1
|
Kratochwil C, Fendler WP, Eiber M, Hofman MS, Emmett L, Calais J, Osborne JR, Iravani A, Koo P, Lindenberg L, Baum RP, Bozkurt MF, Delgado Bolton RC, Ezziddin S, Forrer F, Hicks RJ, Hope TA, Kabasakal L, Konijnenberg M, Kopka K, Lassmann M, Mottaghy FM, Oyen WJG, Rahbar K, Schoder H, Virgolini I, Bodei L, Fanti S, Haberkorn U, Hermann K. Joint EANM/SNMMI procedure guideline for the use of 177Lu-labeled PSMA-targeted radioligand-therapy ( 177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging 2023; 50:2830-2845. [PMID: 37246997 PMCID: PMC10317889 DOI: 10.1007/s00259-023-06255-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is expressed by the majority of clinically significant prostate adenocarcinomas, and patients with target-positive disease can easily be identified by PSMA PET imaging. Promising results with PSMA-targeted radiopharmaceutical therapy have already been obtained in early-phase studies using various combinations of targeting molecules and radiolabels. Definitive evidence of the safety and efficacy of [177Lu]Lu-PSMA-617 in combination with standard-of-care has been demonstrated in patients with metastatic castration-resistant prostate cancer, whose disease had progressed after or during at least one taxane regimen and at least one novel androgen-axis drug. Preliminary data suggest that 177Lu-PSMA-radioligand therapy (RLT) also has high potential in additional clinical situations. Hence, the radiopharmaceuticals [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T are currently being evaluated in ongoing phase 3 trials. The purpose of this guideline is to assist nuclear medicine personnel, to select patients with highest potential to benefit from 177Lu-PSMA-RLT, to perform the procedure in accordance with current best practice, and to prepare for possible side effects and their clinical management. We also provide expert advice, to identify those clinical situations which may justify the off-label use of [177Lu]Lu-PSMA-617 or other emerging ligands on an individual patient basis.
Collapse
Affiliation(s)
- Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147, Essen, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum Rechts Der Isar, Technical University Munich (TUM), 81675, Munich, Germany
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Melbourne, VIC, Australia
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital Sydney, Darlinghurst, Australia
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Amir Iravani
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Phillip Koo
- Division of Diagnostic Imaging, Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Liza Lindenberg
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Richard P Baum
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Murat Fani Bozkurt
- Hacettepe University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Flavio Forrer
- Department of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Rodney J Hicks
- The University of Melbourne Department of Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging / Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Levent Kabasakal
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Mark Konijnenberg
- Radiology & Nuclear Medicine Department, Erasmus MC, Rotterdam, The Netherlands
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Technical University Dresden, School of Science, Faculty of Chemistry and Food Chemistry; German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Medical Faculty, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Wim J G Oyen
- Department of Biomedical Sciences, Humanitas University, and Humanitas Clinical and Research Centre, Department of Nuclear Medicine, Milan, Italy
- Department of Radiology and Nuclear Medicine, Rijnstate Hospital, Arnhem, the Netherlands
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - Heiko Schoder
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Lisa Bodei
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefano Fanti
- Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ken Hermann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
2
|
Qi J, Huang B. Positronium Lifetime Image Reconstruction for TOF PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2848-2855. [PMID: 35584079 PMCID: PMC9829407 DOI: 10.1109/tmi.2022.3174561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Positron emission tomography is widely used in clinical and preclinical applications. Positronium lifetime carries information about the tissue microenvironment where positrons are emitted, but such information has not been captured because of two technical challenges. One challenge is the low sensitivity in detecting triple coincidence events. This problem has been mitigated by the recent developments of PET scanners with long (1-2 m) axial field of view. The other challenge is the low spatial resolution of the positronium lifetime images formed by existing methods that is determined by the time-of-flight (TOF) resolution (200-500 ps) of existing PET scanners. This paper solves the second challenge by developing a new image reconstruction method to generate high-resolution positronium lifetime images using existing TOF PET. Simulation studies demonstrate that the proposed method can reconstruct positronium lifetime images at much better spatial resolution than the limit set by the TOF resolution of the PET scanner. The proposed method opens up the possibility of performing positronium lifetime imaging using existing TOF PET scanners. The lifetime information can be used to understand the tissue microenvironment in vivo which could facilitate the study of disease mechanism and selection of proper treatments.
Collapse
|
3
|
Determination of pharmacokinetics and tissue distribution of a novel lutetium-labeled PSMA-targeted ligand, 177Lu-DOTA-PSMA-GUL, in rats by using LC–MS/MS. Sci Rep 2022; 12:15452. [PMID: 36104447 PMCID: PMC9474474 DOI: 10.1038/s41598-022-19700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
Prostate specific membrane antigen (PSMA) is known to be overexpressed in prostate cancer cells, providing as a diagnostic and therapeutic target for prostate cancer. A lutetium-labeled PSMA targeted ligand, 177Lu-DOTA-PSMA-GUL is a novel radiopharmaceutical, which has been developed for the treatment of prostate cancer. While the GUL domain of 177Lu-DOTA-PSMA-GUL binds to the antigen, the beta-emitting radioisotope, 177Lu-labeled DOTA, interacts with prostate cancer cells. However, the in vivo pharmacokinetics of intact 177Lu-DOTA-PSMA-GUL has never been characterized. This study aimed to evaluate the pharmacokinetics and tissue distribution of the radiopharmaceutical in rats by using its stable isotope-labeled analog, 175Lu-DOTA-PSMA-GUL. A sensitive liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis of 175Lu-DOTA-PSMA-GUL was developed and validated. Following intravenous injection, the plasma concentration–time profiles of 175Lu-DOTA-PSMA-GUL showed a multi-exponential decline with the average elimination half-life of 0.30 to 0.33 h. Systemic exposure increased with the dose and renal excretion is the major elimination route. Tissue distribution of 175Lu-DOTA-PSMA-GUL was most substantial in kidneys, followed by the prostate. The developed LC–MS/MS assay and the in vivo pharmacokinetic data of 175Lu-DOTA-PSMA-GUL would provide helpful information for further clinical studies to be developed as a novel therapeutic agent for prostate cancer.
Collapse
|
4
|
[Anticipating Criteria for Discharge after Lu-177-PSMA Treatment - Discussion of Several Scenarios]. Nuklearmedizin 2022; 61:111-119. [PMID: 35170005 DOI: 10.1055/a-1697-8126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIM The aim is to add a pragmatic contribution to the discussion of an algorithm to discharge patients treated with Lu-177-PSMA under the aspect of radiation protection. This also may be applied to therapies with other radioactive tracers in the future. MATERIAL AND METHODS 478 cycles of Lu-177-PSMA-617 (140 patients) were analyzed. The remaining activity in the patient and the dose rate were correlated. From frequent intratherapeutic measurements (biexponential fit) scenarios for discharging patients are deduced. RESULTS Thirty-four per cent of all patients treated with Lu-177-PSMA received 3 to 5 cycles per calendar year. The dose limit of 1 mSv per calendar year (German Law) at a distance of 2 m from the patient would be exceeded in 10 % and 15 % of the treated patients if discharged 72 hours after treatment given 3 and 4 cycles per calendar year, respectively. Mean specific dose rate was 0.00462µSv/(h MBq) at a distance of 1 m. A universal correlation between dose rate and the remaining activity in the patient could not be found. CONCLUSION The multi cycle concept of the therapies with Lu-177 PSMA has to be taken into account prospectively when discharging the patients. Given the physical half-life of Lu-177 an anticipation of 4 treatment cycles per calendar year leads to a clearly arranged, conservative rule.
Collapse
|
5
|
De Nardo L, Pupillo G, Mou L, Esposito J, Rosato A, Meléndez‐Alafort L. A feasibility study of the therapeutic application of a mixture of 67/64 Cu radioisotopes produced by cyclotrons with proton irradiation. Med Phys 2022; 49:2709-2724. [PMID: 35134261 PMCID: PMC9305914 DOI: 10.1002/mp.15524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE 64 Cu and 67 Cu radioisotopes have nuclear characteristics suitable for nuclear medicine applications. The production of 64 Cu is already well established. However, the production of 67 Cu in quantities suitable to conduct clinical trials is more challenging as it leads to the coproduction of other Cu isotopes, in particular 64 Cu. The aim of this study is to investigate the possibility of using a CuCl2 solution with a mixture of 67/64 Cu radioisotopes for therapeutic purposes, providing an alternative solution for the cyclotron production problem. METHODS Copper radioisotopes activities were calculated by considering proton beam irradiation of the following targets: (i) 70 Zn in the energy range 70-45 MeV; (ii) 68 Zn in the energy range 70-35 MeV; (iii) a combination of 70 Zn (70-55 MeV) and 68 Zn (55-35 MeV). The contribution of each copper radioisotope to the human-absorbed dose was estimated with OLINDA/EXM software using the biokinetic model for CuCl2 published by ICRP 53. The total absorbed dose generated by the 67/64 CuCl2 mixture, obtained through different production routes, was calculated at different times after the end of the bombardment (EOB). A simple spherical model was used to simulate tumors of different sizes containing uniformly distributed 67/64 Cu mixture and to calculate the absorbed dose of self-irradiation. The biological damage produced by 67 Cu and 64 Cu was also evaluated through cellular dosimetry and cell surviving fraction assessment using the MIRDcell code, considering two prostate cancer cell lines with different radiosensitivity. RESULTS The absorbed dose to healthy organs and the effective dose (ED) per unit of administered activity of 67 CuCl2 are higher than those of 64 CuCl2 . Absorbed dose values per unit of administered activity of 67/64 CuCl2 mixture increase with time after the EOB because the amount of 67 Cu in the mixture increases. Survival data showed that the biological damage caused per each decay of 67 Cu is greater than that of 64 Cu, assuming that radionuclides remain accumulated in the cell cytoplasm. Sphere model calculations demonstrated that 64 Cu administered activity must be about five times higher than that of 67 Cu to obtain the same absorbed dose for tumor mass between 0.01 and 10 g and about 10 times higher for very small spheres. Consequently, the 64 CuCl2 -absorbed dose to healthy organs will reach higher values than those of 67 CuCl2 . The supplemental activity of the 67/64 CuCl2 mixture, required to get the same tumor-absorbed dose produced by 67 CuCl2 , triggers a dose increment (DI) in healthy organs. The waiting time post-EOB necessary to keep this DI below 10% (t10% ) depends on the irradiation methods employed for the production of the 67/64 CuCl2 mixture. CONCLUSIONS A mixture of cyclotron produced 67/64 Cu radioisotopes proved to be an alternative solution for the therapeutic use of CuCl2 with minimal DI to healthy organs compared with pure 67 Cu. Irradiation of a 70 Zn+68 Zn target in the 70-35 MeV proton energy range for 185 h appears to be the best option from among all the production routes investigated, as it gives the maximum amount of activity, the shortest t10% (10 h), and less than 1% of 61 Cu and 60 Cu impurities.
Collapse
Affiliation(s)
- Laura De Nardo
- Department of Physics and AstronomyUniversity of PaduaVia Marzolo 8Padova35131Italy
- INFN‐PadovaNational Institute of Nuclear PhysicsVia Marzolo 8Padova35131Italy
| | - Gaia Pupillo
- INFN‐Legnaro National LaboratoriesNational Institute of Nuclear PhysicsViale dell'Università 2Legnaro35020Italy
| | - Liliana Mou
- INFN‐Legnaro National LaboratoriesNational Institute of Nuclear PhysicsViale dell'Università 2Legnaro35020Italy
| | - Juan Esposito
- INFN‐Legnaro National LaboratoriesNational Institute of Nuclear PhysicsViale dell'Università 2Legnaro35020Italy
| | - Antonio Rosato
- Department of SurgeryOncology and GastroenterologyUniversity of PaduaPadovaItaly
- Veneto Institute of Oncology IOV‐IRCCSVia Gattamelata 64Padova35138Italy
| | | |
Collapse
|
6
|
Dosimetry in radionuclide therapy: the clinical role of measuring radiation dose. Lancet Oncol 2022; 23:e75-e87. [DOI: 10.1016/s1470-2045(21)00657-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022]
|
7
|
van Nuland M, Ververs TF, Lam MGEH. Dosing Therapeutic Radiopharmaceuticals in Obese Patients. Int J Mol Sci 2022; 23:ijms23020818. [PMID: 35055005 PMCID: PMC8775906 DOI: 10.3390/ijms23020818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The prevalence of obesity has increased dramatically in the Western population. Obesity is known to influence not only the proportion of adipose tissue but also physiological processes that could alter drug pharmacokinetics. Yet, there are no specific dosing recommendations for radiopharmaceuticals in this patient population. This could potentially lead to underdosing and thus suboptimal treatment in obese patients, while it could also lead to drug toxicity due to high levels of radioactivity. In this review, relevant literature is summarized on radiopharmaceutical dosing and pharmacokinetic properties, and we aimed to translate these data into practical guidelines for dosing of radiopharmaceuticals in obese patients. For radium-223, dosing in obese patients is well established. Furthermore, for samarium-153-ethylenediaminetetramethylene (EDTMP), dose-escalation studies show that the maximum tolerated dose will probably not be reached in obese patients when dosing on MBq/kg. On the other hand, there is insufficient evidence to support dose recommendations in obese patients for rhenium-168-hydroxyethylidene diphosphonate (HEDP), sodium iodide-131, iodide 131-metaiodobenzylguanidine (MIBG), lutetium-177-dotatate, and lutetium-177-prostate-specific membrane antigen (PSMA). From a pharmacokinetic perspective, fixed dosing may be appropriate for these drugs. More research into obese patient populations is needed, especially in the light of increasing prevalence of obesity worldwide.
Collapse
Affiliation(s)
- Merel van Nuland
- Department of Clinical Pharmacy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.v.N.); (T.F.V.)
| | - Tessa F. Ververs
- Department of Clinical Pharmacy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.v.N.); (T.F.V.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marnix G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
8
|
Miller C, Rousseau J, Ramogida CF, Celler A, Rahmim A, Uribe CF. Implications of physics, chemistry and biology for dosimetry calculations using theranostic pairs. Theranostics 2022; 12:232-259. [PMID: 34987643 PMCID: PMC8690938 DOI: 10.7150/thno.62851] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Theranostics is an emerging paradigm that combines imaging and therapy in order to personalize patient treatment. In nuclear medicine, this is achieved by using radiopharmaceuticals that target identical molecular targets for both imaging (using emitted gamma rays) and radiopharmaceutical therapy (using emitted beta, alpha or Auger-electron particles) for the treatment of various diseases, such as cancer. If the therapeutic radiopharmaceutical cannot be imaged quantitatively, a “theranostic pair” imaging surrogate can be used to predict the absorbed radiation doses from the therapeutic radiopharmaceutical. However, theranostic dosimetry assumes that the pharmacokinetics and biodistributions of both radiopharmaceuticals in the pair are identical or very similar, an assumption that still requires further validation for many theranostic pairs. In this review, we consider both same-element and different-element theranostic pairs and attempt to determine if factors exist which may cause inaccurate dose extrapolations in theranostic dosimetry, either intrinsic (e.g. chemical differences) or extrinsic (e.g. injecting different amounts of each radiopharmaceutical) to the radiopharmaceuticals. We discuss the basis behind theranostic dosimetry and present common theranostic pairs and their therapeutic applications in oncology. We investigate general factors that could create alterations in the behavior of the radiopharmaceuticals or the quantitative accuracy of imaging them. Finally, we attempt to determine if there is evidence showing some specific pairs as suitable for theranostic dosimetry. We show that there are a variety of intrinsic and extrinsic factors which can significantly alter the behavior among pairs of radiopharmaceuticals, even if they belong to the same chemical element. More research is needed to determine the impact of these factors on theranostic dosimetry estimates and on patient outcomes, and how to correctly account for them.
Collapse
|
9
|
Heynickx N, Herrmann K, Vermeulen K, Baatout S, Aerts A. The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far. Nucl Med Biol 2021; 98-99:30-39. [PMID: 34020337 DOI: 10.1016/j.nucmedbio.2021.04.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
At present, prostate cancer remains the second most occurring cancer in men, in Europe. Treatment efficacy for therapy of advanced metastatic disease, and metastatic castration-resistant prostate cancer in particular is limited. Prostate-specific membrane antigen (PSMA) is a promising therapeutic target in prostate cancer, seeing the high amount of overexpression on prostate cancer cells. Clinical investigation of PSMA-targeted radionuclide therapy has shown good clinical efficacy. However, adverse effects are observed of which salivary gland hypofunction and xerostomia are among the most prominent. Salivary gland toxicity is currently the dose-limiting side effect for PSMA-targeted radionuclide therapy, and more specifically for PSMA-targeted alpha therapy. To date, mechanisms underlying the salivary gland uptake of PSMA-targeting compounds and the subsequent damage to the salivary glands remain largely unknown. Furthermore, preventive strategies for salivary gland uptake or strategies for treatment of salivary gland toxicity are needed. This review focuses on the current knowledge on uptake mechanisms of PSMA-targeting compounds in the salivary glands and the research performed to investigate different strategies to prevent or treat salivary gland toxicity.
Collapse
Affiliation(s)
- Nathalie Heynickx
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America; Department of Nuclear Medicine, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Koen Vermeulen
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.
| | - An Aerts
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
10
|
Mikolajczak R, Huclier-Markai S, Alliot C, Haddad F, Szikra D, Forgacs V, Garnuszek P. Production of scandium radionuclides for theranostic applications: towards standardization of quality requirements. EJNMMI Radiopharm Chem 2021; 6:19. [PMID: 34036449 PMCID: PMC8149571 DOI: 10.1186/s41181-021-00131-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/26/2021] [Indexed: 01/23/2023] Open
Abstract
In the frame of "precision medicine", the scandium radionuclides have recently received considerable interest, providing personalised adjustment of radiation characteristics to optimize the efficiency of medical care or therapeutic benefit for particular groups of patients. Radionuclides of scandium, namely scandium-43 and scandium-44 (43/44Sc) as positron emitters and scandium-47 (47Sc), beta-radiation emitter, seem to fit ideally into the concept of theranostic pair. This paper aims to review the work on scandium isotopes production, coordination chemistry, radiolabeling, preclinical studies and the very first clinical studies. Finally, standardized procedures for scandium-based radiopharmaceuticals have been proposed as a basis to pave the way for elaboration of the Ph.Eur. monographs for perspective scandium radionuclides.
Collapse
Affiliation(s)
- R Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzej Soltan 7, 05-400, Otwock, Poland
| | - S Huclier-Markai
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique /CNRS-IN2P3 / Université de Nantes, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France.
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France.
| | - C Alliot
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France
- CRCINA, Inserm / CNRS / Université de Nantes, 8 quai Moncousu, 44007, Nantes Cedex 1, France
| | - F Haddad
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique /CNRS-IN2P3 / Université de Nantes, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France
| | - D Szikra
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - V Forgacs
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - P Garnuszek
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzej Soltan 7, 05-400, Otwock, Poland
| |
Collapse
|
11
|
Nardo LD, Pupillo G, Mou L, Furlanetto D, Rosato A, Esposito J, Meléndez-Alafort L. Preliminary dosimetric analysis of DOTA-folate radiopharmaceutical radiolabelled with 47Sc produced through natV(p,x) 47Sc cyclotron irradiation. Phys Med Biol 2021; 66:025003. [PMID: 33480361 DOI: 10.1088/1361-6560/abc811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
47Sc is one of the most promising theranostic radionuclides, thanks to its low energy γ-ray emission (159 keV), suitable for single photon emission computed tomography imaging and its intense β - emission, useful for tumour treatment. Despite promising preclinical results, the translation of 47Sc-therapeutic agents to the clinic is hampered by its limited availability. Among different 47Sc-production routes currently being investigated, the natV(p,x)47Sc reaction has proved to be of particular interest, thanks to the low-cost and easy availability on the market of natV material and the diffusion of medium energy proton cyclotrons. However, the cross section of this specific nuclear reaction is quite low and small amounts of Sc-contaminants are co-produced at energies E P ≤ 45 MeV, namely 48Sc and 46Sc. The main concern with these Sc-contaminants is their contribution to the patient absorbed dose. For such a reason, the absorbed dose contributions to healthy organs and the effective dose contributions by the three radioisotopes, 48Sc, 47Sc and 46Sc, were evaluated using DOTA-folate conjugate (cm10) as an example of radiopharmaceutical product. Considering as acceptable the limits of 99% for the radionuclidic purity and 10% for the contribution of radioactive Sc-contaminants to the total effective dose after 47Sc-cm10 injection, it was obtained that proton beam energies below 35 MeV must be used to produce 47Sc through irradiation of a natV target.
Collapse
Affiliation(s)
- L De Nardo
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, Padova 35131, Italy. INFN (Istituto Nazionale di Fisica Nucleare), Sezione di Padova, Via Marzolo 8, Padova 35131, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
13
|
Whole-Body 177Lu-Prostate-Specific Membrane Antigen Scan Pattern With Excess Free 177Lu-Chloride in a Metastatic Castration-Resistant Prostate Cancer Patient. Clin Nucl Med 2020; 45:805-807. [PMID: 32604118 DOI: 10.1097/rlu.0000000000003167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A 56-year-old man with metastatic castration-resistant prostate cancer was referred for radioligand therapy with Lu-prostate-specific membrane antigen. In the third cycle, a posttherapy whole-body scan showed unexpected skeletal and joint uptake apart from his known metastatic lesions. This observation raised suspicion for possible impurity (mainly free lutetium) in the applied radiopharmaceutical product. After contacting the radiopharmaceutical company, we were informed that the radiochemical purity of the used batch of Lu-prostate-specific membrane antigen had been 95%. This is the first report of excess free lutetium scan pattern and its complications in a patient undergoing radioligand therapy.
Collapse
|
14
|
Development of 177Lu-scFvD2B as a Potential Immunotheranostic Agent for Tumors Overexpressing the Prostate Specific Membrane Antigen. Sci Rep 2020; 10:9313. [PMID: 32518372 PMCID: PMC7283306 DOI: 10.1038/s41598-020-66285-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/18/2020] [Indexed: 11/25/2022] Open
Abstract
The clinical translation of theranostic 177Lu-radiopharmaceuticals based on inhibitors of the prostate-specific membrane antigen (PSMA) has demonstrated positive clinical responses in patients with advanced prostate cancer (PCa). However, challenges still remain, particularly regarding their pharmacokinetic and dosimetric properties. We developed a potential PSMA-immunotheranostic agent by conjugation of a single-chain variable fragment of the IgGD2B antibody (scFvD2B) to DOTA, to obtain a 177Lu-labelled agent with a better pharmacokinetic profile than those previously reported. The labelled conjugated 177Lu-scFvD2B was obtained in high yield and stability. In vitro, 177Lu-scFvD2B disclosed a higher binding and internalization in LNCaP (PSMA-positive) compared to PC3 (negative control) human PCa cells. In vivo studies in healthy nude mice revealed that 177Lu-scFvD2B present a favorable biokinetic profile, characterized by a rapid clearance from non-target tissues and minimal liver accumulation, but a slow wash-out from kidneys. Micro-SPECT/CT imaging of mice bearing pulmonary microtumors evidenced a slow uptake by LNCaP tumors, which steadily rose up to a maximum value of 3.6 SUV at 192 h. This high and prolonged tumor uptake suggests that 177Lu-scFvD2B has great potential in delivering ablative radiation doses to PSMA-expressing tumors, and warrants further studies to evaluate its preclinical therapeutic efficacy.
Collapse
|
15
|
Medical Event: Accidental Oral Administration of 177Lu-PSMA to a Patient With Hyperthyroidism. Clin Nucl Med 2020; 45:439-441. [PMID: 32349091 DOI: 10.1097/rlu.0000000000003026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 74-year-old woman with hyperthyroidism was referred for radioiodine therapy. The patient was accidentally given 60 mCi of Lu-PSMA orally instead of I. Upon discovery of this medical event, we immediately started radiation protective actions including hydration, antiemetics, and laxatives. The patients did not have any symptoms. Static acquisition was performed from the abdominal-pelvic and head and neck regions at 20 and 90 hours after ingestion, which showed prominent intestinal activity and mild systemic activity in the kidneys, bladder, salivary, and lacrimal glands.
Collapse
|
16
|
Baranyai Z, Tircsó G, Rösch F. The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zsolt Baranyai
- Bracco Research Centre Bracco Imaging spa Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Gyula Tircsó
- Department of Physical Chemistry Faculty of Science and Technology University of Debrecen Egyetem tér 1 Debrecen 4032 Hungary
| | - Frank Rösch
- Institute of Nuclear Chemistry Johannes Gutenberg‐University of Mainz Fritz‐Strassmann‐Weg 2 55128 Mainz Germany
| |
Collapse
|
17
|
Siwowska K, Guzik P, Domnanich KA, Monné Rodríguez JM, Bernhardt P, Ponsard B, Hasler R, Borgna F, Schibli R, Köster U, van der Meulen NP, Müller C. Therapeutic Potential of 47Sc in Comparison to 177Lu and 90Y: Preclinical Investigations. Pharmaceutics 2019; 11:pharmaceutics11080424. [PMID: 31434360 PMCID: PMC6723926 DOI: 10.3390/pharmaceutics11080424] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
Targeted radionuclide therapy with 177Lu- and 90Y-labeled radioconjugates is a clinically-established treatment modality for metastasized cancer. 47Sc is a therapeutic radionuclide that decays with a half-life of 3.35 days and emits medium-energy β−-particles. In this study, 47Sc was investigated, in combination with a DOTA-folate conjugate, and compared to the therapeutic properties of 177Lu-folate and 90Y-folate, respectively. In vitro, 47Sc-folate demonstrated effective reduction of folate receptor-positive ovarian tumor cell viability similar to 177Lu-folate, but 90Y-folate was more potent at equal activities due to the higher energy of emitted β−-particles. Comparable tumor growth inhibition was observed in mice that obtained the same estimated absorbed tumor dose (~21 Gy) when treated with 47Sc-folate (12.5 MBq), 177Lu-folate (10 MBq), and 90Y-folate (5 MBq), respectively. The treatment resulted in increased median survival of 39, 43, and 41 days, respectively, as compared to 26 days in untreated controls. There were no statistically significant differences among the therapeutic effects observed in treated groups. Histological assessment revealed no severe side effects two weeks after application of the radiofolates, even at double the activity used for therapy. Based on the decay properties and our results, 47Sc is likely to be comparable to 177Lu when employed for targeted radionuclide therapy. It may, therefore, have potential for clinical translation and be of particular interest in tandem with 44Sc or 43Sc as a diagnostic match, enabling the realization of radiotheragnostics in future.
Collapse
Affiliation(s)
- Klaudia Siwowska
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Patrycja Guzik
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Katharina A Domnanich
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Biochemistry University of Bern, 3012 Bern, Switzerland
| | - Josep M Monné Rodríguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Bernhardt
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
- Department of Medical Physics and Medical Bioengineering, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Bernard Ponsard
- SCK.CEN, Belgian Nuclear Research Centre, BR2 Reactor, 2400 Mol, Belgium
| | - Roger Hasler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Francesca Borgna
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Ulli Köster
- Institut Laue Langevin, 38042 Grenoble, France
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
18
|
Hoberück S, Wunderlich G, Michler E, Hölscher T, Walther M, Seppelt D, Platzek I, Zöphel K, Kotzerke J. Dual-time-point 64 Cu-PSMA-617-PET/CT in patients suffering from prostate cancer. J Labelled Comp Radiopharm 2019; 62:523-532. [PMID: 31042811 DOI: 10.1002/jlcr.3745] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022]
Abstract
Regardless of its high positron energy, 68 Ga-labeled PSMA ligands have become standard of care in metabolic prostate cancer imaging. 64 Cu, a radionuclide with a much longer half-life (12.7 h), is available for PSMA labeling allowing imaging much later than 68 Ga. In this study, the diagnostic performance of 64 Cu-labeled PSMA was compared between early and late scans. Sixteen men (median age: 70 y) with prostate cancer in different stages underwent 64 Cu-PSMA-617-PET/CT 2 and 22 hours post tracer injection. Pathologic and physiologic uptakes were analyzed for both points of time. Pathologic tracer accumulations occurred in 12 patients. Five patients presented with pathologic uptake in 17 different lymph nodes, two patients showed pathologic bone uptake in nine lesions, and seven patients had pathologic PSMA uptake in eight prostatic lesions. Physiologic uptake of the renal parenchyma, urine bladder, and salivary glands decreased over time, while the physiologic uptake of liver and bowel increased. In the present study, 64 Cu-PSMA-617-PET demonstrated to be feasible for imaging prostate cancer for both the primary tumor site and metastases. Later imaging showed no additional, clinically relevant benefit compared with the early scans. At least the investigated time points we chose did not vindicate the additional expenditure.
Collapse
Affiliation(s)
- Sebastian Hoberück
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Gerd Wunderlich
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Enrico Michler
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Tobias Hölscher
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martin Walther
- Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Danilo Seppelt
- Department of Radiology, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ivan Platzek
- Department of Radiology, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
19
|
Abstract
As described in more detail in other contributions in this issue of Seminars in Nuclear Medicine, prostate-specific membrane antigen (PSMA) has become one of the most promising molecular targets in nuclear medicine. Due to its overexpression on prostate cancer cells in proportion to the stage and grade of tumour progression, especially in androgen-independent, advanced and metastatic disease, various tracers for the detection and treatment of prostate cancer by means of radioligand imaging, radioligand therapy or radioguided surgery have been developed and transferred to clinical applications. Even though monoclonal antibodies were investigated and introduced as first PSMA-targeted probes, the inherent advantage of fast tumour uptake and rapid excretion of small molecules has shifted the research focus during the last decade to low molecular weight inhibitors with high affinity to PSMA, such as [18F]FDCFPyL, [18F]PSMA-1007, [68Ga]PSMA-HBED, [177Lu]PSMA-617, [177Lu]PSMA-I&T, [99mTc]MIP-1404 or [99mTc]PSMA I&S, to mention only a few. Due to the plethora of such PSMA probes described during the last years, this review aims to give an overview over the specific characteristics of those radiopharmaceuticals that have already found widespread clinical application. In addition, recently introduced concepts such as PSMA-tracers with increased plasma protein binding, are discussed.
Collapse
Affiliation(s)
- Hans-Jürgen Wester
- Chair of Pharmaceutical Radiochemistry, Walther-Meissner-Strasse 3, 85748 Garching, Germany.
| | - Margret Schottelius
- Chair of Pharmaceutical Radiochemistry, Walther-Meissner-Strasse 3, 85748 Garching, Germany
| |
Collapse
|
20
|
Preliminary results of biodistribution and dosimetric analysis of [ 68Ga]Ga-DOTA ZOL: a new zoledronate-based bisphosphonate for PET/CT diagnosis of bone diseases. Ann Nucl Med 2019; 33:404-413. [PMID: 30877560 DOI: 10.1007/s12149-019-01348-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Pre-clinical studies with gallium-68 zoledronate ([68Ga]Ga-DOTAZOL) have proposed it to be a potent bisphosphonate for PET/CT diagnosis of bone diseases and diagnostic counterpart to [177Lu]Lu-DOTAZOL and [225Ac]Ac-DOTAZOL. This study aims to be the first human biodistribution and dosimetric analysis of [68Ga]Ga-DOTAZOL. METHODS Five metastatic skeletal disease patients (mean age: 72 years, M: F; 4:1) were injected with 150-190 MBq (4.05-5.14 mCi) of [68Ga]Ga-DOTAZOL i.v. Biodistribution of [68Ga]Ga-DOTAZOL was studied with PET/CT initial dynamic imaging for 30 min; list mode over abdomen (reconstructed as six images of 300 s) followed by static (skull to mid-thigh) imaging at 45 min and 2.5 h with Siemens Biograph 2 PET/CT camera. Also, blood samples (8 time points) and urine samples (2 time points) were collected over a period of 2.5 h. Total activity (MBq) in source organs was determined using interview fusion software (MEDISO Medical Imaging Systems, Budapest, Hungary). A blood-based method for bone marrow self-dose determination and a trapezoidal method for urinary bladder contents residence time calculation were used. OLINDA/EXM version 2.0 software (Hermes Medical Solutions, Stockholm, Sweden) was used to generate residence times for source organs, organ absorbed doses and effective doses. RESULTS High uptake in skeleton as target organ, kidneys and urinary bladder as organs of excretion and faint uptake in liver, spleen and salivary glands were seen. Qualitative and quantitative analysis supported fast blood clearance, high bone to soft tissue and lesion to normal bone uptake with [68Ga]Ga-DOTAZOL. Urinary bladder with the highest absorbed dose of 0.368 mSv/MBq presented the critical organ, followed by osteogenic cells, kidneys and red marrow receiving doses of 0.040, 0.031 and 0.027 mSv/MBq, respectively. The mean effective dose was found to be 0.0174 mSv/MBq which results in an effective dose of 2.61 mSv from 150 MBq. CONCLUSIONS Biodistribution of [68Ga]Ga-DOTAZOL was comparable to [18F]NaF, [99mTc]Tc-MDP and [68Ga]Ga-PSMA-617. With proper hydration and diuresis to reduce urinary bladder and kidney absorbed doses, it has clear advantages over [18F]NaF owing to its onsite, low-cost production and theranostic potential of personalized dosimetry for treatment with [177Lu]Lu-DOTAZOL and [225Ac]Ac-DOTAZOL.
Collapse
|
21
|
Abstract
The current mainstay of treatment in metastatic prostate cancer is based on hormonal manipulations. Standard androgen deprivation therapy and novel androgen axis drugs are commonly well tolerable and can stabilize metastatic hormone-sensitive prostate cancers for years. However, metastatic castration-resistant prostate cancer is still challenging to treat. Except taxanes, prostate cancer presents intrinsic resistance against conventional chemotherapies. The typically elderly patient population excludes more aggressive treatment regimens. First clinical trials evaluating immunotherapy or tyrosine-kinase-inhibitors against prostate cancer failed. In contrast, prostate cancer can be radiosensitive and external beam radiotherapy is effective in localized prostate cancer, thus providing a good rationale for the use of systemic radiopharmaceuticals in the metastatic setting. Beta-particle emitting "bone-seekers" have a long history and are effective as analgesics but do not improve survival because they are limited by red-marrow dose. Alpha emitting 223Radium can be used in a dose that prolongs survival but is restricted to bone-confined patients. Currently radiolabeled high-affinity ligands to the prostate-specific membrane antigen are in clinical evaluation. While radioimmunotherapy approaches were limited by the long circulation time and slow tumor-accumulation of antibodies, low molecular weight PSMA-specific ligands offer an approx. ten-fold improved tumor to red-marrow ratio in comparison to the unspecific bone-seekers. Early clinical studies demonstrate that regarding surrogate markers, such as >50% PSA reduction (60%) and radiologic response (80%), PSMA-therapy exceeds the antitumor activity of all approved or other recently tested compounds; for example, PSA-response was only observed in approx. a total of 10% of patients treated with ipilimumab, sunitinib, cabozantinib, or xofigo, respectively and in approx. 30, 40, 50% of patients treated with abiraterone, cabazitaxel, or enzalutamide. Also progression free and overall survivals of these single-arm studies appear promising when compared to historical controls. Consecutively, the first PSMA-RLT recently advanced into phase-3 (177Lu-PSMA-617; VISION-trial). Future developments aim to avoid off-target radiation by ligand-optimization and to outperform the antitumor activity of beta-emitter PSMA-RLT by labeling with highly focused, high energy transferring alpha-nuclides; however the latter potentially also increasing the risk of side-effects and additional early phase studies are needed to improve treatment protocols. Academically clinical research is developing prognostic tools to improve treatment benefit by selecting the most appropriate patients in advance.
Collapse
Affiliation(s)
- Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Mirzaei S, Knoll P, Zandieh S. Die Rolle der molekularen Bildgebung (PET-CT) in der Diagnostik und Therapie des Prostatakarzinoms. Wien Med Wochenschr 2018; 169:12-14. [DOI: 10.1007/s10354-018-0668-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|