multi-parametric MRI demonstrated significant differences in kidney volume (p = 0.001), blood flow (p = 0.002), filtration coefficient (p = 0.038), glomerular filtration rate (p = 0.005) and apparent diffusion coefficient (p = 0.048) between the injured kidney and contralateral kidney on day 1 post-IRI surgery. Identification of the injured kidney using principal component analysis including most of the imaging parameters demonstrated an area under the curve (AUC) of 0.97. These results point to the utility of multi-parametric MRI in early detection of IRI-induced kidney damage suggesting that the combination of various MRI parameters may be suitable for monitoring the extent of injury in this model.
Collapse
Affiliation(s)
- Soham Mukherjee
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Sourav Bhaduri
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
- Institute for Advancing Intelligence (IAI), TCG CREST, Kolkata, India
| | - Rachel Harwood
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rachel Bearon
- Department of Mathematical Science, University of Liverpool, Liverpool, UK
- Department of Mathematics, Kings College, London, UK
| | - Harish Poptani
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| |
Collapse
|
9
|
Zhao K, Seeliger E, Niendorf T, Liu Z. Noninvasive Assessment of Diabetic Kidney Disease With MRI: Hype or Hope? J Magn Reson Imaging 2024; 59:1494-1513. [PMID: 37675919 DOI: 10.1002/jmri.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Owing to the increasing prevalence of diabetic mellitus, diabetic kidney disease (DKD) is presently the leading cause of chronic kidney disease and end-stage renal disease worldwide. Early identification and disease interception is of paramount clinical importance for DKD management. However, current diagnostic, disease monitoring and prognostic tools are not satisfactory, due to their low sensitivity, low specificity, or invasiveness. Magnetic resonance imaging (MRI) is noninvasive and offers a host of contrast mechanisms that are sensitive to pathophysiological changes and risk factors associated with DKD. MRI tissue characterization involves structural and functional information including renal morphology (kidney volume (TKV) and parenchyma thickness using T1- or T2-weighted MRI), renal microstructure (diffusion weighted imaging, DWI), renal tissue oxygenation (blood oxygenation level dependent MRI, BOLD), renal hemodynamics (arterial spin labeling and phase contrast MRI), fibrosis (DWI) and abdominal or perirenal fat fraction (Dixon MRI). Recent (pre)clinical studies demonstrated the feasibility and potential value of DKD evaluation with MRI. Recognizing this opportunity, this review outlines key concepts and current trends in renal MRI technology for furthering our understanding of the mechanisms underlying DKD and for supplementing clinical decision-making in DKD. Progress in preclinical MRI of DKD is surveyed, and challenges for clinical translation of renal MRI are discussed. Future directions of DKD assessment and renal tissue characterization with (multi)parametric MRI are explored. Opportunities for discovery and clinical break-through are discussed including biological validation of the MRI findings, large-scale population studies, standardization of DKD protocols, the synergistic connection with data science to advance comprehensive texture analysis, and the development of smart and automatic data analysis and data visualization tools to further the concepts of virtual biopsy and personalized DKD precision medicine. We hope that this review will convey this vision and inspire the reader to become pioneers in noninvasive assessment and management of DKD with MRI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
10
|
梁 灿, 李 莹, 贺 晓. [Functional MRI assessment of microstructural and perfusion changes in the kidneys of rats with intrauterine growth restriction]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:289-296. [PMID: 38557382 PMCID: PMC10986373 DOI: 10.7499/j.issn.1008-8830.2309004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/28/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES To explore the value of functional magnetic resonance imaging (MRI) techniques, including intravoxel incoherent motion (IVIM), T1 mapping, and T2 mapping, in assessing the microstructural and perfusion changes in the kidneys of rats with intrauterine growth restriction (IUGR). METHODS An IUGR rat model was established through a low-protein diet during pregnancy. Offspring from pregnant rats on a low-protein diet were randomly divided into an IUGR 8-week group and an IUGR 12-week group, while offspring from pregnant rats on a normal diet were divided into a normal 8-week group and a normal 12-week group (n=8 for each group). The apparent diffusion coefficient (ADC), true diffusion coefficient (Dt), pseudo-diffusion coefficient (D*), perfusion fraction (f), T1 value, and T2 value of the renal cortex and medulla were compared, along with serum creatinine and blood urea nitrogen levels among the groups. RESULTS The Dt value in the renal medulla was higher in the IUGR 12-week group than in the IUGR 8-week group, and the D* value in the renal medulla was lower in the IUGR 12-week group than in both the normal 12-week group and the IUGR 8-week group (P<0.05). The T1 value in the renal medulla was higher than in the cortex in the IUGR 8-week group, and the T1 value in the renal medulla was higher in the IUGR 12-week group than in both the IUGR 8-week group and the normal 12-week group, with the cortical T1 value in the IUGR 12-week group also being higher than that in the normal 12-week group (P<0.05). The T2 values in the renal medulla were higher than those in the cortex across all groups (P<0.05). There were no significant differences in the T2 values of either the cortex or medulla among the groups (P>0.05). There were no significant differences in serum creatinine and blood urea nitrogen levels among the groups (P>0.05). Glomerular hyperplasia and hypertrophy without significant fibrotic changes were observed in the IUGR 8-week group, whereas glomerular atrophy, cystic stenosis, and interstitial inflammatory infiltration and fibrosis were seen in the IUGR 12-week group. CONCLUSIONS IVIM MRI can be used to assess and dynamically observe the microstructural and perfusion damage in the kidneys of IUGR rats. MRI T1 mapping can be used to evaluate kidney damage in IUGR rats, and the combination of MRI T1 mapping and T2 mapping can further differentiate renal fibrosis in IUGR rats.
Collapse
Affiliation(s)
- 灿 梁
- 中南大学湘雅二医院新生儿疾病研究室,湖南长沙410011
| | - 莹 李
- 中南大学湘雅二医院新生儿疾病研究室,湖南长沙410011
| | | |
Collapse
|
11
|
Bane O, Lewis SC, Lim RP, Carney BW, Shah A, Fananapazir G. Contemporary and Emerging MRI Strategies for Assessing Kidney Allograft Complications: Arterial Stenosis and Parenchymal Injury, From the AJR Special Series on Imaging of Fibrosis. AJR Am J Roentgenol 2024; 222:e2329418. [PMID: 37315018 PMCID: PMC11006565 DOI: 10.2214/ajr.23.29418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
MRI plays an important role in the evaluation of kidney allografts for vascular complications as well as parenchymal insults. Transplant renal artery stenosis, the most common vascular complication of kidney transplant, can be evaluated by MRA using gadolinium and nongadolinium contrast agents as well as by unenhanced MRA techniques. Parenchymal injury occurs through a variety of pathways, including graft rejection, acute tubular injury, BK polyomavirus infection, drug-induced interstitial nephritis, and pyelonephritis. Investigational MRI techniques have sought to differentiate among these causes of dysfunction as well as to assess the degree of interstitial fibrosis or tubular atrophy (IFTA)-the common end pathway for all of these processes-which is currently evaluated by invasively obtained core biopsies. Some of these MRI sequences have shown promise in not only assessing the cause of parenchymal injury but also assessing IFTA noninvasively. This review describes current clinically used MRI techniques and previews promising investigational MRI techniques for assessing complications of kidney grafts.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sara C Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ruth P Lim
- Department of Radiology and Department of Surgery, University of Melbourne, Austin Health, Melbourne, Australia
| | - Benjamin W Carney
- Department of Radiology, University of California Davis Medical Center, 4860 Y St, Ste 3100, Sacramento, CA 95816
| | - Amar Shah
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ
| | - Ghaneh Fananapazir
- Department of Radiology, University of California Davis Medical Center, 4860 Y St, Ste 3100, Sacramento, CA 95816
| |
Collapse
|
12
|
Wang B, Wang Y, Wang J, Jin C, Zhou R, Guo J, Zhang H, Wang M. Multiparametric Magnetic Resonance Investigations on Acute and Long-Term Kidney Injury. J Magn Reson Imaging 2024; 59:43-57. [PMID: 37246343 DOI: 10.1002/jmri.28784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of critical illness and carries a significant risk of short- and long-term mortality. The prediction of the progression of AKI to long-term injury has been difficult for renal disease treatment. Radiologists are keen for the early detection of transition from AKI to long-term kidney injury, which would help in the preventive measures. The lack of established methods for early detection of long-term kidney injury underscores the pressing needs of advanced imaging technology that reveals microscopic tissue alterations during the progression of AKI. Fueled by recent advances in data acquisition and post-processing methods of magnetic resonance imaging (MRI), multiparametric MRI is showing great potential as a diagnostic tool for many kidney diseases. Multiparametric MRI studies offer a precious opportunity for real-time noninvasive monitoring of pathological development and progression of AKI to long-term injury. It provides insight into renal vasculature and function (arterial spin labeling, intravoxel incoherent motion), tissue oxygenation (blood oxygen level-dependent), tissue injury and fibrosis (diffusion tensor imaging, diffusion kurtosis imaging, T1 and T2 mapping, quantitative susceptibility mapping). The multiparametric MRI approach is highly promising but the longitudinal investigation on the transition of AKI to irreversible long-term impairment is largely ignored. Further optimization and implementation of renal MR methods in clinical practice will enhance our comprehension of not only AKI but chronic kidney diseases. Novel imaging biomarkers for microscopic renal tissue alterations could be discovered and benefit the preventative interventions. This review explores recent MRI applications on acute and long-term kidney injury while addressing lingering challenges, with emphasis on the potential value of the development of multiparametric MRI for renal imaging on clinical systems. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jinxia Guo
- GE Healthcare, MR Research China, Beijing, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Min Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Mei Y, Yang G, Guo Y, Zhao K, Wu S, Xu Z, Zhou S, Yan C, Seeliger E, Niendorf T, Xu Y, Feng Y. Parametric MRI Detects Aristolochic Acid Induced Acute Kidney Injury. Tomography 2022; 8:2902-2914. [PMID: 36548535 PMCID: PMC9786286 DOI: 10.3390/tomography8060243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to aristolochic acid (AA) is of increased concern due to carcinogenic and nephrotoxic effects, and incidence of aristolochic acid nephropathy (AAN) is increasing. This study characterizes renal alterations during the acute phase of AAN using parametric magnetic resonance imaging (MRI). An AAN and a control group of male Wistar rats received administration of aristolochic acid I (AAI) and polyethylene glycol (PEG), respectively, for six days. Both groups underwent MRI before and 2, 4 and 6 days after AAI or PEG administration. T2 relaxation times and apparent diffusion coefficients (ADCs) were determined for four renal layers. Serum creatinine levels (sCr) and blood urea nitrogen (BUN) were measured. Tubular injury scores (TIS) were evaluated based on histologic findings. Increased T2 values were detected since day 2 in the AAN group, but decreased ADCs and increased sCr levels and BUN were not detected until day 4. Significant linear correlations were observed between T2 of the cortex and the outer stripe of outer medulla and TIS. Our results demonstrate that parametric MRI facilitates early detection of renal injury induced by AAI in a rat model. T2 mapping may be a valuable tool for assessing kidney injury during the acute phase of AAN.
Collapse
Affiliation(s)
- Yingjie Mei
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Guixiang Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Kaixuan Zhao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Shuyu Wu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Zhongbiao Xu
- Radiotherapy Center, Guangdong General Hospital, Guangzhou 510080, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan 528399, China
- Correspondence:
| |
Collapse
|
14
|
Geng W, Pan L, Shen L, Sha Y, Sun J, Yu S, Qiu J, Xing W. Evaluating renal iron overload in diabetes mellitus by blood oxygen level-dependent magnetic resonance imaging: a longitudinal experimental study. BMC Med Imaging 2022; 22:200. [PMID: 36401188 PMCID: PMC9675154 DOI: 10.1186/s12880-022-00939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Iron overload plays a critical role in the pathogenesis of diabetic nephropathy. Non-invasive evaluation of renal iron overload in diabetes in the management and intervention of diabetic nephropathy is of great significance. This study aimed to explore the feasibility of blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) in evaluating renal iron overload in diabetes using a rabbit model. METHODS The rabbits were randomly divided into control, iron-overload (I), diabetes (D), and diabetes with iron-overload (DI) groups (each n = 19). The diabetes models were generated by injecting intravenous alloxan solution, and the iron-overload models were generated by injecting intramuscular iron-dextran. BOLD MRI was performed immediately (week 0) and at week 4, 8, and 12 following modeling. The differences in renal cortex (CR2*) and outer medulla R2* (MR2*) and the ratio of MR2*-CR2* (MCR) across the different time points were compared. RESULTS Iron was first deposited in glomeruli in the I group and in proximal tubular cells in renal cortex in the D group. In the DI group, there was iron deposition in both glomeruli and proximal tubular cells at week 4, and the accumulation increased subsequently. The degree of kidney injury and iron overload was more severe in the DI group than those in the I and D groups at week 12. At week 8 and 12, the CR2* and MR2* in the DI group were higher than those in the I and D groups (all P < 0.05). The MCR in the I, D, and DI groups decreased from week 0 to 4 (all P < 0.001), and that in the I group increased from week 8 to 12 (P = 0.034). CR2* and MR2* values displayed different trends from week 0-12. Dynamic MCR curves in the D and DI groups were different from that in the I group. CONCLUSION It presents interactions between diabetes and iron overload in kidney injury, and BOLD MRI can be used to evaluate renal iron overload in diabetes.
Collapse
Affiliation(s)
- Weiwei Geng
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Liang Pan
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Liwen Shen
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yuanyuan Sha
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Jun Sun
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Shengnan Yu
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Jianguo Qiu
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
15
|
Wang F, Otsuka T, Adelnia F, Takahashi K, Delgado R, Harkins KD, Zu Z, de Caestecker MP, Harris RC, Gore JC, Takahashi T. Multiparametric magnetic resonance imaging in diagnosis of long-term renal atrophy and fibrosis after ischemia reperfusion induced acute kidney injury in mice. NMR IN BIOMEDICINE 2022; 35:e4786. [PMID: 35704387 PMCID: PMC10805124 DOI: 10.1002/nbm.4786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Tubular atrophy and fibrosis are pathological changes that determine the prognosis of kidney disease induced by acute kidney injury (AKI). We aimed to evaluate multiple magnetic resonance imaging (MRI) parameters, including pool size ratio (PSR) from quantitative magnetization transfer, relaxation rates, and measures from spin-lock imaging ( R 1 ρ and S ρ ), for assessing the pathological changes associated with AKI-induced kidney disease. Eight-week-old male C57BL/6 J mice first underwent unilateral ischemia reperfusion injury (IRI) induced by reperfusion after 45 min of ischemia. They were imaged using a 7T MRI system 56 days after the injury. Paraffin tissue sections were stained using Masson trichrome and picrosirius red to identify histopathological changes such as tubular atrophy and fibrosis. Histology detected extensive tubular atrophy and moderate fibrosis in the cortex and outer stripe of the outer medulla (CR + OSOM) and more prominent fibrosis in the inner stripe of the outer medulla (ISOM) of IRI kidneys. In the CR + OSOM region, evident decreases in PSR, R 1 , R 2 , R 1 ρ , and S ρ showed in IRI compared with contralateral kidneys, with PSR and S ρ exhibiting the most significant changes. In addition, the exchange parameter S ρ dropped by the largest degree among all the MRI parameters, whileR 2 * increased significantly. In the ISOM of IRI kidneys, PSR increased while S ρ kept decreasing. R 2 , R 1 ρ , andR 2 * all increased due to more severe fibrosis in this region. Among MRI measures, PSR and R 1 ρ showed the highest detectability of renal changes no matter whether tubular atrophy or fibrosis dominated.R 2 * and S ρ could be more specific to a single pathological event than other MRI measures because onlyR 2 * increased and S ρ decreased consistently when either fibrosis or tubular atrophy dominated, and their correlations with fibrosis scores were higher than other MRI measures. Multiparametric MRI may enable a more comprehensive analysis of histopathological changes following AKI.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tadashi Otsuka
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
| | - Fatemeh Adelnia
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rachel Delgado
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kevin D. Harkins
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt
University, Nashville, TN 37232
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mark P. de Caestecker
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt
University, Nashville, TN 37232
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
16
|
Wang B, Wang Y, Tan Y, Guo J, Chen H, Wu PY, Wang X, Zhang H. Assessment of Fasudil on Contrast-Associated Acute Kidney Injury Using Multiparametric Renal MRI. Front Pharmacol 2022; 13:905547. [PMID: 35784704 PMCID: PMC9242620 DOI: 10.3389/fphar.2022.905547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Aims: To evaluate the utility of fasudil in a rat model of contrast-associated acute kidney injury (CA-AKI) and explore its underlying mechanism through multiparametric renal magnetic resonance imaging (mpMRI). Methods: Experimental rats (n = 72) were grouped as follows: controls (n = 24), CA-AKI (n = 24), or CA-AKI + Fasudil (n = 24). All animals underwent two mpMRI studies (arterial spin labeling, T1 and T2 mapping) at baseline and post iopromide/fasudil injection (Days 1, 3, 7, and 13 respectively). Relative change in renal blood flow (ΔRBF), T1 (ΔT1) and T2 (ΔT2) values were assessed at specified time points. Serum levels of cystatin C (CysC) and interleukin-1β (IL-1β), and urinary neutrophil gelatinase-associated lipocalin (NGAL) concentrations were tested as laboratory biomarkers, in addition to examining renal histology and expression levels of various proteins (Rho-kinase [ROCK], α-smooth muscle actin [α-SMA]), hypoxia-inducible factor-1α (HIF-1α), and transforming growth factor-β1 (TGF-β1) that regulate renal fibrosis and hypoxia. Results: Compared with the control group, serum levels of CysC and IL-1β, and urinary NGAL concentrations were clearly increased from Day 1 to Day 13 in the CA-AKI group (all p < 0.05). There were significant reductions in ΔT2 values on Days 1 and 3, and ΔT1 reductions were significantly more pronounced at all time points (Days 1–13) in the CA-AKI + Fasudil group (vs. CA-AKI) (all p < 0.05). Fasudil treatment lowered expression levels of ROCK-1, and p-MYPT1/MYPT1 proteins induced by iopromide, decreasing TGF-β1 expression and suppressing both extracellular matrix accumulation and α-SMA expression relative to untreated status (all p < 0.05). Fasudil also enhanced PHD2 transcription and inhibition of HIF-1α expression after CA-AKI. Conclusions: In the context of CA-AKI, fasudil appears to reduce renal hypoxia, fibrosis, and dysfunction by activating (Rho/ROCK) or inhibiting (TGF-β1, HIF-1α) certain signaling pathways and reducing α-SMA expression. Multiparametric MRI may be a viable noninvasive tool for monitoring CA-AKI pathophysiology during fasudil therapy.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Tan
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinxia Guo
- GE Healthcare MR Research China, Beijing, China
| | - Haoyuan Chen
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Pu-Yeh Wu
- GE Healthcare MR Research China, Beijing, China
| | - Xiaochun Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaochun Wang, ; Hui Zhang,
| | - Hui Zhang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaochun Wang, ; Hui Zhang,
| |
Collapse
|
17
|
Chen J, Chen Q, Zhang J, Pan L, Zha T, Zhang Y, Chen J. Value of T2 Mapping in the Dynamic Evaluation of Renal Ischemia-Reperfusion Injury. Acad Radiol 2022; 29:376-381. [PMID: 33836945 DOI: 10.1016/j.acra.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the value of T2 mapping in the dynamic quantitative evaluation of renal ischemia- reperfusion injury (IRI). MATERIALS AND METHODS Forty-eight healthy New Zealand rabbits were randomly divided into IRI group (n = 40) and control group (n = 8). Rabbits in the IRI group underwent left renal artery clamping for 60 minutes. Rabbits underwent MRI examinations (T2WI and T2 mapping) before and 1, 12, 24, and 48 hours after IRI. The inter-observer and intra-observer reproducibility of the T2 values were assessed using the intraclass correlation coefficient (ICC) with 95% confidence interval (CI). Correlations between the T2 value of the renal outer medulla and injury scores were assessed by Spearman correlation analysis. The repeated measures analysis of variance was used to compare the differences in T2 values of the IRI and control group across the different time points. RESULTS Both of the intra-observer (ICC = 0.97, 95% CI 0.95-0.99) and inter-observer reproducibility (ICC = 0.92, 95% CI 0.86-0.96) were excellent for T2 values. The T2 value of the renal outer medulla was moderately positive correlated with tubular epithelial edema (ρ = 0.686, p < 0.001). In IRI group, T2 values of the renal outer medulla were increase at 1 h after IRI (p = 0.001) and were decrease from 1 h to 12 h (p = 0.002). At 1 h after IRI, the T2 values of the renal outer medulla for the IRI group were higher than those for the control group (p < 0.001). CONCLUSION T2 mapping can reflect the dynamic changes of renal parenchyma in an animal model of IRI and be used to assess the early renal IRI.
Collapse
Affiliation(s)
- Jing Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, Jiangsu, China
| | - Qin Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, Jiangsu, China
| | - Jinggang Zhang
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, Jiangsu, China
| | - Liang Pan
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, Jiangsu, China
| | - Tingting Zha
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, Jiangsu, China
| | - Yongcheng Zhang
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, Jiangsu, China
| | - Jie Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, Jiangsu, China.
| |
Collapse
|
18
|
Cui N, He M, Cao Q, Wang K, Zhou X, Han Q, Hou P, Liu C, Chen L, Xu L. Preventive effects of different doses of atorvastatin on contrast-induced acute kidney injury in patients after multiple CT perfusions. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Comparison of T2 Quantification Strategies in the Abdominal-Pelvic Region for Clinical Use. Invest Radiol 2022; 57:412-421. [PMID: 34999669 DOI: 10.1097/rli.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of the study was to compare different magnetic resonance imaging (MRI) acquisition strategies appropriate for T2 quantification in the abdominal-pelvic area. The different techniques targeted in the study were chosen according to 2 main considerations: performing T2 measurement in an acceptable time for clinical use and preventing/correcting respiratory motion. MATERIALS AND METHODS Acquisitions were performed at 3 T. To select sequences for in vivo measurements, a phantom experiment was conducted, for which the T2 values obtained with the different techniques of interest were compared with the criterion standard (single-echo SE sequence, multiple acquisitions with varying echo time). Repeatability and temporal reproducibility studies for the different techniques were also conducted on the phantom. Finally, an in vivo study was conducted on 12 volunteers to compare the techniques that offer acceptable acquisition time for clinical use and either address or correct respiratory motion. RESULTS For the phantom study, the DESS and T2-preparation techniques presented the lowest precision (ρ2 = 0.9504 and ρ2 = 0.9849 respectively), and showed a poor repeatability/reproducibility compared with the other techniques. The strategy relying on SE-EPI showed the best precision and accuracy (ρ2 = 0.9994 and Cb = 0.9995). GRAPPATINI exhibited a very good precision (ρ2 = 0.9984). For the technique relying on radial TSE, the precision was not as good as GRAPPATINI (ρ2 = 0.9872). The in vivo study demonstrated good respiratory motion management for all of the selected techniques. It also showed that T2 estimate ranges were different from one method to another. For GRAPPATINI and radial TSE techniques, there were significant differences between all the different types of organs of interest. CONCLUSIONS To perform T2 measurement in the abdominal-pelvic region, one should favor a technique with acceptable acquisition time for clinical use, with proper respiratory motion management, with good repeatability, reproducibility, and precision. In this study, the techniques relying respectively on SE-EPI, radial TSE, and GRAPPATINI appeared as good candidates.
Collapse
|
20
|
Thiel TA, Schweitzer J, Xia T, Bechler E, Valentin B, Steuwe A, Boege F, Westenfeld R, Wittsack HJ, Ljimani A. Evaluation of Radiographic Contrast-Induced Nephropathy by Functional Diffusion Weighted Imaging. J Clin Med 2021; 10:4573. [PMID: 34640591 PMCID: PMC8509538 DOI: 10.3390/jcm10194573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
Contrast-induced nephropathy (CIN) resembles an important complication of radiographic contrast medium (XCM) displayed by a rise in creatinine levels 48-72 h after XCM administration. The purpose of the current study was to evaluate microstructural renal changes due to CIN in high-risk patients by diffusion weighted (DWI) and diffusion tensor imaging (DTI). Fifteen patients (five CIN and ten non-CIN) scheduled for cardiological intervention were included in the study. All patients were investigated pre- and post-intervention on a clinical 3T scanner. After anatomical imaging, renal DWI was performed by a paracoronal echo-planar-imaging sequence. Renal clinical routine serum parameters and advanced urinary injury markers were determined to monitor renal function. We observed a drop in cortical and medullar apparent diffusion coefficient (ADC) and fractional anisotropy (FA) before and after XCM administration in the CIN group. In contrast, the non-CIN group differed only in medullary ADC. The decrease of ADC and FA was apparent even before serum parameters of the kidney changed. In conclusion, DWI/DTI may be a useful tool for monitoring high-risk CIN patients as part of multi-modality based clinical protocol. Further studies, including advanced analysis of the diffusion signal, may improve the identification of patients at risk for CIN.
Collapse
Affiliation(s)
- Thomas Andreas Thiel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, D-40225 Düsseldorf, Germany; (T.A.T.); (E.B.); (B.V.); (A.S.); (H.-J.W.)
| | - Julian Schweitzer
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (J.S.); (R.W.)
| | - Taogetu Xia
- Institute of Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (T.X.); (F.B.)
| | - Eric Bechler
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, D-40225 Düsseldorf, Germany; (T.A.T.); (E.B.); (B.V.); (A.S.); (H.-J.W.)
| | - Birte Valentin
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, D-40225 Düsseldorf, Germany; (T.A.T.); (E.B.); (B.V.); (A.S.); (H.-J.W.)
| | - Andrea Steuwe
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, D-40225 Düsseldorf, Germany; (T.A.T.); (E.B.); (B.V.); (A.S.); (H.-J.W.)
| | - Friedrich Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (T.X.); (F.B.)
| | - Ralf Westenfeld
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (J.S.); (R.W.)
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, D-40225 Düsseldorf, Germany; (T.A.T.); (E.B.); (B.V.); (A.S.); (H.-J.W.)
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, D-40225 Düsseldorf, Germany; (T.A.T.); (E.B.); (B.V.); (A.S.); (H.-J.W.)
| |
Collapse
|
21
|
Diffusion-Weighted Imaging and Mapping of T1 and T2 Relaxation Time for Evaluation of Chronic Renal Allograft Rejection in a Translational Mouse Model. J Clin Med 2021; 10:jcm10194318. [PMID: 34640336 PMCID: PMC8509284 DOI: 10.3390/jcm10194318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
We hypothesized that multiparametric MRI is able to non-invasively assess, characterize and monitor renal allograft pathology in a translational mouse model of chronic allograft rejection. Chronic rejection was induced by allogenic kidney transplantation (ktx) of BALB/c-kidneys into C57BL/6-mice (n = 23). Animals after isogenic ktx (n = 18) and non-transplanted healthy animals (n = 22) served as controls. MRI sequences (7T) were acquired 3 and 6 weeks after ktx and quantitative T1, T2 and apparent diffusion coefficient (ADC) maps were calculated. In addition, in a subset of animals, histological changes after ktx were evaluated. Chronic rejection was associated with a significant prolongation of T1 time compared to isogenic ktx 3 (1965 ± 53 vs. 1457 ± 52 ms, p < 0.001) and 6 weeks after surgery (1899 ± 79 vs. 1393 ± 51 ms, p < 0.001). While mean T2 times and ADC were not significantly different between allogenic and isogenic kidney grafts, histogram-based analysis of ADC revealed significantly increased tissue heterogeneity in allografts at both time points (standard derivation/entropy/interquartile range, p < 0.05). Correspondingly, histological analysis showed severe inflammation, graft fibrosis and tissue heterogeneity in allogenic but not in isogenic kidney grafts. In conclusion, renal diffusion weighted imaging and mapping of T2 and T1 relaxation times enable detection of chronic renal allograft rejection in mice. The combined quantitative assessment of mean values and histograms provides non-invasive information of chronic changes in renal grafts and allows longitudinal monitoring.
Collapse
|
22
|
Diffusion Weighted Imaging and T2 Mapping Detect Inflammatory Response in the Renal Tissue during Ischemia Induced Acute Kidney Injury in Different Mouse Strains and Predict Renal Outcome. Biomedicines 2021; 9:biomedicines9081071. [PMID: 34440275 PMCID: PMC8393575 DOI: 10.3390/biomedicines9081071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
To characterize ischemia reperfusion injury (IRI)-induced acute kidney injury (AKI) in C57BL/6 (B6) and CD1-mice by longitudinal functional MRI-measurement of edema formation (T2-mapping) and inflammation (diffusion weighted imaging (DWI)). IRI was induced with unilateral right renal pedicle clamping for 35min. 7T-MRI was performed 1 and 14 days after surgery. DWI (7 b-values) and multiecho TSE sequences (7 TE) were acquired. Parameters were quantified in relation to the contralateral kidney on day 1 (d1). Renal MCP-1 and IL-6-levels were measured by qPCR and serum-CXCL13 by ELISA. Immunohistochemistry for fibronectin and collagen-4 was performed. T2-increase on d1 was higher in the renal cortex (127 ± 5% vs. 94 ± 6%, p < 0.01) and the outer stripe of the outer medulla (141 ± 9% vs. 111 ± 9%, p < 0.05) in CD1, indicating tissue edema. Medullary diffusivity was more restricted in CD1 than B6 (d1: 73 ± 3% vs. 90 ± 2%, p < 0.01 and d14: 77 ± 5% vs. 98 ± 3%, p < 0.01). Renal MCP-1 and IL-6-expression as well as systemic CXCL13-release were pronounced in CD1 on d1 after IRI. Renal fibrosis was detected in CD1 on d14. T2-increase and ADC-reduction on d1 correlated with kidney volume loss on d14 (r = 0.7, p < 0.05; r = 0.6, p < 0.05) and could serve as predictive markers. T2-mapping and DWI evidenced higher susceptibility to ischemic AKI in CD1 compared to B6.
Collapse
|
23
|
Katagiri D, Wang F, Gore JC, Harris RC, Takahashi T. Clinical and experimental approaches for imaging of acute kidney injury. Clin Exp Nephrol 2021; 25:685-699. [PMID: 33835326 PMCID: PMC8154759 DOI: 10.1007/s10157-021-02055-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Complex molecular cell dynamics in acute kidney injury and its heterogeneous etiologies in patient populations in clinical settings have revealed the potential advantages and disadvantages of emerging novel damage biomarkers. Imaging techniques have been developed over the past decade to further our understanding about diseased organs, including the kidneys. Understanding the compositional, structural, and functional changes in damaged kidneys via several imaging modalities would enable a more comprehensive analysis of acute kidney injury, including its risks, diagnosis, and prognosis. This review summarizes recent imaging studies for acute kidney injury and discusses their potential utility in clinical settings.
Collapse
Affiliation(s)
- Daisuke Katagiri
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Department of Nephrology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
24
|
Su T, Yang X, Wang R, Yang L, Wang X. Characteristics of diffusion-weighted and blood oxygen level-dependent magnetic resonance imaging in Tubulointerstitial nephritis: an initial experience. BMC Nephrol 2021; 22:237. [PMID: 34187388 PMCID: PMC8243503 DOI: 10.1186/s12882-021-02435-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/09/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Diffusion-weighted (DW) and blood oxygen level-dependent (BOLD) magnetic resonance imaging are classical sequences of functional MR, but the exploration in non-transplanted kidney disease is limited. OBJECTS To analyze the characteristics of apparent diffusion coefficient (ADC) and R2* value using DW and BOLD imaging in tubulointerstitial nephritis (TIN). METHODS Four acute TIN, thirteen chronic TIN patients, and four controls were enrolled. We used multiple gradient-echo sequences to acquire 12 T2*-weighted images to calculate the R2* map. DW imaging acquired ADC values by combining a single-shot spin-echo echo-planar imaging pulse sequence and the additional motion probing gradient pulses along the x,y, z-axes with two b values:0 and 200, as well as 0 and 800 s/mm2. ATIN patients performed DW and BOLD magnetic resonance at renal biopsy(T0) and the third month(T3). We assessed the pathological changes semiquantitatively, and conducted correlation analyses within functional MR, pathological and clinical indexes. RESULTS In ATIN, ADCs were significantly lower(b was 0,200 s/mm2, 2.86 ± 0.19 vs. 3.39 ± 0.11, b was 0,800 s/mm2, 1.76 ± 0.12 vs. 2.16 ± 0.08, P < 0.05) than controls, showing an obvious remission at T3. Cortical and medullary R2* values (CR2*,MR2*) were decreased, significant difference was only observed in MR2*(T0 24.3 ± 2.1vs.T3 33.1 ± 4.1,P < 0.05). No relationship was found between functional MR and histopathological indexes.MR2* had a close relationship with eGFR (R = 0.682,P = 0.001) and serum creatinine(R = -0.502,P = 0.012). Patients with lower ADC when b was 0,200 s/mm2 showed more increase of ADC(R = -0.956,P = 0.044) and MR2*(R = -0.949,P = 0.05) after therapy. In CTIN group, lowered MR2* and MR2*/CR2* provided evidence of intrarenal ischemia. CTIN with advanced CKD (eGFR< 45) had significantly lower ADCb200 value. CONCLUSIONS We observed the reduction and remission of ADC and R2* values in ATIN case series. ATIN patients had concurrently decreased ADCb800 and MR2*. The pseudo normalization of CR2* with persistently low MR2* in CTIN suggested intrarenal hypoxia.
Collapse
Affiliation(s)
- Tao Su
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.
- Renal Pathology Center, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.
| | - Xuedong Yang
- Department of Radiology, Peking University First Hospital, Beijing, China
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Li Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.
- Renal Pathology Center, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
25
|
Nassar MK, Khedr D, Abu-Elfadl HG, E Abdulgalil A, Abdalbary M, Moustafa FEH, Sayed Ahmed N, Shemies RS. Diffusion Tensor Imaging in early prediction of renal fibrosis in patients with renal disease: Functional and histopathological correlations. Int J Clin Pract 2021; 75:e13918. [PMID: 33295069 DOI: 10.1111/ijcp.13918] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
AIM Renal fibrosis (RF) is a well-known marker of chronic kidney disease (CKD) progression. However, renal biopsy is an available tool for evaluation of RF, non-invasive tools are needed not only to detect but also to monitor the progression of fibrosis. The aim of this study is to evaluate the role of diffusion tensor imaging (DTI) in the assessment of renal dysfunction and RF in patients with renal disease. METHODS Fifty-six patients with renal disorders and 22 healthy controls were recruited. All participants underwent DTI. Renal biopsy was performed for all patients. Mean renal medullary and cortical fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were compared between patients and healthy controls and correlated to serum creatinine (SCr), estimated glomerular filtration rate (eGFR), 24-h urinary protein (24h-UPRO) and renal histopathological scores. RESULTS Cortical FA values were significantly higher (P = .001), while cortical ADC values were significantly lower in the patients' group (P = .002). Cortical FA values positively correlated to SCr (P = .006) and negatively correlated to eGFR (P = .03), while cortical ADC negatively correlated to percentage of sclerotic glomeruli, atrophic tubules and interstitial fibrosis (P = .001 for all variables). Medullary ADC negatively correlated to tubular atrophy (P = .02). The diagnostic performance of DTI for detecting RF was supported by ROC curve. Multiple linear regression analysis revealed that the mean cortex ADC was significantly decreased by 0.199 mg/dL for patients with >50% glomerulosclerosis in renal biopsy. CONCLUSION DTI appears to represent a valuable tool for the non-invasive assessment of renal dysfunction and renal fibrosis.
Collapse
Affiliation(s)
- Mohammed K Nassar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Doaa Khedr
- Department of diagnostic radiology, Mansoura University, Mansoura, Egypt
| | - Hend G Abu-Elfadl
- Department of diagnostic radiology, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdulgalil
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | | | - Nagy Sayed Ahmed
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Rasha S Shemies
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| |
Collapse
|
26
|
Zhang J, Chen J, Chen Q, Chen J, Luo K, Pan L, Zhang Y, Dou W, Xing W. Can R 2 ' mapping evaluate hypoxia in renal ischemia reperfusion injury quantitatively? An experimental study. Magn Reson Med 2021; 86:974-983. [PMID: 33724527 DOI: 10.1002/mrm.28696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE To explore if R2 ' mapping can assess renal hypoxia in rabbits with ischemia reperfusion injury (IRI). METHODS Forty rabbits were randomly divided into 4 groups according to the clipping time: the sham group and 45 min, 60 min, and 75 min for the mild, moderate, and severe groups (with n = 10 each group), respectively. Intravenous furosemide (FU) was administered 24 h after IRI. All rabbits were performed 5 times (IRIpre , IRI24h , FU5min , FU12min , and FU24min ) with a 3.0 Tesla MR. The R2 ' values and the hypoxic scores were then recorded. The repeated measurement analysis of variance and Spearman correlation analysis was used for statistical analysis. RESULTS Compared to the baseline, the medullary R2 ' values increased significantly 24 h after the IRI (baseline 19.31 ± 1.21 s-1 , mild group 20.05 ± 1.26 s-1 , moderate group 25.38 ± 1.38 s-1 , and severe group 25.79 ± 1.10 s-1 ; each P < .001). FU led to a significant decrease in the medullary R2 ' value (sham group 11.17 ± 4.33 s-1 , mild group 7.80 ± 0.74 s-1 , moderate group 3.92 ± 0.28 s-1 , and severe group 3.82 ± 0.23 s-1 ; each P < .05). Quantitative hypoxic scores revealed significant differences among the 4 groups in the outer medulla (P < .001 each). The medullary R2 ' differences (before and after intravenous FU) were significantly correlated with the hypoxic scores, respectively (P < .001). CONCLUSION R2 ' mapping can evaluate the renal hypoxia in the procession of IRI in rabbits and might serve as a quantitative biomarker for IRI.
Collapse
Affiliation(s)
- Jinggang Zhang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Jie Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Qin Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Jing Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Kai Luo
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Liang Pan
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Yongcheng Zhang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Weiqiang Dou
- MR research China, GE Healthcare, Beijing, People's Republic of China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| |
Collapse
|
27
|
Buchanan C, Mahmoud H, Cox E, Noble R, Prestwich B, Kasmi I, Taal MW, Francis S, Selby NM. Multiparametric MRI assessment of renal structure and function in acute kidney injury and renal recovery. Clin Kidney J 2021; 14:1969-1976. [PMID: 34345421 PMCID: PMC8323137 DOI: 10.1093/ckj/sfaa221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
Background Acute kidney injury (AKI) is associated with a marked increase in mortality as well as subsequent chronic kidney disease (CKD) and end-stage kidney disease. We performed multiparametric magnetic resonance imaging (MRI) with the aim of identifying potential non-invasive MRI markers of renal pathophysiology in AKI and during recovery. Methods Nine participants underwent inpatient MRI scans at time of AKI; seven had follow-up scans at 3 months and 1 year following AKI. Multiparametric renal MRI assessed total kidney volume (TKV), renal perfusion using arterial spin labelling, T1 mapping and blood oxygen level-dependent (BOLD) R2* mapping. Results Serum creatinine concentration had recovered to baseline levels at 1-year post-AKI in all participants. At the time of AKI, participants had increased TKV, increased cortex/medulla T1 and reduced cortical perfusion compared with the expected ranges in healthy volunteers and people with CKD. TKV and T1 values decreased over time after AKI and returned to expected values in most but not all patients by 1 year. Cortical perfusion improved to a lesser extent and remained below the expected range in the majority of patients by 1-year post-AKI. BOLD R2* data showed a non-significant trend to increase over time post-AKI. Conclusions We observed a substantial increase in TKV and T1 during AKI and a marked decrease in cortical perfusion. Despite biochemical recovery at 1-year post-AKI, MRI measures indicated persisting abnormalities in some patients. We propose that such patients may be more likely to have further AKI episodes or progress to CKD and further longitudinal studies are required to investigate this. .
Collapse
Affiliation(s)
- Charlotte Buchanan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Huda Mahmoud
- Centre for Kidney Research and Innovation, University of Nottingham, Royal Derby Hospital Campus, Nottingham, UK
| | - Eleanor Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Rebecca Noble
- Centre for Kidney Research and Innovation, University of Nottingham, Royal Derby Hospital Campus, Nottingham, UK
| | - Benjamin Prestwich
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Isma Kasmi
- Centre for Kidney Research and Innovation, University of Nottingham, Royal Derby Hospital Campus, Nottingham, UK
| | - Maarten W Taal
- Centre for Kidney Research and Innovation, University of Nottingham, Royal Derby Hospital Campus, Nottingham, UK
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Nottingham, UK
| | - Nicholas M Selby
- Centre for Kidney Research and Innovation, University of Nottingham, Royal Derby Hospital Campus, Nottingham, UK
| |
Collapse
|
28
|
Ko SF, Yip HK, Zhen YY, Hung CC, Lee CC, Huang CC, Ng SH, Chen YL, Lin JW. Renal Damages in Deoxycorticosterone Acetate-Salt Hypertensive Rats: Assessment with Diffusion Tensor Imaging and T2-mapping. Mol Imaging Biol 2021; 22:94-104. [PMID: 31065896 DOI: 10.1007/s11307-019-01364-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to investigate the feasibility of diffusion tensor imaging (DTI) and T2-mapping to assess temporal renal damage in deoxycorticosterone acetate-salt (DOCA-salt) hypertensive rats and compare the results with histopathologic and immunohistochemical findings. PROCEDURES After baseline renal magnetic resonance imaging (MRI), 24 out of 30 uninephrectomized Sprague-Dawley rats with DOCA-salt-induced hypertension were divided equally into four groups. Group 1 had renal MRI at weeks 2, 4, 6, and 8, and groups 2, 3, and 4 had MRI at weeks 2, 4, and 6, respectively. The remaining 6 rats were used as sham controls. The renal cortex and outer and inner stripes of the outer medulla were examined over time using fractional anisotropy (FA), apparent diffusion coefficient (ADC), and T2-mapping, and the results were compared with baseline values. The degree of glomerular and tubular injury, endothelial cell thickening, hyaline arteriolosclerosis, macrophage infiltration, microcyst formation, and fibrosis in different zones at different time points in the DOCA-salt rats were compared with controls. RESULTS Compared with baseline values, DOCA-salt rats demonstrated a significant decrease in renal cortical FA from week 4 to week 8 (0.244 ± 0.015 vs 0.172 ± 0.014-0.150 ± 0.016, P = 0.018-0.002), corresponding to significantly more glomerular damage, arteriolosclerosis, macrophage infiltration, and fibrosis. The DOCA-salt rats had significantly increased cortical ADC and T2 values at weeks 6 and 8 (1.778 ± 0.051 × 10-3 mm2/s vs 1.872 ± 0.058-1.917 ± 0.066 × 10-3 mm2/s; 93.7 ± 4.9 ms vs 98.0 ± 2.9-100.7 ± 4.0 ms, respectively, all P < 0.05), consistent with excessively fluid-filled microcysts (aquaporin-2+). Despite DOCA-salt rats harbored markedly increased fibrosis in outer and inner stripes of the outer medulla at weeks 6 and 8, only nonsignificant decreases in FA were observed in comparison with the controls suggesting that only limited microstructural changes were present. CONCLUSIONS Renal cortical FA is useful for the early detection and monitoring of renal damage in DOCA-salt hypertensive rats.
Collapse
Affiliation(s)
- Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan.
| | - Hon-Kan Yip
- Department of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Researches in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Chih Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Chung-Cheng Huang
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Shu-Hang Ng
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
| | - Yi-Ling Chen
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan.,Center for Translational Researches in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jui-Wei Lin
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Qin T, Wu Y, Liu T, Wu L. Effect of Shenkang on renal fibrosis and activation of renal interstitial fibroblasts through the JAK2/STAT3 pathway. BMC Complement Med Ther 2021; 21:12. [PMID: 33407391 PMCID: PMC7789243 DOI: 10.1186/s12906-020-03180-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Activation of renal fibroblasts is a critical mechanism in the process of renal fibrosis. As a commonly used herbal formula, Shenkang (SK) has been found to attenuate renal fibrosis and renal parenchyma destruction. However, the effect of SK on renal fibroblast activation in unilateral ureteral obstruction (UUO) mice and its molecular mechanism remain undetermined. The present study was performed to elucidate the effect of SK on renal fibroblast activation and renal fibrosis, as well as the potential underlying mechanism, in both NRK-49F cells and UUO mice. METHODS NRK-49F cells were stimulated with 10 ng/ml TGF-β1 for 48 h. After SK treatment, the CCK-8 method was used to evaluate cell viability. Thirty-six C57BL/6 mice were randomly divided into the sham group, UUO group, angiotensin receptor blocker (ARB) group, and SK high-, moderate- and low-dose groups. UUO was induced in mice except those in the sham group. Drugs were administered 1 day later. On the 13th day, the fractional anisotropy (FA) value was determined by MRI to evaluate the degree of renal fibrosis. After 14 days, serum indexes were assessed. Hematoxylin and eosin (HE) and Sirius red staining were used to observe pathological morphology and the degree of fibrosis of the affected kidney. Western blotting and PCR were used to assess the expression of related molecules in both cells and animals at the protein and gene levels. RESULTS Our results showed that SK reduced extracellular matrix (ECM) and α-smooth muscle actin (α-SMA) expression both in vitro and in vivo and attenuated renal fibrosis and the pathological lesion degree after UUO, suppressing JAK2/STAT3 activation. Furthermore, we found that SK regulated the JAK2/STAT3 pathway regulators peroxiredoxin 5 (Prdx5) in vitro and suppressor of cytokine signaling protein 1 (SOCS1) and SOCS3 in vivo. CONCLUSIONS These results indicated that SK inhibited fibroblast activation by regulating the JAK2/STAT3 pathway, which may be a mechanism underlying its protective action in renal fibrosis.
Collapse
Affiliation(s)
- Tianyu Qin
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - You Wu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
30
|
Kim DJK, Drew RC, Sica CT, Yang QX, Miller AJ, Cui J, Herr MD, Sinoway LI. Renal medullary oxygenation decreases with lower body negative pressure in healthy young adults. J Appl Physiol (1985) 2021; 130:48-56. [PMID: 33211597 PMCID: PMC7944934 DOI: 10.1152/japplphysiol.00739.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022] Open
Abstract
One in three Americans suffer from kidney diseases such as chronic kidney disease, and one of the etiologies is suggested to be long-term renal hypoxia. Interestingly, sympathetic nervous system activation evokes a renal vasoconstrictor effect that may limit oxygen delivery to the kidney. In this report, we sought to determine if sympathetic activation evoked by lower body negative pressure (LBNP) would decrease cortical and medullary oxygenation in humans. LBNP was activated in a graded fashion (LBNP; -10, -20, and -30 mmHg), as renal oxygenation was measured (T2*, blood oxygen level dependent, BOLD MRI; n = 8). At a separate time, renal blood flow velocity (RBV) to the kidney was measured (n = 13) as LBNP was instituted. LBNP significantly reduced RBV (P = 0.041) at -30 mmHg of LBNP (Δ-8.17 ± 3.75 cm/s). Moreover, both renal medullary and cortical T2* were reduced with the graded LBNP application (main effect for the level of LBNP P = 0.0008). During recovery, RBV rapidly returned to baseline, whereas medullary T2* remained depressed into the first minute of recovery. In conclusion, sympathetic activation reduces renal blood flow and leads to a significant decrease in oxygenation in the renal cortex and medulla.NEW & NOTEWORTHY In healthy young adults, increased sympathetic activation induced by lower body negative pressure, led to a decrease in renal cortical and medullary oxygenation measured by T2*, a noninvasive magnetic resonance derived index of deoxyhemoglobin levels. In this study, we observed a significant decrease in renal cortical and medullary oxygenation with LBNP as well as an increase in renal vasoconstriction. We speculate that sympathetic renal vasoconstriction led to a significant reduction in tissue oxygenation by limiting oxygen delivery to the renal medulla.
Collapse
Affiliation(s)
- Danielle Jin-Kwang Kim
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Rachel C Drew
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Christopher T Sica
- Department of Radiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Qing X Yang
- Department of Radiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Amanda J Miller
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jian Cui
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Michael D Herr
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
31
|
Derlin K, Hellms S, Gutberlet M, Peperhove M, Jang MS, Greite R, Hartung D, Derlin T, Fegbeutel C, Tudorache I, Jüttner B, Wiese B, Lichtinghagen R, Haller H, Haverich A, Wacker F, Warnecke G, Gueler F. Application of MR diffusion imaging for non-invasive assessment of acute kidney injury after lung transplantation. Medicine (Baltimore) 2020; 99:e22445. [PMID: 33285670 PMCID: PMC7717793 DOI: 10.1097/md.0000000000022445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/06/2020] [Accepted: 08/16/2020] [Indexed: 01/07/2023] Open
Abstract
To assess whether MR diffusion imaging may be applied for non-invasive detection of renal changes correlating with clinical diagnosis of acute kidney injury (AKI) in patients after lung transplantation (lutx).Fifty-four patients (mean age 49.6, range 26-64 years) after lutx were enrolled in a prospective clinical study and underwent functional MR imaging of the kidneys in the early postoperative period. Baseline s-creatinine ranged from 39 to 112 μmol/L. For comparison, 14 healthy volunteers (mean age 42.1, range 24-59 years) underwent magnetic resonance imaging (MRI) using the same protocol. Renal tissue injury was evaluated using quantification of diffusion and diffusion anisotropy with diffusion-weighted (DWI) and diffusion-tensor imaging (DTI). Renal function was monitored and AKI was defined according to Acute-Kidney-Injury-Network criteria. Statistical analysis comprised one-way ANOVA and Pearson correlation.67% of lutx patients (36/54) developed AKI, 47% (17/36) had AKI stage 1, 42% (15/36) AKI stage 2, and 8% (3/36) severe AKI stage 3. Renal apparent diffusion coefficients (ADCs) were reduced in patients with AKI, but preserved in transplant patients without AKI and healthy volunteers (2.07 ± 0.02 vs 2.18 ± 0.05 vs 2.21 ± 0.03 × 10 mm/s, P < .05). Diffusion anisotropy was reduced in all lutx recipients compared with healthy volunteers (AKI: 0.27 ± 0.01 vs no AKI: 0.28 ± 0.01 vs healthy: 0.33 ± 0.02; P < .01). Reduction of renal ADC correlated significantly with acute loss of renal function after lutx (decrease of renal function in the postoperative period and glomerular filtration rate on the day of MRI).MR diffusion imaging enables non-invasive assessment of renal changes correlating with AKI early after lutx. Reduction of diffusion anisotropy was present in all patients after lutx, whereas marked reduction of renal ADC was observed only in the group of lutx recipients with AKI and correlated with renal function impairment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ralf Lichtinghagen
- Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery
| | | | - Gregor Warnecke
- Department of Cardiothoracic, Transplantation and Vascular Surgery
| | | |
Collapse
|
32
|
Renal fibrosis detected by diffusion-weighted magnetic resonance imaging remains unchanged despite treatment in subjects with renovascular disease. Sci Rep 2020; 10:16300. [PMID: 33004888 PMCID: PMC7530710 DOI: 10.1038/s41598-020-73202-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue fibrosis is an important index of renal disease progression. Diffusion-weighted magnetic resonance imaging’s (DWI-MRI) apparent diffusion coefficient (ADC) reveals water diffusion is unobstructed by microstructural alterations like fibrosis. We hypothesized that ADC may indicate renal injury and response to therapy in patients with renovascular disease (RVD). RVD patients were treated with medical therapy (MT) and percutaneous transluminal renal angioplasty (MT + PTRA) (n = 11, 3 bilaterally, n = 14 kidneys) or MT (n = 9). ADC and renal hypoxia (R2*) by blood-oxygen-level-dependent MRI were studied before (n = 27) and 3 months after (n = 20) treatment. Twelve patients underwent renal biopsies. Baseline ADC values were correlated with changes in eGFR, serum creatinine (SCr), systolic blood pressure (SBP), renal hypoxia, and renal vein levels of pro-inflammatory marker tumor necrosis-factor (TNF)-α. Renal oxygenation, eGFR, and SCr improved after MT + PTRA. ADC inversely correlated with the histological degree of renal fibrosis, but remained unchanged after MT or MT + PTRA. Basal ADC values correlated modestly with change in SBP, but not in renal hypoxia, TNF-α levels, or renal function. Lower ADC potentially reflects renal injury in RVD patients, but does not change in response to medical or interventional therapy over 3 months. Future studies need to pinpoint indices of kidney recovery potential.
Collapse
|
33
|
Pan L, Chen J, Zha T, Zou L, Zhang J, Jin P, Luo J, Xing W. Evaluation of renal ischemia-reperfusion injury by magnetic resonance imaging texture analysis: An experimental study. Magn Reson Med 2020; 85:346-356. [PMID: 32726485 DOI: 10.1002/mrm.28403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To explore the value of MRI texture analysis in evaluating the presence and severity of early renal ischemia-reperfusion injury (IRI). METHODS Healthy New Zealand rabbits were used (IRI group, N = 54; control group, N = 8). Rabbits in the IRI group underwent left renal artery clamping for 60 minutes. Magnetic resonance imaging was performed before and at 1, 12, 24, and 48 hours after IRI. The relationship between MRI texture features and histopathology parameters was assessed using Pearson's correlation coefficients. The diagnostic performance of texture features in kidney differentiation at different time points was assessed by receiver operating characteristic curve analysis. RESULTS T2 WI_S(3,-3)Inverse_Difference_Moment had the strongest correlation with brush border destruction, tubular epithelial edema, necrosis, and cast (r = 0.56, -0.58, 0.62, and 0.69, respectively; all P < .001). BOLD_S(4,-4)Correlation had the strongest correlation with interstitial inflammatory cell infiltration (r = 0.63, P < .001). SWI_S(4,4)Difference_Entropy had the strongest correlation with microvessel density (r = 0.61, P < .001). The areas under the curve for T2 WI_S(3,-3)Inverse_Difference_Moment, SWI_S(4,4)Difference_Entropy, and BOLD_S(4,-4)Correlation in kidney differentiation before IRI and that at 1 and 12 hours after reperfusion were 0.76, 0.72, and 0.70, respectively; the values before IRI and at 24 and 48 hours after reperfusion were 0.84, 0.81, and 0.69, respectively. The area under the curve for T2 WI_S(3,-3)Inverse_Difference_Moment in kidney differentiation at 1 and 12 hours after reperfusion and that at 24 and 48 hours after reperfusion was 0.66. CONCLUSION Magnetic resonance imaging texture analysis can be used for evaluating the presence and severity of early renal IRI.
Collapse
Affiliation(s)
- Liang Pan
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tingting Zha
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Liqiu Zou
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jinggang Zhang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Peijie Jin
- Department of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiao Luo
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangzhou Huayin Health Technology Co., Ltd., Guangzhou, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
34
|
Magnetic Resonance Imaging for Evaluation of Interstitial Fibrosis in Kidney Allografts. Transplant Direct 2020; 6:e577. [PMID: 33134501 PMCID: PMC7581173 DOI: 10.1097/txd.0000000000001009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Supplemental Digital Content is available in the text. Interstitial fibrosis (IF) is the common pathway of chronic kidney injury in various conditions. Magnetic resonance imaging (MRI) may be a promising tool for the noninvasive assessment of IF in renal allografts.
Collapse
|
35
|
Fan M, Xing Z, Du Y, Pan L, Sun Y, He X. Quantitative assessment of renal allograft pathologic changes: comparisons of mono-exponential and bi-exponential models using diffusion-weighted imaging. Quant Imaging Med Surg 2020; 10:1286-1297. [PMID: 32550137 DOI: 10.21037/qims-19-985a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Diffusion-weighted imaging (DWI) can noninvasively assess renal allograft pathologic changes that provide useful information for clinical management and prognostication. However, it is still unknown whether the bi-exponential model analysis of DWI signals is superior to that of the mono-exponential model. Methods Pathologic and DWI data from a total of 47 allografts were prospectively collected and analyzed. Kidney transplant interstitial fibrosis was quantified digitally. The severity of acute and chronic pathologic changes was semi-quantified by calculating the acute composite scores (ACS) and chronic composite score (CCS). Mono-exponential total apparent diffusion coefficient (ADCT), and the bi-exponential parameters of true diffusion (D) and perfusion fraction (fp) were acquired. The diagnostic performances of both mono-exponential and bi-exponential parameters were assessed and compared by calculating the area under the curve (AUC) from receiver-operating characteristic (ROC) curve analysis. Results ADCT, D, and fp were all significantly correlated with interstitial fibrosis, ACS, and CCS. Cortical fp discriminated mild from moderate and severe ACS with the largest AUC of 0.89 [95% confidence interval (CI), 0.77-0.96]. Noticeably, only cortical fp could differentiate severe ACS from mild-to-moderate ACS (P<0.001) with an AUC of 0.80 (95% CI, 0.65-0.90) and a sensitivity of 100% (95% CI, 66.4-100%). Strikingly, the joint use of D and fp in either the cortex or the medulla could achieve a sensitivity of 100% for identifying either mild or severe interstitial fibrosis. Meanwhile, the serial use of cortical D and cortical fp showed the largest specificity for identifying both mild [88.9% (95% CI, 70.8-97.6%)] and severe [84.4% (95% CI, 67.2-94.7%)] interstitial fibrosis. For identifying mild CCS, the AUC of medullary ADCT (0.90, 95% CI, 0.78-0.97) was similar to that of cortical D (0.81, 95% CI, 0.67-0.91) and fp (0.86, 95% CI, 0.73-0.94), but statistically larger than that of medullary D (P=0.005) and fp (P=0.01). Furthermore, the parallel use of cortical D and cortical fp could increase the sensitivity to 95.0% (95% CI, 75.1-99.9%), whereas serial use of medullary D and medullary fp could increase the specificity to 100% (95% CI, 87.2-100%). The AUCs for differentiating severe from mild and moderate CCS were statistically insignificant among all parameters in the cortex and medulla (P≥0.15). Conclusions Cortical fp was superior to the ADCT for identifying both mild and severe acute pathologic changes. Nevertheless, ADCT was equal to or better than single D or fp for evaluating chronic pathologic changes. Thus, both monoexponential and bi-exponential analysis of DWI images are complementary for evaluating kidney allograft pathologic changes, and the combined use of D and fp can increase the sensitivity and specificity for discriminating allograft pathologic changes severity.
Collapse
Affiliation(s)
- Min Fan
- Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhaoyu Xing
- Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yanan Du
- Department of Radiology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Liang Pan
- Department of Radiology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yangyang Sun
- Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xiaozhou He
- Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
36
|
Renal and renal sinus fat volumes as quantified by magnetic resonance imaging in subjects with prediabetes, diabetes, and normal glucose tolerance. PLoS One 2020; 15:e0216635. [PMID: 32074103 PMCID: PMC7029849 DOI: 10.1371/journal.pone.0216635] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose We hypothesize that MRI-based renal compartment volumes, particularly renal sinus fat as locally and potentially independently acting perivascular fat tissue, increase with glucose intolerance. We therefore analyze the distribution of renal volumes in individuals with normal glucose levels and prediabetic and diabetic individuals and investigate potential associations with other typical cardiometabolic biomarkers. Material and methods The sample comprised N = 366 participants who were either normoglycemic (N = 230), had prediabetes (N = 87) or diabetes (N = 49), as determined by Oral Glucose Tolerance Test. Other covariates were obtained by standardized measurements and interviews. Whole-body MR measurements were performed on a 3 Tesla scanner. For assessment of the kidneys, a coronal T1w dual-echo Dixon and a coronal T2w single shot fast spin echo sequence were employed. Stepwise semi-automated segmentation of the kidneys on the Dixon-sequences was based on thresholding and geometric assumptions generating volumes for the kidneys and sinus fat. Inter- and intra-reader variability were determined on a subset of 40 subjects. Associations between glycemic status and renal volumes were evaluated by linear regression models, adjusted for other potential confounding variables. Furthermore, the association of renal volumes with visceral adipose tissue was assessed by linear regression models and Pearson’s correlation coefficient. Results Renal volume, renal sinus volume and renal sinus fat increased gradually from normoglycemic controls to individuals with prediabetes to individuals with diabetes (renal volume: 280.3±64.7 ml vs 303.7±67.4 ml vs 320.6±77.7ml, respectively, p < 0.001). After adjustment for age and sex, prediabetes and diabetes were significantly associated to increased renal volume, sinus volume (e.g. βPrediabetes = 10.1, 95% CI: [6.5, 13.7]; p<0.01, βDiabetes = 11.86, 95% CI: [7.2, 16.5]; p<0.01) and sinus fat (e.g. βPrediabetes = 7.13, 95% CI: [4.5, 9.8]; p<0.001, βDiabetes = 7.34, 95% CI: [4.0, 10.7]; p<0.001). Associations attenuated after adjustment for additional confounders were only significant for prediabetes and sinus volume (ß = 4.0 95% CI [0.4, 7.6]; p<0.05). Hypertension was significantly associated with increased sinus volume (β = 3.7, 95% CI: [0.4, 7.0; p<0.05]) and absolute sinus fat volume (β = 3.0, 95% CI: [0.7, 5.3]; p<0.05). GFR and all renal volumes were significantly associated as well as urine creatinine levels and renal sinus volume (β = 1.6, 95% CI: [0.1, 2.9]; p<0.05). Conclusion Renal volume and particularly renal sinus fat volume already increases significantly in prediabetic subjects and is significantly associated with VAT. This shows, that renal sinus fat is a perivascular adipose tissue, which early undergoes changes in the development of metabolic disease. Our findings underpin that renal sinus fat is a link between metabolic disease and associated chronic kidney disease, making it a potential imaging biomarker when assessing perivascular adipose tissue.
Collapse
|
37
|
Diffusion-weighted Renal MRI at 9.4 Tesla Using RARE to Improve Anatomical Integrity. Sci Rep 2019; 9:19723. [PMID: 31873155 PMCID: PMC6928203 DOI: 10.1038/s41598-019-56184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive imaging technique sensitive to tissue water movement. By enabling a discrimination between tissue properties without the need of contrast agent administration, DWI is invaluable for probing tissue microstructure in kidney diseases. DWI studies commonly make use of single-shot Echo-Planar Imaging (ss-EPI) techniques that are prone to suffering from geometric distortion. The goal of the present study was to develop a robust DWI technique tailored for preclinical magnetic resonance imaging (MRI) studies that is free of distortion and sensitive to detect microstructural changes. Since fast spin-echo imaging techniques are less susceptible to B0 inhomogeneity related image distortions, we introduced a diffusion sensitization to a split-echo Rapid Acquisition with Relaxation Enhancement (RARE) technique for high field preclinical DWI at 9.4 T. Validation studies in standard liquids provided diffusion coefficients consistent with reported values from the literature. Split-echo RARE outperformed conventional ss-EPI, with ss-EPI showing a 3.5-times larger border displacement (2.60 vs. 0.75) and a 60% higher intra-subject variability (cortex = 74%, outer medulla = 62% and inner medulla = 44%). The anatomical integrity provided by the split-echo RARE DWI technique is an essential component of parametric imaging on the way towards robust renal tissue characterization, especially during kidney disease.
Collapse
|
38
|
Wang L, Vijayan V, Jang MS, Thorenz A, Greite R, Rong S, Chen R, Shushakova N, Tudorache I, Derlin K, Pradhan P, Madyaningrana K, Madrahimov N, Bräsen JH, Lichtinghagen R, van Kooten C, Huber-Lang M, Haller H, Immenschuh S, Gueler F. Labile Heme Aggravates Renal Inflammation and Complement Activation After Ischemia Reperfusion Injury. Front Immunol 2019; 10:2975. [PMID: 31921212 PMCID: PMC6933315 DOI: 10.3389/fimmu.2019.02975] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Ischemia reperfusion injury (IRI) plays a major role in solid organ transplantation. The length of warm ischemia time is critical for the extent of tissue damage in renal IRI. In this experimental study we hypothesized that local release of labile heme in renal tissue is triggered by the duration of warm ischemia (15 vs. 45 min IRI) and mediates complement activation, cytokine release, and inflammation. Methods: To induce IRI, renal pedicle clamping was performed in male C57BL/6 mice for short (15 min) or prolonged (45 min) time periods. Two and 24 h after experimental ischemia tissue injury labile heme levels in the kidney were determined with an apo-horseradish peroxidase assay. Moreover, renal injury, cytokines, and C5a and C3a receptor (C5aR, C3aR) expression were determined by histology, immunohistochemistry and qPCR, respectively. In addition, in vitro studies stimulating bone marrow-derived macrophages with LPS and the combination of LPS and heme were performed and cytokine expression was measured. Results: Inflammation and local tissue injury correlated with the duration of warm ischemia time. Labile heme concentrations in renal tissue were significantly higher after prolonged (45 min) as compared to short (15 min) IRI. Notably, expression of the inducible heme-degrading enzyme heme oxygenase-1 (HO-1) was up-regulated in kidneys after prolonged, but not after short IRI. C5aR, the pro-inflammatory cytokines IL-6 and TNF-α as well as pERK were up-regulated after prolonged, but not after short ischemia times. Consecutively, neutrophil infiltration and up-regulation of pro-fibrotic cytokines such as CTGF and PAI were more pronounced in prolonged IRI in comparison to short IRI. In vitro stimulation of macrophages with LPS revealed that IL-6 expression was enhanced in the presence of heme. Finally, administration of the heme scavenger human serum albumin (HSA) reduced the expression of pro-inflammatory cytokines, C3a receptor and improved tubular function indicated by enhanced alpha 1 microglobulin (A1M) absorption after IRI. Conclusions: Our data show that prolonged duration of warm ischemia time increased labile heme levels in the kidney, which correlates with IRI-dependent inflammation and up-regulation of anaphylatoxin receptor expression.
Collapse
Affiliation(s)
- Li Wang
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Mi-Sun Jang
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| | - Anja Thorenz
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| | - Robert Greite
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| | - Rongjun Chen
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| | - Nelli Shushakova
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| | - Igor Tudorache
- Department of Cardiothoracic Surgery, Hannover Medical School, Hanover, Germany
| | - Katja Derlin
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
| | - Pooja Pradhan
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Kukuh Madyaningrana
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Nodir Madrahimov
- Department of Cardiothoracic Surgery, Hannover Medical School, Hanover, Germany
| | | | - Ralf Lichtinghagen
- Department of Laboratory Medicine, Hannover Medical School, Hanover, Germany
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Centre, Leiden, Netherlands
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
39
|
Wolf M, de Boer A, Sharma K, Boor P, Leiner T, Sunder-Plassmann G, Moser E, Caroli A, Jerome NP. Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper. Nephrol Dial Transplant 2019; 33:ii41-ii50. [PMID: 30137583 PMCID: PMC6106643 DOI: 10.1093/ndt/gfy198] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
This systematic review, initiated by the European Cooperation in Science and Technology Action Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease (PARENCHIMA), focuses on potential clinical applications of magnetic resonance imaging in renal non-tumour disease using magnetic resonance relaxometry (MRR), specifically, the measurement of the independent quantitative magnetic resonance relaxation times T1 and T2 at 1.5 and 3Tesla (T), respectively. Healthy subjects show a distinguishable cortico-medullary differentiation (CMD) in T1 and a slight CMD in T2. Increased cortical T1 values, that is, reduced T1 CMD, were reported in acute allograft rejection (AAR) and diminished T1 CMD in chronic allograft rejection. However, ambiguous findings were reported and AAR could not be sufficiently differentiated from acute tubular necrosis and cyclosporine nephrotoxicity. Despite this, one recent quantitative study showed in renal transplants a direct correlation between fibrosis and T1 CMD. Additionally, various renal diseases, including renal transplants, showed a moderate to strong correlation between T1 CMD and renal function. Recent T2 studies observed increased values in renal transplants compared with healthy subjects and in early-stage autosomal dominant polycystic kidney disease (ADPKD), which could improve diagnosis and progression assessment compared with total kidney volume alone in early-stage ADPKD. Renal MRR is suggested to be sensitive to renal perfusion, ischaemia/oxygenation, oedema, fibrosis, hydration and comorbidities, which reduce specificity. Due to the lack of standardization in patient preparation, acquisition protocols and adequate patient selection, no widely accepted reference values are currently available. Therefore this review encourages efforts to optimize and standardize (multi-parametric) protocols to increase specificity and to tap the full potential of renal MRR in future research.
Collapse
Affiliation(s)
- Marcos Wolf
- Center for Medical Physics and Biomedical Engineering, MR-Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Anneloes de Boer
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kanishka Sharma
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Peter Boor
- Institute of Pathology & Division of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gere Sunder-Plassmann
- Department of Medicine III, Division of Nephrology and Dialysis, General Hospital and Medical University of Vienna, Vienna, Austria
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, MR-Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Anna Caroli
- Medical Imaging Unit, Bioengineering Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Neil Peter Jerome
- Clinic of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
40
|
Vogel-Claussen J, Schönfeld CO, Kaireit TF, Voskrebenzev A, Czerner CP, Renne J, Tillmann HC, Berschneider K, Hiltl S, Bauersachs J, Welte T, Hohlfeld JM. Effect of Indacaterol/Glycopyrronium on Pulmonary Perfusion and Ventilation in Hyperinflated Patients with Chronic Obstructive Pulmonary Disease (CLAIM). A Double-Blind, Randomized, Crossover Trial. Am J Respir Crit Care Med 2019; 199:1086-1096. [DOI: 10.1164/rccm.201805-0995oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology
- German Center for Lung Research (BREATH), Hannover, Germany
| | - Christian-Olaf Schönfeld
- Institute for Diagnostic and Interventional Radiology
- German Center for Lung Research (BREATH), Hannover, Germany
| | - Till F. Kaireit
- Institute for Diagnostic and Interventional Radiology
- German Center for Lung Research (BREATH), Hannover, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology
- German Center for Lung Research (BREATH), Hannover, Germany
| | - Christoph P. Czerner
- Institute for Diagnostic and Interventional Radiology
- German Center for Lung Research (BREATH), Hannover, Germany
| | - Julius Renne
- Institute for Diagnostic and Interventional Radiology
- German Center for Lung Research (BREATH), Hannover, Germany
| | | | | | - Simone Hiltl
- Novartis Pharma GmbH, Clinical Research Respiratory, Nuremberg, Germany; and
| | | | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
| | - Jens M. Hohlfeld
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
41
|
Pieters TT, Falke LL, Nguyen TQ, Verhaar MC, Florquin S, Bemelman FJ, Kers J, Vanhove T, Kuypers D, Goldschmeding R, Rookmaaker MB. Histological characteristics of Acute Tubular Injury during Delayed Graft Function predict renal function after renal transplantation. Physiol Rep 2019; 7:e14000. [PMID: 30821122 PMCID: PMC6395310 DOI: 10.14814/phy2.14000] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Acute Tubular Injury (ATI) is the leading cause of Delayed Graft Function (DGF) after renal transplantation (RTX). Biopsies taken 1 week after RTX often show extensive tubular damage, which in most cases resolves due to the high regenerative capacity of the kidney. Not much is known about the relation between histological parameters of renal damage and regeneration immediately after RTX and renal outcome in patients with DGF. We retrospectively evaluated 94 patients with DGF due to ATI only. Biopsies were scored for morphological characteristics of renal damage (edema, casts, vacuolization, and dilatation) by three independent blinded observers. The regenerative potential was quantified by tubular cells expressing markers of proliferation (Ki67) and dedifferentiation (CD133). Parameters were related to renal function after recovery (CKD-EPI 3, 6, and 12 months posttransplantation). Quantification of morphological characteristics was reproducible among observers (Kendall's W ≥ 0.56). In a linear mixed model, edema and casts significantly associated with eGFR within the first year independently of clinical characteristics. Combined with donor age, edema and casts outperformed the Nyberg score, a well-validated clinical score to predict eGFR within the first year after transplantation (R2 = 0.29 vs. R2 = 0.14). Although the number of Ki67+ cells correlated to the extent of acute damage, neither CD133 nor Ki67 correlated with renal functional recovery. In conclusion, the morphological characteristics of ATI immediately after RTX correlate with graft function after DGF. Despite the crucial role of regeneration in recovery after ATI, we did not find a correlation between dedifferentiation marker CD133 or proliferation marker Ki67 and renal recovery after DGF.
Collapse
Affiliation(s)
- Tobias T. Pieters
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Lucas L. Falke
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Internal MedicineDiakonessenhuisUtrechtThe Netherlands
| | - Tri Q. Nguyen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Sandrine Florquin
- Department of PathologyAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Frederike J. Bemelman
- Department of NephrologyAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Jesper Kers
- Department of PathologyAmsterdam University Medical CentersAmsterdamThe Netherlands
- University of AmsterdamVan ‘t Hoff Institute for Molecular Sciences (HIMS)AmsterdamThe Netherlands
| | - Thomas Vanhove
- Department of NephrologyUniversity Hospitals of LeuvenLeuvenBelgium
| | - Dirk Kuypers
- Department of NephrologyUniversity Hospitals of LeuvenLeuvenBelgium
| | - Roel Goldschmeding
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
42
|
Renne J, Gutberlet M, Voskrebenzev A, Kern A, Kaireit T, Hinrichs JB, Braubach P, Falk CS, Höffler K, Warnecke G, Zardo P, Haverich A, Wacker F, Vogel-Claussen J, Zinne N. Functional Pulmonary Magnetic Resonance Imaging for Detection of Ischemic Injury in a Porcine Ex-Vivo Lung Perfusion System Prior to Transplantation. Acad Radiol 2019; 26:170-178. [PMID: 29929935 DOI: 10.1016/j.acra.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the feasibility of multiparametric magnetic resonance imaging (MRI) of the lungs to detect impaired organ function in a porcine model of ischemic injury within an ex-vivo lung perfusion system (EVLP) prior to transplantation. MATERIALS AND METHODS Twelve pigs were anesthetized, and left lungs were clamped to induce warm ischemia for 3 hours. Right lungs remained perfused as controls. Lungs were removed and installed in an EVLP for 12 hours. Lungs in the EVLP were imaged repeatedly using computed tomography, proton MRI (1H-MRI) and fluorine MRI (19F-MRI). Dynamic contrast-enhanced derived parenchymal blood volume, oxygen washout times, and 19F washout times were calculated. PaO2 was measured for ischemic and normal lungs, wet/dry ratio was determined, histologic samples were assessed, and cytokines in the lung tissue were analyzed. Statistical analysis was performed using nonparametric testing. RESULTS Eleven pigs were included in the final analysis. Ischemic lungs showed significantly higher wet/dry ratios (p = 0.024), as well as IL-8 tissue levels (p = 0.0098). Histologic assessment as well as morphologic scoring of computed tomography and 1H-MRI did not reveal significant differences between ischemic and control lungs. 19F washout (p = 0.966) and parenchymal blood flow (p = 0.32) were not significantly different. Oxygen washout was significantly prolonged in ischemic lungs compared to normal control lungs at the beginning (p = 0.018) and further prolonged at the end of the EVLP run (p = 0.005). CONCLUSION Multiparametric pulmonary MRI is feasible in lung allografts within an EVLP system. Oxygen-enhanced imaging seems to be a promising marker for ischemic injury, enabling detection of affected lung segments prior to transplantation.
Collapse
|
43
|
Ding J, Xing Z, Jiang Z, Zhou H, Di J, Chen J, Qiu J, Yu S, Zou L, Xing W. Evaluation of renal dysfunction using texture analysis based on DWI, BOLD, and susceptibility-weighted imaging. Eur Radiol 2018; 29:2293-2301. [PMID: 30560361 DOI: 10.1007/s00330-018-5911-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/24/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To explore the value of texture analysis based on diffusion-weighted imaging (DWI), blood oxygen level-dependent MRI (BOLD), and susceptibility-weighted imaging (SWI) in evaluating renal dysfunction. METHODS Seventy-two patients (mean age 53.72 ± 13.46 years) underwent MRI consisting of DWI, BOLD, and SWI. According to their estimated glomerular filtration rate (eGFR), the patients were classified into either severe renal function impairment (sRI, eGFR < 30 mL/min/1.73 m2), non-severe renal function impairment (non-sRI, eGFR ≥ 30 mL/min/1.73 m2, and < 80 mL/min/1.73 m2), or control (CG, eGFR ≥ 80 mL/min/1.73 m2) groups. Thirteen texture features were extracted and then were analyzed to select the most valuable for discerning the three groups with each imaging method. A ROC curve was performed to compare the capacities of the features to differentiate non-sRI from sRI or CG. RESULTS Six features proved to be the most valuable for assessing renal dysfunction: 0.25QuantileDWI, 0.5QuantileDWI, HomogeneityDWI, EntropyBOLD, SkewnessSWI, and CorrelationSWI. Three features derived from DWI (0.25QuantileDWI, 0.5QuantileDWI, and HomogeneityDWI) were smaller in sRI than in non-sRI; EntropyBOLD and CorrelationSWI were smaller in non-sRI than in CG (p < 0.05). 0.25QuantileDWI, 0.5QuantileDWI, and HomogeneityDWI showed similar capacities for differentiating sRI from non-sRI. Similarly, EntropyBOLD and CorrelationSWI showed equal capacities for differentiating non-sRI from CG. CONCLUSION Texture analysis based on DWI, BOLD, and SWI can assist in assessing renal dysfunction, and texture features based on BOLD and SWI may be suitable for assessing renal dysfunction during early stages. KEY POINTS • Texture analysis based on MRI techniques allowed for assessing renal dysfunction. • Texture features based on BOLD and SWI, but not DWI, may be suitable for assessing renal function impairment during early stages. • SWI exhibited a similar capacity to BOLD for assessing renal dysfunction.
Collapse
Affiliation(s)
- Jiule Ding
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Zhaoyu Xing
- Department of Urology, Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Zhenxing Jiang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Hua Zhou
- Department of Nephrology, Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jia Di
- Department of Nephrology, Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jie Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jianguo Qiu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Shengnan Yu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Liqiu Zou
- Department of Radiology, Shenzhen nanshan People's Hospital, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
44
|
Abstract
Kidney diseases can be caused by a wide range of genetic, hemodynamic, toxic, infectious, and autoimmune factors. The diagnosis of kidney disease usually involves the biochemical analysis of serum and blood, but these tests are often insufficiently sensitive or specific to make a definitive diagnosis. Although radiologic imaging currently has a limited role in the evaluation of most kidney diseases, several new imaging methods hold great promise for improving our ability to non-invasively detect structural, functional, and molecular changes within the kidney. New methods, such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and blood oxygen level-dependent (BOLD) MRI, allow functional imaging of the kidney. The use of novel contrast agents, such as microbubbles and nanoparticles, allows the detection of specific molecules in the kidney. These methods could greatly advance our ability to diagnose disease and also to safely monitor patients over time. This could improve the care of individual patients, and it could also facilitate the evaluation of new treatment strategies.
Collapse
Affiliation(s)
- Joshua Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
45
|
Kong H, Wang C, Gao F, Zhang X, Yang M, Yang L, Wang X, Zhang J. Early assessment of acute kidney injury using targeted field of view diffusion-weighted imaging: An in vivo study. Magn Reson Imaging 2018; 57:1-7. [PMID: 30393098 DOI: 10.1016/j.mri.2018.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 12/24/2022]
Abstract
Acute kidney injury (AKI) is a common complication in various clinical settings. In recent years, AKI diagnostics have been investigated intensively showing the emerging need for early characterization of this disease. To verify whether targeted field-of-view diffusion-weighted imaging (tFOV-DWI) is feasible to significantly improve the performance of traditional full field-of-view diffusion-weighted imaging (fFOV-DWI) in the early assessment of AKI. 14 rabbits with unilateral AKI were induced by injection of microspheres under the guidance of digital subtraction angiography (DSA). All rabbits underwent tFOV-DWI and fFOV-DWI immediately after the surgery. Artifacts, distortion and lesion identification were graded by two experienced radiologists, and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured. Apparent diffusion coefficient (ADC) maps were then derived. Blood samples were collected pre- and post-surgery and serum creatinine weres measured. Renal specimen and biopsy were performed as the reference standard. Student t-test was used to ascertain statistical significance between the above parameters for tFOV-DWI and fFOV-DWI. The interobserver agreement and ADC measurements agreement were assessed. A higher percentage of renal lesions (17 out of 19) were detected in tFOV-DWI compared with fFOV-DWI (14 out of 19). Significant differences were observed in ADC value for both techniques between the lesion regions and normal tissues (p < 0.001). Histological findings were inversely correlated with ADC values of tFOV-DWI (r = -0.97, P < 0.001 for cortex; r = -0.98, P < 0.001 for medulla) and fFOV-DWI sequences (r = -0.95, P < 0.001 for cortex; r = -0.98, P < 0.001 for medulla). Those tFOV-DW images rated by the radiologists exhibit superior performance in terms of all assessed measures (P < 0.05), and interobserver agreement was excellent (ICC, 0.78 to 0.92). Besides, the ADC values derived from tFOV-DWI had a satisfactory agreement with those estimated by fFOV-DWI. The animal study demonstrates that the tFOV-DWI strategy provided visually better image quality and lesion depiction than conventional fFOV-DWI for early assessment of AKI.
Collapse
Affiliation(s)
- Hanjing Kong
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China
| | - Chengyan Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China
| | - Fei Gao
- College of Engineering, Peking University, 100871 Beijing, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, 100034 Beijing, China
| | - Min Yang
- Department of Interventional Radiology and Vascular Surgery, 100034 Beijing, China
| | - Li Yang
- Renal Division, Peking University First Hospital, 100034 Beijing, China
| | - Xiaoying Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China; Department of Radiology, Peking University First Hospital, 100034 Beijing, China.
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China; College of Engineering, Peking University, 100871 Beijing, China.
| |
Collapse
|
46
|
Liu J, Han Z, Chen G, Li Y, Zhang J, Xu J, van Zijl PCM, Zhang S, Liu G. CEST MRI of sepsis-induced acute kidney injury. NMR IN BIOMEDICINE 2018; 31:e3942. [PMID: 29897643 DOI: 10.1002/nbm.3942] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Sepsis-induced acute kidney injury (SAKI) is a major complication of kidney disease associated with increased mortality and faster progression. Therefore, the development of imaging biomarkers to detect septic AKI is of great clinical interest. In this study, we aimed to characterize the endogenous chemical exchange saturation transfer (CEST) MRI contrast in the lipopolysaccharide (LPS)-induced SAKI mouse model and to investigate the use of CEST MRI for detecting such injury. We used a SAKI mouse model that was generated by i.p. injection of 10 mg/kg LPS. The resulting kidney injury was confirmed by the elevation of serum creatinine and histology. MRI assessments were performed 24 h after LPS injection, including CEST MRI at different B1 strengths (1, 1.8 and 3 μT), T1 mapping, T2 mapping and conventional magnetization transfer contrast (MTC) MRI. The CEST MRI results were analyzed using Z-spectra, in which the normalized water signal saturation (Ssat /S0 ) is measured as a function of saturation frequency. Substantial decreases in CEST contrast were observed at both 3.5 and - 3.5 ppm frequency offset from water at all B1 powers, with the most significant difference obtained at a B1 of 1.8 μT. The average Ssat /S0 differences between injured and normal kidneys were 0.07 (0.55 ± 0.04 versus 0.62 ± 0.04, P = 0.0028) and 0.07 (0.50 ± 0.04 versus 0.57 ± 0.03, P = 0.0008) for 3.5 and - 3.5 ppm, respectively. In contrast, the T1 and T2 relaxation times and MTC contrast in the injured kidneys did not show a significant change compared with the normal control. Our results showed that CEST MRI is more sensitive to the pathological changes in injured kidneys than the changes in T1 , T2 and MTC effect, indicating its potential clinical utility for molecular imaging of renal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Graduate College, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong General Hospital, Guangzhou, Guangdong, China
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng Han
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guoli Chen
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yuguo Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter C M van Zijl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Shuixing Zhang
- Graduate College, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong General Hospital, Guangzhou, Guangdong, China
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guanshu Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
47
|
Schley G, Jordan J, Ellmann S, Rosen S, Eckardt KU, Uder M, Willam C, Bäuerle T. Multiparametric magnetic resonance imaging of experimental chronic kidney disease: A quantitative correlation study with histology. PLoS One 2018; 13:e0200259. [PMID: 30011301 PMCID: PMC6047786 DOI: 10.1371/journal.pone.0200259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/24/2018] [Indexed: 12/27/2022] Open
Abstract
Objectives In human chronic kidney disease (CKD) the extent of renal tubulointerstitial fibrosis correlates with progressive loss of renal function. However, fibrosis can so far only be assessed by histology of kidney biopsies. Magnetic resonance imaging (MRI) can provide information about tissue architecture, but its potential to assess fibrosis and inflammation in diseased kidneys remains poorly defined. Materials and methods We evaluated excised kidneys in a murine adenine-induced nephropathy model for CKD by MRI and correlated quantitative MRI parameters (T1, T2, and T2* relaxation times, apparent diffusion coefficient and fractional anisotropy) with histological hallmarks of progressive CKD, including renal fibrosis, inflammation, and microvascular rarefaction. Furthermore, we analyzed the effects of paraformaldehyde fixation on MRI parameters by comparing kidney samples before and after fixation with paraformaldehyde. Results In diseased kidneys T2 and T2* relaxation times, apparent diffusion coefficient and fractional anisotropy in the renal cortex and/or outer medulla were significantly different from those in control kidneys. In particular, T2 relaxation time was the best parameter to distinguish control and CKD groups and correlated very well with the extent of fibrosis, inflammatory infiltrates, tubular dilation, crystal deposition, and loss of peritubular capillaries and normal tubules in the renal cortex and outer medulla. Fixation with paraformaldehyde had no impact on T2 relaxation time and fractional anisotropy, whereas T1 times significantly decreased and T2* times and apparent diffusion coefficients increased in fixed kidney tissue. Conclusions MRI parameters provide a promising approach to quantitatively assess renal fibrosis and inflammation in CKD. Especially T2 relaxation time correlates well with histological features of CKD and is not influenced by paraformaldehyde fixation of kidney samples. Thus, T2 relaxation time might be a candidate parameter for non-invasive assessment of renal fibrosis in human patients.
Collapse
Affiliation(s)
- Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- * E-mail:
| | - Jutta Jordan
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Stephan Ellmann
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Uder
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
48
|
Liu H, Zhou Z, Li X, Li C, Wang R, Zhang Y, Niu G. Diffusion-weighted imaging for staging chronic kidney disease: a meta-analysis. Br J Radiol 2018; 91:20170952. [PMID: 29888970 PMCID: PMC6475960 DOI: 10.1259/bjr.20170952] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective: To evaluate stages of chronic kidney disease (CKD) by apparent diffusion coefficient (ADC) obtained from diffusion weighted imaging (DWI) using a meta-analysis. Methods: Literature databases were searched from PubMed, Web of Science, Cochrane and Embase to identify relevant articles about DWI in CKD between 1999 and 2017. ADC values were extracted from the healthy group and CKD patients with different stages. Meta-analysis was conducted using STATA v. 12.0. A random-effects model was performed to acquire the effect estimate, which was expressed as a pooled weighted mean difference (WMD) with 95% confidence interval (CI). We performed comparisons of ADC values between the following groups: (1) the ADC values of the normal kidneys vs earlier Stage 1–2 of CKD; (2) Stage 3 vs the Stage 1–2 of CKD; (3) the Stage 4–5 vs the Stage 3. Results: Six studies were included in this meta-analysis. The CKD patients with earlier Stage 1–2 showed lower ADC values than the healthy subjects [WMD = −0.09, 95% CI(−0.12 to −0.06), p < 0.001]. However, no obvious difference in ADC values was found between the Stage 3 and Stage1–2 of CKD [WMD = −0.09, 95% CI (−0.18 to 0.01), p = 0.08]. The CKD Stage3 had higher ADC values than those of Stage4–5 [WMD = −0.21, 95% CI (−0.32 to −0.11), p = 0.01]. Conclusion: DWI is an accurate and non-invasive imaging technique for early diagnosis and staging of CKD. Quantitative DWI may potentially play a role in making clinical decisions in the follow-up of CKD. Advances in knowledge DWI can be a valuable tool for staging of CKD.
Collapse
Affiliation(s)
- Haitian Liu
- 1 Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province , China
| | - Zhangjian Zhou
- 2 Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province , China
| | - Xiang Li
- 1 Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province , China
| | - Chenxia Li
- 1 Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province , China
| | - Rong Wang
- 1 Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province , China
| | - Yuelang Zhang
- 1 Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province , China
| | - Gang Niu
- 1 Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province , China
| |
Collapse
|
49
|
Thorenz A, Derlin K, Schröder C, Dressler L, Vijayan V, Pradhan P, Immenschuh S, Jörns A, Echtermeyer F, Herzog C, Chen R, Rong S, Bräsen JH, van Kooten C, Kirsch T, Klemann C, Meier M, Klos A, Haller H, Hensen B, Gueler F. Enhanced activation of interleukin-10, heme oxygenase-1, and AKT in C5aR2-deficient mice is associated with protection from ischemia reperfusion injury-induced inflammation and fibrosis. Kidney Int 2018; 94:741-755. [PMID: 29935951 DOI: 10.1016/j.kint.2018.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
Severe ischemia reperfusion injury (IRI) results in rapid complement activation, acute kidney injury and progressive renal fibrosis. Little is known about the roles of the C5aR1 and C5aR2 complement receptors in IRI. In this study C5aR1-/- and C5aR2-/- mice were compared to the wild type in a renal IRI model leading to renal fibrosis. C5a receptor expression, kidney morphology, inflammation, and fibrosis were measured in different mouse strains one, seven and 21 days after IRI. Renal perfusion was evaluated by functional magnetic resonance imaging. Protein abundance and phosphorylation were assessed with high content antibody microarrays and Western blotting. C5aR1 and C5aR2 were increased in damaged tubuli and even more in infiltrating leukocytes after IRI in kidneys of wild-type mice. C5aR1-/- and C5aR2-/- animals developed less IRI-induced inflammation and showed better renal perfusion than wild-type mice following IRI. C5aR2-/- mice, in particular, had enhanced tubular and capillary regeneration with less renal fibrosis. Anti-inflammatory IL-10 and the survival/growth kinase AKT levels were especially high in kidneys of C5aR2-/- mice following IRI. LPS caused bone marrow-derived macrophages from C5aR2-/- mice to release IL-10 and to express the stress response enzyme heme oxygenase-1. Thus, C5aR1 and C5aR2 have overlapping actions in which the kidneys of C5aR2-/- mice regenerate better than those in C5aR1-/- mice following IRI. This is mediated, at least in part, by differential production of IL-10, heme oxygenase-1 and AKT.
Collapse
Affiliation(s)
- Anja Thorenz
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Katja Derlin
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | | | - Vijith Vijayan
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Pooja Pradhan
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Anne Jörns
- Department of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Frank Echtermeyer
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Christine Herzog
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Torsten Kirsch
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatric Surgery, Center of Surgery, Hannover Medical School, Hannover, Germany; Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Martin Meier
- Imaging Center of the Institute of Laboratory Animal Sciences, Hannover Medical School, Hannover, Germany
| | - Andreas Klos
- Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Bennet Hensen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
50
|
Hueper K, Lang H, Hartleben B, Gutberlet M, Derlin T, Getzin T, Chen R, Abou-Rebyeh H, Lehner F, Meier M, Haller H, Wacker F, Rong S, Gueler F. Assessment of liver ischemia reperfusion injury in mice using hepatic T 2 mapping: Comparison with histopathology. J Magn Reson Imaging 2018; 48:1586-1594. [PMID: 29717788 DOI: 10.1002/jmri.26057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/02/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Liver ischemia reperfusion injury (IRI) occurs during liver surgery or transplantation resulting in an inflammatory response, tissue damage, and functional impairment of the organ. PURPOSE To assess the feasibility of T2 mapping for noninvasive quantification of liver edema after partial liver IRI in mice. STUDY TYPE Prospective, experimental study. ANIMAL MODEL Partial liver IRI was induced in C57BL/6-mice by transient clamping of the left lateral and median liver lobes for 35 (n = 8), 45 (n = 6), 60 (n = 17), or 90 minutes (n = 5). For comparison, healthy C57BL/6-mice were examined as controls (n = 9). FIELD STRENGTH/SEQUENCE Functional liver MRI was performed on a 7T scanner using a respiratory-triggered multiecho spin-echo sequence. ASSESSMENT Healthy control mice and mice with partial liver IRI on day 1 after surgery, and additionally on day 7 in a subgroup with 60 minutes IRI (n = 8) were examined. Maps of T2 relaxation time of liver tissue were used to assess distribution, severity of tissue edema (mean T2 time), and the percentage of edematous liver tissue. STATISTICAL TEST One-way analysis of variance (ANOVA) with Tukey's honest significant difference (HSD), paired t-tests, Pearson's test for correlation of MRI parameters with levels of liver enzymes, and histopathology, receiver operating characteristic (ROC) analysis. RESULTS Significant tissue edema induced by liver IRI as compared to the control group was detected by increased mean T2 times in groups with 60 minutes (P < 0.001) and 90 minutes IRI (P < 0.001). The percentage of edematous liver tissue significantly increased with longer ischemia times (controls 3.4 ± 0.4%, 35 minutes 5.3 ± 0.6%, 45 minutes 23.3 ± 7.6%, 60 minutes 39.7 ± 3.6%, 90 minutes 51.3 ± 4.5%). Mean T2 times and the percentage of edematous liver tissue significantly correlated with elevation of liver enzymes (P < 0.001), histological evidence of liver injury (r = 0.80 and r = 0.82, P < 0.001), and neutrophil infiltration (r = 0.70 and r = 0.74, P < 0.001). In the subgroup with follow-up, the severity (P < 0.01) and extent of liver edema decreased significantly over time (P < 0.01). DATA CONCLUSION T2 mapping allows quantification and follow-up of liver injury in mice. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1586-1594.
Collapse
Affiliation(s)
- Katja Hueper
- Radiology, Hannover Medical School, Hannover, Germany
| | - Hannah Lang
- Radiology, Hannover Medical School, Hannover, Germany.,Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | - Thorsten Derlin
- Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Getzin
- Radiology, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Frank Lehner
- General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Martin Meier
- Laboratory Animal Science, Imaging Center, Hannover Medical School, Hannover, Germany
| | | | - Frank Wacker
- Radiology, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Nephrology, Hannover Medical School, Hannover, Germany.,The Transplantation Center of the affiliated hospital, Zunyi Medical College, Zunyi, China
| | - Faikah Gueler
- Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|