1
|
Nogueira-Lima E, Alves T, Etchebehere E. 18F-Fluoride PET/CT-Updates. Semin Nucl Med 2024; 54:951-965. [PMID: 39393951 DOI: 10.1053/j.semnuclmed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Sodium Fluoride-18 production started in the 1940s and was described clinically for the first time in 1962 as a bone-imaging agent. However, its use became dormant with the development of conventional bone scintigraphy, especially due to its low cost. Conventional bone scintigraphy has been the most utilized Nuclear Medicine technique for identifying osteoblastic bone metastases, especially in prostate and breast cancers for decades and is also employed to identify benign bone disease, especially in the orthopedic setting. While bone scintigraphy is highly sensitive, it lacks adequate specificity. With the advent of high-quality 3D Whole-Body Positron Emission Tomography combined with computed tomography (PET/CT), images, Sodium Fluoride-18 imaging with PET/CT (Fluoride PET/CT) re-emerged. This PET/CT bone-imaging agent provides higher sensitivity and specificity to detect bone lesions in both the oncological scenario as well as to identify benign bone and joint disorders. PET/CT bone-imaging provides a precise view of the bone metabolism remodeling processes at a molecular level, throughout the skeleton, and combines anatomical information, enhancing diagnostic specificity and accuracy. This article review will explore the updates on clinical applications of Fluoride PET/CT in oncology and benign conditions encompassing orthopedic, inflammatory and cardiovascular conditions and treatment response assessment.
Collapse
Affiliation(s)
- Ellen Nogueira-Lima
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Thiago Alves
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Elba Etchebehere
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
2
|
Zhao J, Jiang O, Chen X, Liu Q, Li X, Wu M, Zhang Y, Zeng F. Development and validation of a prediction model for metastasis in colorectal cancer based on LncRNA CRNDE and radiomics. MEDCOMM – FUTURE MEDICINE 2022. [DOI: 10.1002/mef2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiaojiao Zhao
- Department of Clinical Research Center Dazhou Central Hospital Dazhou China
| | - Ou Jiang
- Oncology Department The Second People's Hospital of Neijiang Neijiang China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Qin Liu
- Department of Clinical Research Center Dazhou Central Hospital Dazhou China
| | - Xue Li
- Department of Clinical Research Center Dazhou Central Hospital Dazhou China
| | - Min Wu
- Huaxi MR Research Center, Department of Radiology, West China Hospital Sichuan University Chengdu China
| | - Yan Zhang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Fanxin Zeng
- Department of Clinical Research Center Dazhou Central Hospital Dazhou China
| |
Collapse
|
3
|
Dadgar H, Norouzbeigi N, Jokar N, Zareizadeh J, Gholamrezanezhad A, Ahmadzadehfar H, Abbaszadeh M, Assadi M. Comparison of 18F-NaF Imaging, 99mTc-MDP Scintigraphy, and 18F-FDG for Detecting Bone Metastases. World J Nucl Med 2022; 21:1-8. [PMID: 35502272 PMCID: PMC9056122 DOI: 10.1055/s-0042-1748154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
AbstractBone is a common metastasis site in several malignancies, most importantly prostate and breast cancers. Given the significance of the early and accurate diagnosis of bone metastases for preliminary staging, treatment planning and monitoring, restaging, and survival prediction in patients with malignancy, it is critical to compare and contrast the strengths and weaknesses of imaging modalities. Although technetium-99m-labeled diphosphonates [99mTc-MDP] scintigraphy has been used for assessing skeletal involvement, there is a renewed interest in fluorine-18-labeled sodium fluoride [18F-NaF] bone imaging with positron emission tomography or positron emission tomography/computed tomography, since this approach provides essential advantages in bone metastases evaluation. This review study aimed to discuss the basic and technical aspects of 18F-NaF imaging and its mechanism of action, and compare this modality with the 99mTc-MDP bone scan and 18F-fluorodeoxyglucose using current evidence from the pertinent literature and case examples of the center in the study.
Collapse
Affiliation(s)
- Habibollah Dadgar
- Cancer Research Center, Imam Reza International University, Razavi Hospital, Mashhad, Iran
| | - Nasim Norouzbeigi
- Cancer Research Center, Imam Reza International University, Razavi Hospital, Mashhad, Iran
| | - Narges Jokar
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, School of Medicine, Bushehr University of Medical Sciences, Bushehr Medical University Hospital, Bushehr, Iran
| | - Jafar Zareizadeh
- Department of Emergency Medicine, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Gholamrezanezhad
- Department of Diagnostic Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, United States
| | | | - Moloud Abbaszadeh
- Department of Internal Medicine, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, School of Medicine, Bushehr University of Medical Sciences, Bushehr Medical University Hospital, Bushehr, Iran
| |
Collapse
|
4
|
Zhao J, Wang H, Zhang Y, Wang R, Liu Q, Li J, Li X, Huang H, Zhang J, Zeng Z, Zhang J, Yi Z, Zeng F. Deep learning radiomics model related with genomics phenotypes for lymph node metastasis prediction in colorectal cancer. Radiother Oncol 2021; 167:195-202. [PMID: 34968471 DOI: 10.1016/j.radonc.2021.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE The preoperative lymph node (LN) status is important for the treatment of colorectal cancer (CRC). Here, we established and validated a deep learning (DPL) model for predicting lymph node metastasis (LNM) in CRC. MATERIALS AND METHODS A total of 423 CRC patients were divided into cohort 1 (training set, n = 238, testing set, n = 101) and cohort 2 (validation set, n = 84). Among them, 84 patients' tumour tissues were collected for RNA sequencing. The DPL features were extracted from enhanced venous-phase computed tomography of CRC using an autoencoder. A DPL model was constructed with the least absolute shrinkage and selection operator algorithm. Carcinoembryonic antigen and carbohydrate antigen 19-9 were incorporated into the DPL model to construct a combined model. The model performance was assessed by receiver operating characteristic curves, calibration curves and decision curves. The correlations between DPL features, which have been selected, and genes were analysed by Spearman correlation, and the genes correlated with DPL features were used to transcriptomic analysis. RESULTS The DPL model, integrated with 20 DPL features, showed a good discrimination performance in predicting the LNM, with areas under the curves (AUCs) of 0.79, 0.73 and 0.70 in the training set, testing set and validation set, respectively. The combined model had a better performance, with AUCs of 0.81, 0.77 and 0.73 in the three sets, respectively. Decision curve analysis confirmed the clinical application value of the DPL model and combined model. Furthermore, catabolic processes and immune-related pathways were identified and related with the selected DPL features. CONCLUSION This study presented a DPL model and a combined model for LNM prediction. We explored the potential genomic phenotypes related with DPL features. In addition, the model could potentially be utilized to facilitate the individualized prediction of LNM in CRC.
Collapse
Affiliation(s)
- Jiaojiao Zhao
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Han Wang
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, Sichuan, China
| | - Yin Zhang
- Oncology Department, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Rui Wang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Qin Liu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Jie Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Xue Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hanyu Huang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Zhaoping Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Jun Zhang
- General surgery, Dazhou Central Hospital, Dazhou, Sichuan, China.
| | - Zhang Yi
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, Sichuan, China.
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China.
| |
Collapse
|
5
|
Simultaneous PET/MRI in the Evaluation of Breast and Prostate Cancer Using Combined Na[ 18F] F and [ 18F]FDG: a Focus on Skeletal Lesions. Mol Imaging Biol 2021; 22:397-406. [PMID: 31236756 DOI: 10.1007/s11307-019-01392-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The purpose of this study is to prospectively evaluate the performance of sodium 18F]fluoride (Na[18F]F)/2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) simultaneous time-of-flight enabled positron emission tomography (PET)/magnetic resonance imaging (MRI) for the detection of skeletal metastases in selected patients with advanced breast and prostate cancers. PROCEDURE The institutional review board approved this HIPAA-compliant protocol. Written informed consent was obtained from each patient. A total of 74 patients (23 women and 51 men with breast and prostate cancer, respectively) referred for standard-of-care whole-body bone scintigraphy (WBBS) were enrolled in this prospective study. All patients underwent a [99mTc]methyldiphosphonate ([99mTc]MDP) WBBS followed by Na[18F]F/[18F]FDG PET/MRI. Lesions detected by each imaging modality were tabulated and a lesion-based and patient-based analysis was conducted. RESULTS On a patient-based analysis, [99mTc]MDP WBBS identified skeletal lesions in 37 patients and PET/MRI in 45 patients. On a lesion-based analysis, WBBS identified a total of 81 skeletal lesions, whereas PET/MRI identified 140 lesions. Additionally, PET/MRI showed extra-skeletal lesions in 19 patients, including lymph nodes (16), prostate (4) lung (3), and liver (2) lesions. CONCLUSIONS The ability of Na[18F]F/[18F]FDG PET/MRI to identify more skeletal lesions than 99mTc-MDP WBBS and to additionally identify extra-skeletal disease may be beneficial for patient care and represent an alternative to the single modalities performed separately. Na[18F]F/[18F]FDG PET/MRI is a promising approach for evaluation of skeletal and extra-skeletal lesions in a selected population of breast and prostate cancer patients.
Collapse
|
6
|
Liu F, Dong J, Shen Y, Yun C, Wang R, Wang G, Tan J, Wang T, Yao Q, Wang B, Li L, Mi J, Zhou D, Xiong F. Comparison of PET/CT and MRI in the Diagnosis of Bone Metastasis in Prostate Cancer Patients: A Network Analysis of Diagnostic Studies. Front Oncol 2021; 11:736654. [PMID: 34671558 PMCID: PMC8522477 DOI: 10.3389/fonc.2021.736654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Accurate diagnosis of bone metastasis status of prostate cancer (PCa) is becoming increasingly more important in guiding local and systemic treatment. Positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) have increasingly been utilized globally to assess the bone metastases in PCa. Our meta-analysis was a high-volume series in which the utility of PET/CT with different radioligands was compared to MRI with different parameters in this setting. MATERIALS AND METHODS Three databases, including Medline, Embase, and Cochrane Library, were searched to retrieve original trials from their inception to August 31, 2019 according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement. The methodological quality of the included studies was assessed by two independent investigators utilizing Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). A Bayesian network meta-analysis was performed using an arm-based model. Absolute sensitivity and specificity, relative sensitivity and specificity, diagnostic odds ratio (DOR), and superiority index, and their associated 95% confidence intervals (CI) were used to assess the diagnostic value. RESULTS Forty-five studies with 2,843 patients and 4,263 lesions were identified. Network meta-analysis reveals that 68Ga-labeled prostate membrane antigen (68Ga-PSMA) PET/CT has the highest superiority index (7.30) with the sensitivity of 0.91 and specificity of 0.99, followed by 18F-NaF, 11C-choline, 18F-choline, 18F-fludeoxyglucose (FDG), and 18F-fluciclovine PET/CT. The use of high magnetic field strength, multisequence, diffusion-weighted imaging (DWI), and more imaging planes will increase the diagnostic value of MRI for the detection of bone metastasis in prostate cancer patients. Where available, 3.0-T high-quality MRI approaches 68Ga-PSMA PET/CT was performed in the detection of bone metastasis on patient-based level (sensitivity, 0.94 vs. 0.91; specificity, 0.94 vs. 0.96; superiority index, 4.43 vs. 4.56). CONCLUSIONS 68Ga-PSMA PET/CT is recommended for the diagnosis of bone metastasis in prostate cancer patients. Where available, 3.0-T high-quality MRI approaches 68Ga-PSMA PET/CT should be performed in the detection of bone metastasis.
Collapse
Affiliation(s)
- Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinlei Dong
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yelong Shen
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Canhua Yun
- Department of Nuclear Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Ruixiao Wang
- Department of Urology Surgery, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Ganggang Wang
- Department of Urology Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jiyang Tan
- Department of Sports Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Tao Wang
- Department of Sports Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Qun Yao
- Department of Sports Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Bomin Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lianxin Li
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingyi Mi
- Department of Sports Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Dongsheng Zhou
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fei Xiong
- Department of Sports Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
- *Correspondence: Fei Xiong,
| |
Collapse
|
7
|
Taralli S, Caldarella C, Lorusso M, Scolozzi V, Altini C, Rubini G, Calcagni ML. Comparison between 18F-FDG and 18F-NaF PET imaging for assessing bone metastases in breast cancer patients: a literature review. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00363-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
|
9
|
Abstract
Bone is the most common site of metastases from advanced breast cancer. Whole-body bone scintigraphy has been most frequently used in the process of managing cancer patients; its advantage is that it provides rapid whole-body imaging for screening of osteoblastic or sclerotic/mixed bone metastases at reasonable cost. Recent advanced techniques, such as single-photon emission computed tomography (SPECT)/CT, quantitative analysis, and bone scan index, contribute to better understanding of the disease state. More recent advances in machines and PET drugs improve the staging of the skeleton with higher sensitivity and specificity.
Collapse
|
10
|
Evaluation and Treatment for High-Risk Prostate Cancer. Prostate Cancer 2018. [DOI: 10.1007/978-3-319-78646-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
11
|
Harley SJ, Hoffmann R, Bartholomeusz D, Sutherland P, Chatterton B, Kitchener M, Takhar P, Tsopelas C, Fuller A, Wells R, Singh-Rai R, Bolt J. 18-Fluoride labeled sodium fluoride positron emission tomography with computer tomography: the impact of pretreatment staging in intermediate- and high-risk prostate cancer. Prostate Int 2017; 6:50-54. [PMID: 29922632 PMCID: PMC6004619 DOI: 10.1016/j.prnil.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
Background 18-Fluoride labeled sodium fluoride (Na-18-F) positron emission tomography with computer tomography (PET/CT) has a better sensitivity and specificity than whole body bone scan (WBBS) in detecting osseous metastatic prostate cancer. We performed a pilot study of 20 men to examine what level of impact Na-18-F PET/CT has on management plans when used for staging newly diagnosed prostate cancer. Materials and methods Twenty men were prospectively enrolled into the study in South Australia. Men were eligible if they had newly diagnosed, untreated, and biopsy-confirmed intermediate- or high-risk prostate cancer (D'Amico classification). WBBS and Na-18-F PET/CT scans were performed within 1 week of each other. Following review of the WBBS, treatment type and intent was documented by the treating urologist. The Na-18-F PET/CT scan was then reviewed. The impact of the Na-18-F PET/CT was measured on whether treatment modality or intent was subsequently altered: high impact = treatment intent or modality was changed; medium impact = treatment modality was modified; low impact = no change in treatment. Results In 18 men (90%), the WBBS and Na-18-F PET/CT were negative for osseous metastases. In one man (5%), the WBBS demonstrated widespread osseous metastases which were similarly demonstrated on the Na-18-F PET/CT. One man (5%) had a normal WBBS; however, the Na-18-F PET/CT demonstrated widespread osseous metastases. Subsequently, in 19 men (95%), the results of the two scans were congruent and the addition of the Na-18-F PET/CT scan demonstrated a low impact on management. In one man (5%), the addition of the Na-18-F PET/CT had a high impact as treatment type and intent was altered. Conclusions Our pilot study is the first of its kind in Australia, and our findings suggest that Na-18-F PET/CT is a safe and feasible modality for staging prostate cancer. However, its true impact on prostate cancer management warrants further investigation.
Collapse
Affiliation(s)
- Simon Jd Harley
- Department of Urology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Richard Hoffmann
- Department of Urology, Lyell McEwin Hospital, Adelaide, South Australia, Australia.,Department of Surgery, University of Adelaide, South Australia, Australia
| | - Dylan Bartholomeusz
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Peter Sutherland
- Department of Urology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Barry Chatterton
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Kitchener
- Dr Jones and Partners, Tennyson Centre, Adelaide, South Australia, Australia
| | - Prab Takhar
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Chris Tsopelas
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Andrew Fuller
- Department of Urology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Richard Wells
- Department of Urology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Raj Singh-Rai
- Department of Urology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - John Bolt
- Department of Urology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
A First Report on [ 18F]FPRGD 2 PET/CT Imaging in Multiple Myeloma. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6162845. [PMID: 29097930 PMCID: PMC5612716 DOI: 10.1155/2017/6162845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022]
Abstract
An observational study was set up to assess the feasibility of [18F]FPRGD2 PET/CT for imaging patients with multiple myeloma (MM) and to compare its detection rate with low dose CT alone and combined [18F]NaF/[18F]FDG PET/CT images. Four patients (2 newly diagnosed patients and 2 with relapsed MM) were included and underwent whole-body PET/CT after injection of [18F]FPRGD2. The obtained images were compared with results of low dose CT and already available results of a combined [18F]NaF/[18F]FDG PET/CT. In total, 81 focal lesions (FLs) were detected with PET/CT and an underlying bone destruction or fracture was seen in 72 (89%) or 8 (10%) FLs, respectively. Fewer FLs (54%) were detected by [18F]FPRGD2 PET/CT compared to low dose CT (98%) or [18F]NaF/[18F]FDG PET/CT (70%) and all FLs detected with [18F]FPRGD2 PET were associated with an underlying bone lesion. In one newly diagnosed patient, more [18F]FPRGD2 positive lesions were seen than [18F]NaF/[18F]FDG positive lesions. This study suggests that [18F]FPRGD2 PET/CT might be less useful for the detection of myeloma lesions in patients with advanced disease as all FLs with [18F]FPRGD2 uptake were already detected with CT alone.
Collapse
|
13
|
Advantages of 18F FDG-PET/CT over Conventional Staging for Sarcoma Patients. Pathol Oncol Res 2017; 25:131-136. [DOI: 10.1007/s12253-017-0325-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
14
|
Russo M, Ponsiglione AM, Forte E, Netti PA, Torino E. Hydrodenticity to enhance relaxivity of gadolinium-DTPA within crosslinked hyaluronic acid nanoparticles. Nanomedicine (Lond) 2017; 12:2199-2210. [PMID: 28816102 DOI: 10.2217/nnm-2017-0098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM The efficacy of gadolinium (Gd) chelates as contrast agents for magnetic resonance imaging remains limited owing to poor relaxivity and toxic effects. Here, the effect of the hydration of the hydrogel structure on the relaxometric properties of Gd-DTPA is explained for the first time and called Hydrodenticity. RESULTS The ability to tune the hydrogel structure is proved through a microfluidic flow-focusing approach able to produce crosslinked hyaluronic acid nanoparticles, analyzed regarding the crosslink density and mesh size, and connected to the characteristic correlation times of the Gd-DTPA. CONCLUSION Hydrodenticity explains the boosting (12-times) of the Gd-DTPA relaxivity by tuning hydrogel structural parameters, potentially enabling the reduction of the administration dosage as approved for clinical use. [Formula: see text].
Collapse
Affiliation(s)
- Maria Russo
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Ernesto Forte
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.,Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Enza Torino
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.,Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
15
|
Abstract
Molecular imaging of prostate cancer is in a dynamic phase of development. Currently approved techniques are limited and researchers have been working on novel agents to improve accuracy in targeting and detecting prostate tumors. In addition, the complexity of various prostate cancer states also contributes to the challenges in evaluating suitable radiotracer candidates. We have highlighted nuclear medicine tracers that focus on mechanisms involved in bone metastasis, prostate cancer cell membrane synthesis, amino acid analogs, androgen analogs, and the prostate specific membrane antigen. Encouraging results with many of these innovative radiotracer compounds will not only advance diagnostic capabilities for prostate cancer but open opportunities for theranostic applications to treat this worldwide malignancy.
Collapse
|
16
|
Azad GK, Cook GJ. Multi-technique imaging of bone metastases: spotlight on PET-CT. Clin Radiol 2016; 71:620-31. [PMID: 26997430 DOI: 10.1016/j.crad.2016.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
There is growing evidence that molecular imaging of bone metastases with positron-emission tomography (PET) can improve diagnosis and treatment response assessment over current conventional standard imaging methods, although cost-effectiveness has not been assessed. In most cancer types, 2-[(18)F]-fluoro-2-deoxy-d-glucose ((18)F-FDG)-PET is an accurate method for detecting bone metastases. For example, in breast cancer, combined (18)F-FDG-PET and computed tomography (CT) is more sensitive at detecting bone metastases than (99m)technetium (Tc)-labelled diphosphonate planar bone scintigraphy (BS) and there is increasing evidence to support the use of serial (18)F-FDG-PET for the assessment of osseous response to treatment. Preliminary data suggest improved diagnostic accuracy of (18)F-FDG-PET-CT in a number of other malignancies including lung, thyroid, head and neck, gastro-oesophageal cancers, and osteosarcoma. As a bone-specific tracer, there is accumulating evidence to support the use of sodium (18)F-fluoride ((18)F-NaF) PET-CT in the diagnosis of skeletal metastases in breast and prostate cancer, although relatively little data are available to support its use for assessment of treatment response. In prostate cancer, (11)C-choline and (18)F-choline PET-CT have better specificities than (18)F-NaF-PET-CT, but equivalent sensitivities in the detection of bone metastases. We review the current literature for staging and response assessment of bone metastases in different cancers.
Collapse
Affiliation(s)
- Gurdip K Azad
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK
| | - Gary J Cook
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK; Clinical PET Centre, St Thomas' Hospital, London, UK.
| |
Collapse
|
17
|
|
18
|
Cook GJR, Azad GK, Goh V. Imaging Bone Metastases in Breast Cancer: Staging and Response Assessment. J Nucl Med 2016; 57 Suppl 1:27S-33S. [PMID: 26834098 DOI: 10.2967/jnumed.115.157867] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bone metastases are common in patients with advanced breast cancer. Given the significant associated morbidity, the introduction of new, effective systemic therapies, and the improvement in survival time, early detection and response assessment of skeletal metastases have become even more important. Although planar bone scanning has recognized limitations, in particular, poor specificity in staging and response assessment, it continues to be the main method in current clinical practice for staging of the skeleton in patients at risk of bone metastases. However, the accuracy of bone scanning can be improved with the addition of SPECT/CT. There have been reported improvements in sensitivity and specificity for staging of the skeleton with either bone-specific PET/CT tracers, such as (18)F-NaF, or tumor-specific tracers, such as (18)F-FDG, although these methods are less widely available and more costly. There is a paucity of data on the use of (18)F-NaF PET/CT for response assessment in breast cancer, but there is increasing evidence that (18)F-FDG PET/CT may improve on current methods in this regard. At the same time, interest and experience in using whole-body morphologic MRI augmented with diffusion-weighted imaging for both staging and response assessment in the skeleton have been increasing. However, data on comparisons of these methods with PET methods to determine the best technique for current clinical practice or for clinical trials are insufficient. There are early data supporting the use (18)F-FDG PET/MRI to assess malignant disease in the skeleton, with the possibility of taking advantage of the synergies offered by combining morphologic, physiologic, and metabolic imaging.
Collapse
Affiliation(s)
- Gary J R Cook
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, England
| | - Gurdip K Azad
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, England
| | - Vicky Goh
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, England
| |
Collapse
|
19
|
Azad GK, Taylor B, Rubello D, Colletti PM, Goh V, Cook GJ. Molecular and Functional Imaging of Bone Metastases in Breast and Prostate Cancers: An Overview. Clin Nucl Med 2016; 41:e44-50. [PMID: 26402127 DOI: 10.1097/rlu.0000000000000993] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Our ability to accurately assess the skeleton for metastases in breast and prostate cancers has improved significantly in recent years with hybrid imaging methods. Nevertheless, no consensus has been reached on the best imaging modality for diagnosis and treatment response assessment of skeletal disease. Hybrid SPECT/CT has low false-positive and false-negative rates compared with planar bone scintigraphy (BS) or BS augmented with SPECT in breast and prostate cancers. In breast cancer, 18F-FDG PET is more sensitive and accurate at detecting bone metastases than BS. Currently, little evidence has accrued to support the superiority of 18F-fluoride (18F-NaF) PET in diagnosing osseous metastases or monitoring treatment response in breast cancer when compared with conventional imaging. In prostate cancer, the sensitivities of 18F-NaF PET/CT, 18F-fluorocholine (18F-choline), or 11C-choline PET/CT are equivalent, although 11C-/18F-choline PET/CT scans are more specific. Whole-body MRI, using anatomical sequences complemented by diffusion-weighted MRI, shows early evidence of utility for diagnosis and monitoring therapy response. We review the literature for staging and response assessment in metastatic breast and prostate cancer. While staging accuracy has significantly improved with hybrid imaging, optimal methods for assessing early treatment response have not been determined, and this is an area of active research.
Collapse
|
20
|
Minamimoto R, Mosci C, Jamali M, Barkhodari A, Habte F, Jackson T, Mittra E, Gambhir SS, Iagaru A. Semiquantitative Analysis of the Biodistribution of the Combined 18F-NaF and 18F-FDG Administration for PET/CT Imaging. J Nucl Med 2015; 56:688-94. [DOI: 10.2967/jnumed.115.153767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/12/2015] [Indexed: 01/18/2023] Open
|
21
|
Moreno AJC, Albiach CF, Soria RM, Vidal VG, Gómez RG, Antequera MA. Oligometastases in prostate cancer: restaging stage IV cancers and new radiotherapy options. Radiat Oncol 2014; 9:258. [PMID: 25497220 PMCID: PMC4272793 DOI: 10.1186/s13014-014-0258-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/06/2014] [Indexed: 02/08/2023] Open
Abstract
There are various subgroups of patients with metastatic prostate cancer: polymetastatic, oligometastatic, or oligo-recurrent cancers whose progression follows different courses and for whom there are different treatment options. Knowledge of tumor dissemination pathways and different genetic and epigenetic tumor profiles, as well as their evolution during disease progression, along with new diagnostic and therapeutic advances has allowed us to address these situations with local ablative treatments such as stereotactic body radiation therapy or stereotactic radiosurgery. These treatments provide high rates of local control with low toxicity in metastatic spread for primary cancers including those of pulmonary, digestive, and renal origin, while these types of treatments are still emerging for cancers of prostatic origin. There are several retrospective studies showing the effectiveness of such treatments in prostate cancer metastases, which has led to the emergence of prospective studies on the issue and even some phase II studies intended to prevent or delay systemic treatments such as chemotherapy. Here we collect together and review these past experiences and the studies currently underway. These types of radiotherapy treatments redefine how we approach extracranial metastatic disease and open up new possibilities for combination therapy with new systemic treatment agents.
Collapse
Affiliation(s)
- Antonio José Conde Moreno
- Servicio de Oncología Radioterápica, Instituto Oncológico de Castellón “Dr. Altava”, Consorcio Hospitalario Provincial de Castellón, Av. Dr. Clarà N 19, 12002 Castellón de la Plana, Castellón Spain
| | - Carlos Ferrer Albiach
- Servicio de Oncología Radioterápica, Instituto Oncológico de Castellón “Dr. Altava”, Consorcio Hospitalario Provincial de Castellón, Av. Dr. Clarà N 19, 12002 Castellón de la Plana, Castellón Spain
| | - Rodrigo Muelas Soria
- Servicio de Oncología Radioterápica, Instituto Oncológico de Castellón “Dr. Altava”, Consorcio Hospitalario Provincial de Castellón, Av. Dr. Clarà N 19, 12002 Castellón de la Plana, Castellón Spain
| | - Verónica González Vidal
- Servicio de Oncología Radioterápica, Instituto Oncológico de Castellón “Dr. Altava”, Consorcio Hospitalario Provincial de Castellón, Av. Dr. Clarà N 19, 12002 Castellón de la Plana, Castellón Spain
| | - Raquel García Gómez
- Servicio de Oncología Radioterápica, Instituto Oncológico de Castellón “Dr. Altava”, Consorcio Hospitalario Provincial de Castellón, Av. Dr. Clarà N 19, 12002 Castellón de la Plana, Castellón Spain
| | - María Albert Antequera
- Servicio de Oncología Radioterápica, Instituto Oncológico de Castellón “Dr. Altava”, Consorcio Hospitalario Provincial de Castellón, Av. Dr. Clarà N 19, 12002 Castellón de la Plana, Castellón Spain
| |
Collapse
|